ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ РАСТВОРЕНИЯ



Растворение - диффузионно-кинетический процесс, протекающий при соприкосновении растворяемого вещества с растворителем. В фармацевтической практике растворы получают'из твердых, порошкообразных, жидких и газообразных веществ. Как правило, получение растворов из жидких веществ протекает без особых трудностей как их простое смешивание. Растворение же твердых веществ, особенно медленно- и труднорастворимых является сложным и трудоемким процессом. При растворении можно выделить условно следующие стадии:

1) контактирование поверхности твердого тела с растворителем, сопровождающееся смачиванием, адсорбцией и проникновением растворителя в микропоры частиц твердого тела;

2) взаимодействие молекул растворителя со слоями вещества на поверхности раздела фаз, сопровождающееся сольватацией молекул или ионов и их отрывом;

3) переход сольватированных молекул или ионов в жидкую фазу;

4) выравнивание концентраций во всех слоях растворителя.

Длительность 1 и 4 стадии зависит преимущественно от скорости диффузионных процессов, 2 и 3 часто протекают мгновенно или достаточно быстро и имеют кинетический характер, (механизм химических реакций). Из этого следует, что в основном скорость растворения зависит от диффузионных процессов.

Впервые диффузионный механизм растворения описан А.Н.Шукаревым в 1896 г. в виде уравнения, на основании которого скорость процесса зависит от разности концентраций и поверхности раздела фаз. Современная теория исходит из представления о том, что могут протекать как диффузионные, так и межфазные химические процессы. Эта теория развита в трудах советских ученых. Исходным положением диффузионно-кинетической теории следует считать наличие пограничного диффузионного слоя и его влияния на изменение скорости процесса, кинетика которого описывается следующим уравнением:

 

dC

= (

γ D

) · S · (Co – Ct)n

dt D +σγ

 

где dC/ dt - количество вещества, растворяющегося в единицу времени (скорость растворения), кг/с; D - коэффициент диффузии; γ - коэффициент скорости межфазного процесса; σ - эффективная толщина пограничного диффузионного слоя, м; S - площадь поверхности твердой фазы, м2; Со - концентрация насыщенного раствора, кг/м3; Ct - концентрация раствора в данный момент времени, кг/м'4; п - порядок реакции растворения, который в воде почти для всех лекарственных веществ равен единице (кинетическая область растворения).

Константа скорости растворения Kv при постоянном объеме жидкой фазы определяется выражением

Kv=

γ D
D +σγ

В зависимости от соотношения диффузионных и кинетических (межфазных) механизмов возможны три основных типа растворения: диффузионный γ  > D/σ; Kv → D/σ ; кинетический γ  < D/σ; Kv → γ ; и диффузионно-кинетический, когда значения коэффициента скоростей межфазного и диффузионных процессов являются сопоставимыми.

В производстве растворение желательно проводить, ускоряя диффузию за счет перемешивания жид-кон фазы. Однако для медленно- и труднорастворимых веществ межфазный процесс имеет место даже при интенсивном перемешивании.

Смачивание твердого тела зависит от полярности растворителя и поверхности, свойства которой могут изменяться за счет адсорбции воздуха, влаги или примесей, ее пористости и шероховатости, наличия дефектов кристаллической решетки и микротрещин. Для увеличения смачиваемости целесообразно измельчение проводить в среде растворителя, предупреждающего адсорбцию, например воздуха, или добавляя поверхностно-активные вещества. Молекулы или ионы твердой фазы и растворителя взаимодействуют, образуя соответствующие сольваты или их ассоциаты. Близкие по свойствам и структуре растворимые системы, например соединения гомологического ряда или изомеры, между собой почти не взаимодействуют, их свойства сохраняются, изменяется только концентрация веществ в растворе и иногда - агрегатное состояние. Однако чаще между растворителем и поверхностными молекулами твердых тел образуются водородные связи, происходит междипольное взаимодействие. Это приводит к образованию сольватов, ассоциированных комплексов с разной степенью устойчивости и диссоциации комплексов и молекул на ионы. В таких растворах вещество и растворитель находятся в измененном состоянии по сравнению с исходным.

Согласно молекулярно-кинетической теории гидратации при растворении веществ, дающих частицы с достаточно высокой плотностью заряда (ионы Li+, Са++, Mg++, F- и др.), молекулы растворителя, находящиеся вокруг этих частиц, притягиваются, их подвижность уменьшается, реже происходит обмен с другими молекулами. Это явление получило название положительной гидратации. Некоторые ионы, такие как К+, Na+, Rb+, Cs+, Br-, J-, Cl-, как бы отталкивают молекулы растворителя, что вызывает увеличение обмена между ними по сравнению с чистым растворителем, возрастает их неупорядоченность, происходит отрицательная гидратация, для которой характерен только определенный диапазон температур. При достижении предельных температур отрицательная гидратация переходит в положительную. Так, для ионов Na+, Cs+, Cl-, J- эти температуры соответственно равны +11°С, 89°С, 27°С, 75°С. Это объясняется тем, что с повышением вышеуказанной температуры преобладает тепловое движение молекул растворителя. Многообразие взаимодействий так велико, что до настоящего времени нет единой теории растворов.

Современные представления о процессе растворения позволяют уже сейчас на научной основе трактовать закономерности в изменении биологической доступности и терапевтической активности лекарственных веществ в растворах в зависимости от диэлектрической проницаемости, наличия постоянных и индуцированных дипольных моментов, поляризуемости ионов и молекул растворенного вещества. В технологии растворов становится понятной роль выбора среды, добавок электролита, высокомолекулярных соединений, ПАВ и т. д.

При растворении разрушаются связи между молекулами или ионами в растворяемом веществе и растворителе, что связано с затратой энергии. Одновременно с этим начинается процесс комплексообразо-вания, т. е. возникают новые связи между молекулами и ионами, образуются сольваты. Процесс сопровождается выделением энергии. Общее энергетическое изменение в системе может быть положительным или отрицательным. Так, при растворении этанола, многих щелочей, кислот и других веществ в воде выделяется тепло, поэтому дополнительное нагревание приводит к уменьшению растворимости и, наоборот, при поглощении тепла, нагревание увеличивает растворимость. Иногда растворение сопровождается изменением суммарного объема (явлением контракции). Это происходит при смешивании метанола, этанола, глицерина и других спиртов с водой.

Очевидно, что данным процессом можно управлять, варьируя различными технологическими факторами. Так, для увеличения скорости растворения можно изменять температурный режим, увеличивать разность концентраций, уменьшать вязкость и толщину пограничного диффузионного слоя путем изменения гидродинамических условий, измельчать исходное вещество, увеличивая поверхность контакта с растворителем. Для реализации этих возможностей технологический процесс ведут в реакторах, имеющих рубашку для обогрева паром или охлаждения системы рассолом, и перемешивающее устройство. Перемешивание позволяет перемещать слои жидкости в реакторе, увеличивая разность концентраций и заменяя молекулярную диффузию в жидкой среде на конвективный и турбулентный массоперенос. Интенсивное перемешивание уменьшает толщину диффузионного пограничного слоя.

В условиях гетерогенного массообмена жидкость обтекает частицы твердой фазы разными способами. Прямое обтекание происходит, когда жидкость перемещается между неподвижными частицами твердой фазы. Его скорость зависит от скорости движения жидкости. Гравитационное обтекание возникает при падении частиц твердой фазы в движущейся жидкости. Естественная циркуляция осуществляется за счет разности плотностей жидкости и твердой фазы. Инерционное обтекание происходит под действием сил инерции в тех случаях, когда поток или струя жидкости меняет свое направление, а твердые частицы, движущиеся в этой жидкости с определенной скоростью под действием инерции, не могут изменить направление движения. Скорость обтекания частиц в этом способе будет самой большой, а толщина диффузионного пограничного слоя у частиц твердой фазы - минимальной.

В реальных условиях массообмен происходит с участием нескольких способов обтекания, наиболее благоприятные условия создаются при гравитационном и инерционном. Гидродинамический режим процесса связан не только со способом обтекания, но и со скоростью потока жидкости. При ламинарном движении скорость конвективной диффузии увеличивается только в направлении движения потока и зависит от молекулярной вязкости. При турбулентном (вихревом) потоке массоперенос может осуществляться даже в поперечном направлении и скорость массопереноса не зависит от молекулярной вязкости. Интенсивный массоперенос способствует быстрому завершению растворения.

ПЕРЕМЕШИВАНИЕ. ТИПЫ МЕШАЛОК

Перемешивание в жидкой среде осуществляется следующими способами: механическим с помощью мешалок различной конструкции; пневматическим - сжатым воздухом или инертным газом с пульсацией или без нее; гравитационным; перемешиванием в трубопроводе; акустическим (ультразвуковым); циркуляционным.

Наиболее распространенным является механическое перемешивание с помощью мешалок различной конструкции. Они различаются в зависимости от скорости вращения на тихоходные (0,2-1,3 об/с) и быстроходные (2-30 об/с). Рабочей частью их являются лопасти различной формы, которые крепятся на валу и приводятся во вращательное движение от электродвигателя через передаточные механизмы (ременные, зубчатые, шестереночные и т. д.). По устройству лопастей различают мешалки лопастные, пропеллерные, турбинные и др.

Лопастные мешалки состоят из двух или большего числа лопастей, расположенных перпендикулярно или наклонно к оси вала. Скорость конца лопасти составляет 1-5 м/с, поэтому перемешиваются только слои, находящиеся в непосредственной близости от лопастей, создавая ламинарные, радиальные потоки жидкости. Они применяются для перемешиваемых жидкостей с малой вязкостью. Для увеличения объема перемешиваемых слоев создаются многорядные (многоярусные) мешалки, когда на одном валу крепится несколько лопастей на разной высоте. Для увеличения осевых потоков лопасти делают наклонными. К лопастным относятся мешалки специального назначения: якорные, рамные и планетарные.

Якорные мешалки имеют форму, соответствующую внутренней поверхности реактора. Их диаметр близок к внутреннему диаметру аппарата. Они служат для перемешивания вязких жидкостей. При вращении лопасти постоянно очищают стенки и дно аппарата. Скорость вращения in) небольшая и составляет 1,3 об/с.

Рамные мешалки как и якорные прочны и предназначены для вязких жидкостей. Состоят из нескольких лопастей, соединенных в виде рамы для перемешивания широких по всей толщине аппарата слоев жидкости (п = 1,3 об/с).

Планетарные мешалки состоят из центральной и боковых, связанных с главной системой зубчатых передач. Боковые мешалки вращаются вместе с центральной, а также имеют собственное вращение - вокруг своей оси. Обеспечивают равномерное перемешнвание вязких и густых жидкостей во всех слоях аппарата.

Пропеллерные мешалки, принцип работы которых представлен на рис. 12.1, имеют винтообразно изогнутые лопасти - угол наклона по длине от 45° у ступицы вала до 20» на конце лопасти. Поэтому разные участки лопасги под разным углом встречают жидкость и создают интенсивные осевые вертикальные потоки, что приводит к захвату всех ее слоев и обеспечивает перемешивание во всем объеме аппарата. Скорость вращения для вязких, жидкостей составляет 2-8 об/с, для подвижных - 3-30 об/с.

Турбинные мешалки могут быть открытого и закрытого типа с плоскими и наклонными лопастями. Они создают преимущественно радиальные и осевые потоки жидкости, обеспечивая интенсивное перемешивание во всем объеме (п = 2 - 30 об/с). Круговое (тангенциальное) движение жидкости постепенно начинает преобладать, образуя «воронку» и может наступить момент, когда скорость вращения мешалки будет равна скорости кругового движения жидкости. В этом случае эффективность перемешивания будет сведена к минимуму. Поэтому скорость вращения мешалок не должна превышать минимального значения.

 

Vкрит = 1/R ·√1800n

 

где R - радиус сосуда, м; п - расстояние от поверхности жидкости до верхнего края сосуда, м.

Для уменьшения этих явлений на стенках аппаратов укрепляются неподвижные перегородки или мешалка помещается в специальный диффузор.

Перемешивание с помощью сжатого воздуха или инертного газа (пневматическое) применяется _ для агрессивных сред и получения инъекционных растворов в атмосфере инертного газа. Для интенсификации перемешивания используются пульсаторы, которые подают воздух или газ в виде пульсирующего потока. Сжатый воздух или инертный газ подается под давлением до 2 атм по перфорированной трубе - барбо-теру.

Перемешивание, основанное на различной плотности растворителя и раствора (гравитационное). Оно осуществляется самопроизвольно, например растворение йода и канифоли в этаноле. Растворяемое вещество помещают в сетку или тканевые мешки в верхних слоях растворителя. Образующийся более «тяжелый» раствор опускается на дно, а чистый растворитель поднимается вверх и омывает вещество. Возникают циркулирующие потоки с разной концентрацией, растворение при этом значительно ускоряется.

Перемешивание в трубопроводе обычно проводят в Y-образном устройстве. По двум трубам подают две жидкости, которые попадают в третью - смеситель, где за счет большой скорости потоков и турбулентного, вихреобразного движения происходит их перемешивание.

 

Рис. 12.1. Принцип работы пропеллерной мешалки.   Рис. 12.2. Устройство смесителя РПА.  

 

Перемешивание с помощью генераторов ультразвука (акустическое). Оно достигается с применением магнитострикционных или гидродинамических типов жидкостных свистков и роторно-пульсационного аппарата РПА (рис. 12.2). В этом случае за счет кавитаций, механического воздействия измельчается твердая фаза, что значительно ускоряет процесс растворения.

Перемешивание перекачиванием жидкости (циркуляционное). Оно осуществляется с помощью насоса из емкости и возвращением в нее через разбрызгивающее устройство. Циркуляцию внутри сосуда можно создать подачей пара в жидкость через сопло, при этом одновременно производя нагревание.


Дата добавления: 2020-04-25; просмотров: 269; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!