ФИЗИОЛОГИЯ ЦЕЛОСТНОГО ОРГАНИЗМА 10 страница



Одной из причин увеличения силы сокращения в естественных условиях является частота импульсов, генерируемых мотонейрона­ми. Второй причиной этого служат увеличение числа возбуждаю­щихся мотонейронов и синхронизация частоты их возбуждения. Рост числа мотонейронов соответствует увеличению количества дви­гательных единиц, участвующих в сокращении, а возрастание сте­пени синхронизации их возбуждения способствует увеличению ам­плитуды при суперпозиции максимального сокращения, развивае­мого каждой двигательной единицей в отдельности.

Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, развиваемой нерастянутой мыш­цей. Происходит суммирование пассивного напряжения, обуслов­ленного наличием эластических компонентов мышцы, и активного сокращения. Максимальная сила сокращения достигается при раз­мере саркомера 2—2,2 мкм (рис. 2.26). Увеличение длины саркомера приводит к уменьшению силы сокращения, поскольку уменьшается область взаимного перекрытия актиновых и миозиновых нитей. При


длине саркомера 2,9 мкм мышца может развивать силу, равную только 50% от максимально возможной.

В естественных условиях сила сокращения скелетных мышц при их растяжении, например при массаже, увеличивается вследствие работы гамма-эфферентов.

2.4.1.5. Работа и мощность мышцы

Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мыш­ца, и мощность, развиваемую ею при работе.

Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние: А = F*S. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.

Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.

При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при со­вершении движений — о динамической.

Сила сокращения и работа, совершаемая мышцей в единицу вре­мени (мощность), не остаются постоянными при статической и дина­мической работе. В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пирови-ноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфос-фата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической рабо­те в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голода­ние» и мышечное утомление прогрессивно нарастает.

В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совер-


тении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.

Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уро­вень умственного напряжения уменьшает мышечную выносливость.

2.4.1.6. Энергетика мышечного сокращения

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость рас­щепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2—3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

При максимальной физической нагрузке происходит дополнитель­ное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кис­лоты, т. е. метаболический ацидоз, и развивается утомление.

Анаэробный гликолиз имеет место и в начале длительной фи­зической работы, пока не увеличится скорость окислительного фос-форилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен об­ретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

2.4.1.7. Теплообразование при мышечном сокращении

Согласно первому закону термодинамики, общая энергия системы и ее окружения должна оставаться постоянной.

Скелетная мышца превращает химическую энергию в механиче­скую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:

1. Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые призна­ки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+ из триад и соединением их с тропонином.

2. Теплота укорочения — выделение тепла при совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выде­ляется тепла.


3. Теплота расслабления — выделение тепла упругими элемен­тами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.

Как отмечалось ранее, нагрузка определяет скорость укорочения. Оказалось, что при большой скорости укорочения количество вы­деляющегося тепла мало, а при малой скорости велико, так как количество выделяющегося тепла пропорционально нагрузке (закон Хилла для изотонического режима сокращения).

2.4.1.8. Скелетно-мышечное взаимодействие

При совершении работы развиваемое мышцей усилие передается на внешний объект с помощью сухожилий, прикрепленных к костям скелета. В любом случае нагрузка преодолевается за счет вращения одной части скелета относительно другой вокруг оси вращения.

Передача мышечного сокращения на кости скелета происходит при участии сухожилий, которые обладают высокой эластичностью и растяжимостью. В случае сокращения мышцы происходит растя­жение сухожилий и кинетическая энергия, развиваемая мышцей, переходит в потенциальную энергию растянутого сухожилия. Эта энергия используется при таких формах движения как ходьба, бег, т. е. когда происходит отрыв пятки от поверхности земли.

Скорость и сила, с которой одна часть тела перемещается относительно другой, зависят от длины рычага, т. е. взаимного расположения точек прикрепления мышц и оси вращения, а также от длины, силы мышцы и величины нагрузки. В зависимости от функции, которую выполняет конкретная мышца, возможно пре­валирование скоростных или силовых качеств. Как уже указыва­лось в разделе 2.4.1.4, чем длиннее мышца, тем выше скорость ее укорочения. При этом большую роль играет параллельное


расположение мышечных волокон относительно друг друга. В этом случае физиологическое поперечное сечение соответствует геомет­рическому (рис. 2.27, А). Примером такой мышцы может служить портняжная мышца. Напротив, силовые характеристики выше у мышц с так называемым перистым расположением мышечных волокон. При таком расположении мышечных волокон физиоло­гическое поперечное сечение больше геометрического поперечного сечения (рис. 2.27, Б). Примером такой мышцы у человека может служить икроножная мышца.

У мышц веретенообразной формы, например у двуглавой мышцы плеча, геометрическое сечение совпадает с физиологическим только в средней части, в других областях физиологическое сечение больше геометрического, поэтому мышцы этого типа по своим характери­стикам занимают промежуточное место (рис. 2.27, В).

При определении абсолютной силы различных мышц максималь­ное усилие, которое развивает мышца, делят на физиологическое по­перечное сечение. Абсолютная сила икроножной мышцы человека со­ставляет 5,9 кг/см , двуглавой мышцы плеча — 11,4 кг/см .

2.4.1.9. Оценка функционального состояния мышечной системы у человека

При оценке функционального состояния мышечной системы у человека используют различные методы.

Эргометрические методы. Эти методы используют для опреде­ления физической работоспособности. Человек совершает работу в определенных условиях и одновременно регистрируются величины выполняемой работы и различные физиологические параметры: ча­стота дыхания, пульс, артериальное давление, объем циркулирую­щей крови, величина регионарного кровотока, потребляемого O2, выдыхаемого СO2 и т. д. С помощью специальных устройств — велоэргометров или тредбанов (бегущая дорожка) — создается возможность дозировать нагрузку на организм человека.

Электромиографические методы. Эти методы исследования ске­летной мускулатуры человека нашли широкое применение в физи­ологической и клинической практике. В зависимости от задач ис­следования проводят регистрацию и анализ суммарной электромио-граммы (ЭМГ) или потенциалов отдельных мышечных волокон. При регистрации суммарной ЭМГ чаще используют накожные элект­роды, при регистрации потенциалов отдельных мышечных воло­кон — многоканальные игольчатые электроды.

Преимуществом суммарной электромиографии произвольного усилия является неинвазивность исследования и, как правило, отсутствие электростимуляции мышц и нервов. На рис. 2.28 при­ведена ЭМГ мышцы в покое и при произвольном усилии. Коли­чественный анализ ЭМГ заключается в определении частот волн ЭМГ, проведении спектрального анализа, оценки средней ампли­туды волн ЭМГ. Одним из распространенных методов анализа ЭМГ является ее интегрирование, поскольку известно, что вели-


чина интегрированной ЭМГ пропорциональна величине развивае­мого мышечного усилия.

Используя игольчатые электроды, можно регистрировать как суммарную ЭМГ, так и электрическую активность отдельных мы­шечных волокон. Регистрируемая при этом электрическая актив­ность в большей степени определяется расстоянием между отво­дящим электродом и мышечным волокном. Разработаны критерии оценки параметров отдельных потенциалов здорового и больного человека. На рис. 2.29 приведена запись потенциала двигательной единицы человека.


2.4.2. Гладкие мышцы

Гладкие мышцы находятся в стенке внутренних органов, крове­носных и лимфатических сосудов, в коже и морфологически отли­чаются от скелетной и сердечной мышц отсутствием видимой по­перечной исчерченности.

2.4.2.1. Классификация гладких мышц

Гладкие мышцы подразделяются на висцеральные (унитарные) и мультиунитарные (рис. 2.30). Висцеральные гладкие мышцы на­ходятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулыпиуни-тарным относятся ресничная мышца и мышца радужки глаза. Де­ление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцераль­ных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Несмотря на это, возбуждение с нервных окончаний передается на все гладкие мы­шечные клетки пучка благодаря плотным контактам между сосед­ними миоцитами — нексусам. Нексусы позволяют потенциалам


действия и медленным волнам деполяризации распространяться с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.

2.4.2.2. Строение гладких мышц

Гладкие мышцы состоят из клеток веретенообразной формы, сред­няя длина которых 100 мкм, а диаметр 3 мкм. Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Мембра­ны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуж­дения с клетки на клетку. Гладкие мышечные клетки содержат мио-филаменты актина и миозина, которые располагаются здесь менее упорядоченно, чем в волокнах скелетной мышцы. Саркоплазматиче-ская сеть в гладкой мышце менее развита, чем в скелетной.

2.4.2.3. Иннервация гладких мышц

Висцеральная гладкая мышца имеет двойную иннервацию — симпатическую и парасимпатическую, функция которой заключа­ется в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого — уменьшает. В некоторых органах, например кишечнике, стимуляция адренергических нервов умень­шает, а холинергических — увеличивает мышечную активность; в других, например, сосудах, норадреналин усиливает, а АХ снижает мышечный тонус. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса скелетной мыш­цы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холи­нергических нейронов имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие глад­кие мышечные клетки. Клетки, лишенные непосредственных кон­тактов с варикозами, активируются потенциалами действия, рас­пространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.

Нервно-мышечная передача. Возбуждающее влияние адренерги­ческих или холинергических нервов электрически проявляется в виде отдельных волн деполяризации. При повторной стимуляции эти потенциалы суммируются и по достижении пороговой величины возникает ПД.

Тормозящее влияние адренергических или холинергических нер­вов проявляется в виде отдельных волн гиперполяризации, назы­ваемых тормозными постсинаптическими потенциалами (ТПСП). При ритмической стимуляции ТПСП суммируются. Возбуждающие и тормозные постсинаптические потенциалы наблюдаются не только


в мышечных клетках, контактирующих с варикозами, но и на некотором расстоянии от них. Это объясняется тем, что постсинап-тические потенциалы передаются от клетки к клетке через нексусы или посредством диффузии медиатора из мест его выделения.

2.4.2.4. Функции и свойства гладких мышц

Электрическая активность. Висцеральные гладкие мышцы ха­рактеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состо­янии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышеч-ных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокраща­ется, при увеличении — расслабляется. В периоды состояния отно­сительного покоя величина мембранного потенциала в среднем рав­на — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала ве­личиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжи­тельность ПД 50—250 мс; встречаются ПД различной формы. В не­которых гладких мышцах, например мочеточника, желудка, лим­фатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках мио­карда. Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участ­вующего в последующем в активации сократительных белков глад-комышечных клеток. Ионная природа ПД гладкой мышцы опреде­ляется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропу­скают не только ионы Са2+, но и другие двухзарядные ионы (Ва , Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокиро­вание кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и то­нуса сосудов при лечении больных гипертонической болезнью.

Автоматия. ПД гладких мышечных клеток имеют авторитмиче­ский (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в раз­личных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроиз­вольной автоматической активности. Автоматия гладких мышц, т. е.


способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. На­конец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

Пластичность. Еще одной важной специфической характеристи­кой гладкой мышцы является изменчивость напряжения без зако­номерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным рас­тяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормально­му функционированию внутренних полых органов.


Дата добавления: 2019-02-13; просмотров: 191; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!