Цель и причины, обусловливающие необходимость удаления шлака, остатков флюса и брызг металла в процессе изготовления сварных конструкций. Способы удаления брызг и шлаковой корки.



Причины, по которым шлака и флюса необходимо удалять после работы:

1. При удалении шлака изделие визуальным выглядит лучше.

2. Когда производится много слоёв.

3. Часто изделие необходимо покрывать сверху, например, краской.

4. Чтобы проверить насколько качественно выполнен шов.

5. Вызывает коррозию

Брызги являются концентраторами напряжений, могут вызвать разрушение изделия в процессе эксплуатации.

Исправление: срубить зубилом и молотком, с последующей зашлифовкой мест удаления. (механическим путем с помощью шабера или металлических щеток)

 

Цель и причины, обусловливающие необходимость удаления шлака, остатков флюса и брызг металла в процессе изготовления сварных конструкций. Способы удаления остатков паяльных флюсов.

Причины, по которым шлака и флюса необходимо удалять после работы:

1. При удалении шлака изделие визуальным выглядит лучше.

2. Когда производится много слоёв.

3. Часто изделие необходимо покрывать сверху, например, краской.

4. Чтобы проверить насколько качественно выполнен шов.

5. Вызывает коррозию

Брызги являются концентраторами напряжений, могут вызвать разрушение изделия в процессе эксплуатации.

Канифольные и другие некоррозионные пастообразные флюсы удаляют органическим растворителем или спиртом. Ортофосфорная и органические кислоты, вызывающие незначительную коррозию, после пайки удаляют промывкой водой или спиртом. Агрессивные кислотные флюсы, содержащие соляную кислоту, хлористый цинк и другие хлориды металлов, должны быть полностью удалены с паяного соединения. Самая тщательная промывка изделия в воде обычно не обеспечивает полного удаления хлористых солей и ионов хлора. Ответственные изделия, особенно в массовом производстве, проходят комплексную обработку, состоящую из нескольких операций: промывки последовательно в холодной и горячей воде, в слабом растворе

каустической соды, промывки в холодной воде, пассивирования в растворе хромового ангидрида и сушки.

 

Виды и основные причины появления остаточных сварочных напряжений и деформаций. Классификация способов их предупреждения и устранения.

Деформации в сварных конструкциях являются результатом наличия внутренних напряжений, которые могут вызываться различными причинами. К неизбежным причинам, способствующим возникновению напряжений и деформаций, относятся такие, без которых процесс обработки происходить не может - неравномерный нагрев, кристаллизационная усадка швов, структурные изменения металла шва и околошовной зоны и т. д.
К сопутствующим причинам, способствующим возникновению напряжений и деформаций, относятся неправильные решенная конструкции сварных узлов (близкое расположение швов, их частое пересечение, неправильно выбранный тип соединения и т. п.), применение устаревшей техники и технологии сварки (неверно выбраны способы наложения слоев и диаметр электрода, не соблюдаются режимы сварки и т. д.), низкая квалификация сварщика, нарушение геометрических размеров сварных швов и т. п.
Классификация напряжений. Остаточные напряжения при сварке возникают в результате появления термопластических деформаций, которые образуются от неравномерного распределения температуры в изделии, такие деформации бывают упругие и упругопластические.
Остаточные напряжения в зависимости от объема тела, в пределах которого они уравновешены, классифицируются следующим образом. Остаточные напряжения первого рода уравновешиваются в крупных объемах, соизмеряемых с размерами изделия или его частей, и обладают определенной ориентацией в зависимости от формы изделия. Эти напряжения определяют расчетом исходя из теории упругости и пластичности, а также экспериментально.
Остаточные напряжения второго рода уравновешиваются в пределах микрообъемов тела, т. е. в пределах одного или нескольких зерен металла. Эти напряжения не имеют определенной направленности и не зависят от формы изделий. Находят эти напряжения опытным путем.
Остаточные напряжения третьего рода уравновешиваются в мельчайших объемах – в пределах атомной решетки. Они также не имеют определенной направленности и определяются экспериментально по степени изменения интенсивности линий на рентгенограммах.

Классификация сварочных деформаций. Сварные конструкции в результате появления упругопластических деформаций в сварных соединениях могут изменить свои размеры и претерпеть общие деформации - продольные и поперечные, изгиба, скручивания и потери устойчивости.
В результате продольных и поперечных деформаций происходит сокращение элементов по длине и ширине, эти деформации образуются при симметричной укладке сварных швов.
Деформации изгиба появляются при несимметричном расположении сварных швов в конструкциях и сопровождаются продольным сокращением элементов (продольной усадкой) и поперечным сокращением (поперечной усадкой швов). Этот вид деформации в практике встречается довольно часто.
Деформации скручивания образуются вследствие несимметричного расположения швов в поперечных сечениях элементов и встречаются относительно редко.
Деформации потери устойчивости вызываются сжимающими напряжениями, которые образуются в процессе нагревания и остывания изделий.

Для предупреждения вредных воздействий сварочных деформаций необходимо соблюдать следующие правила и провести несколько мероприятий:

  • сварных швов должно быть минимум, и они должны быть как можно короче;
  • количество пересекающихся и разнотолщинных швов так же сводят к минимуму;
  • сварочные соединения делают с плавным переходом толщин;
  • металл наплавляют в минимальном количестве;
  • в самых напряженных местах конструкции швы вовсе не делают;
  • оставляют припуск на усадку.

Необходимо правильно выбирать способ сварки, который зависит от свариваемости материалов, энергии и режима. Чтобы уменьшить зону прогрева, нужно увеличить скорость сваривания. Для увеличения глубины сварки (прогрев в толщину) необходимо увеличить силу тока.

Способы устранения напряжений

Напряжения устраняют отжигом или механическими методами. Отжиг является самым эффективным методом снятия напряжений. Его применяют, когда к изделию предъявляются повышенные требования к точности геометрических размеров.

Он может быть общим или местным. Чаще всего отжиг производят при 550-680 °C. Выделяют три его стадии: нагрев, выдержка, остывание.

Из механических способов устранения напряжений применяют проковку, прокатку, вибрацию, обработку взрывом, приводящие к пластической деформации обратного знака.

Способы устранения деформаций

Для устранения таких явлений применяют термическую правку с местным или общим нагревом, холодную механическую и термомеханическую.

Термический способ с местным нагревом основывается на том, что при охлаждении металл сжимается. Для устранения сварочных деформаций растянутую часть изделия сначала нагревают (горелкой или дугой), при этом окружающий сплав остается холодным и не дает горячему участку сильно расшириться.

При остывании изделие выпрямляется. Так правят балки, листовые полосы и некоторые другие детали.

Если происходит полный отжиг, то конструкцию закрепляют в устройстве, создающем давление на требуемые зоны, и помещают в печь для нагрева.

Холодную правку делают, используя постоянные нагрузки. Для этого применяют различные прессы или валки для прокатки длинномерных изделий типа труб или двутавровых балок, в необходимых местах они деформируются.

Термомеханическую правку производят с применением силовой нагрузки при местном нагреве изделия. Такой способ применяют к сильно растянутым деталям. Вначале собирают излишек металла в так называемые купола, а затем прогревают эти участки.

 


Дата добавления: 2018-08-06; просмотров: 598; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!