ФИЗИОЛОГИЯ ЦЕЛОСТНОГО ОРГАНИЗМА 7 страница



Фоновоактивные нейроны делятся на тормозящиеся — урежаю-щие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные ней­роны могут генерировать импульсы непрерывно с некоторым замед­лением или увеличением частоты разрядов — это первый тип ак­тивности — непрерывно-аритмичный. Такие нейроны обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое


значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

Нейроны второго типа выдают группу импульсов с коротким меж­импульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка, импульсов. Этот тип активности называется пачечным. Значение пачечного типа активности заключа­ется в создании условий проведения сигналов при снижении функци­ональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке равны приблизительно 1— 3 мс, между пачками этот интервал составляет 15—120 мс.

Третья форма фоновой активности — групповая. Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

Функционально нейроны можно также разделить на три типа: афферентные, интернейроны (вставочные), эфферентные. Первые выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые — обеспечивают взаимодей­ствие между нейронами ЦНС, третьи — передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за пре­делами ЦНС, и в органы организма.

Функции афферентных нейронов тесно связаны с функциями рецепторов.

2.2.2. Рецепторы. Рецепторный и генераторный потенциалы

Рецепторы представляют собой специализированные образо­вания, воспринимающие определенные виды раздражений.

Рецепторы обладают наибольшей чувствительностью к адекват­ным для них раздражениям. Рецепторы делят на четыре группы: механо-, термо-, хемо- и фоторецепторы. Каждую группу подраз­деляют на более узкие диапазоны рецепции. Например, зрительные рецепторы делятся на воспринимающие освещенность, цвет, слухо­вые — определенный тон, вкусовые — определенные вкусовые раздражения (соленое, сладкое, горькое) и т. д.

Рецепторный потенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным. Рецептивный уча­сток мембраны имеет специфические свойства, в том числе биохи­мические, отличающие его от мембраны тела и аксона.

Возникший в рецептивных участках мембраны рецепторный по­тенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал. Возникновение генераторного потенциала в области аксонного хол­мика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося


потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.

Рецепторные нейроны различаются по скорости уменьшения их реакции (адаптации) на длящуюся стимуляцию. Рецепторные ней­роны, медленно адаптирующиеся к раздражению, т. е. длительное время генерирующие потенциалы действия, называются тонически­ми. Рецепторы, быстро и коротко реагирующие на стимуляцию группой импульсов, называются физическими.

Таким образом, реакция рецепторного нейрона, предназначен­ного для передачи информации из области восприятия, имеет 5 ста­дий: 1) преобразование сигнала внешнего раздражения; 2) генерация рецепторного потенциала; 3) распространение рецепторного потен­циала по нейрону; 4) возникновение генераторного потенциала; 5) генерация нервного импульса.

2.2.3. Афферентные нейроны, их функции

Афферентные нейроны — нейроны, воспринимающие информацию. Как правило, афферентные нейроны имеют большую разветвленную сеть. Это характерно для всех уровней ЦНС. В зад­них рогах спинного мозга афферентными являются чувствительные нейроны малых размеров с большим числом дендритных отростков, в то время как в передних рогах спинного мозга эфферентные нейроны имеют тело большого размера, более грубые, менее вет­вящиеся отростки. Эти различия нарастают по мере изменения уровня ЦНС к продолговатому, среднему, промежуточному, конеч­ному мозгу. Наибольшие различия афферентных и эфферентных нейронов отмечаются в коре большого мозга.

2.2.4. Вставочные нейроны, их роль в формировании
нейронных сетей

Вставочные нейроны, или интернейроны, обрабатывают информацию, получаемую от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны.

Область влияния вставочных нейронов определяется их собст­венным строением (длина аксона, число коллатералей аксонов). Вставочные нейроны, как правило, имеют аксоны, терминал и ко­торых заканчиваются на нейронах своего же центра, обеспечивая прежде всего их интеграцию. Одни вставочные нейроны получают активацию от нейронов других центров и затем распространяют эту информацию на нейроны своего центра. Это обеспечивает усиление влияния сигнала за счет его повторения в параллельных путях и удлиняет время сохранения информации в центре. В итоге центр, куда пришел сигнал, повышает надежность воздействия на испол­нительную структуру.

Другие вставочные нейроны получают активацию от коллатера-


лей эфферентных нейронов своего же центра и затем передают эту информацию назад в свой же центр, образуя обратные связи. Так организуются реверберирующие сети, позволяющие длительно со­хранять информацию в нервном центре.

Вставочные нейроны могут быть возбуждающими или тормоз­ными.

Активация возбуждающих вставочных нейронов в новой коре облегчает передачу информации с одной группы нейронов в другую. Причем это происходит за счет «медленных» пирамидных нейронов, способных к длительной тонической активации и поэтому переда­ющих сигналы достаточно медленно и длительно. Одновременно эти же вставочные нейроны своими коллатералями активируют и «бы­стрые» пирамидные нейроны, которые разряжаются физически-ко­ротким залпом. Усиление активности «медленных» нейронов уси­ливает реакцию «быстрых», в то же время «быстрые» нейроны тормозят работу «медленных».

Тормозные вставочные нейроны возбуждаются прямыми сигна­лами, идущими в их собственный центр, или сигналами, идущими из того же центра, но по обратным связям. Прямое возбуждение тормозящих вставочных нейронов характерно для промежуточных центров афферентных спиноцеребральных путей.

Для двигательных центров коры и спинного мозга характерно возбуждение вставочных нейронов за счет обратных связей.

Эфферентные нейроны

Эфферентные нейроны нервной системы — это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эффе­рентные нейроны двигательной зоны коры большого мозга — пи­рамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

Эфферентные нейроны разных отделов коры больших полуша­рий связывают между собой эти отделы по аркуатным связям. Такие связи обеспечивают внутриполушарные и межполушарные отношения, формирующие функциональное состояние мозга в ди­намике обучения, утомления, при распознавании образов и т. д. Все нисходящие пути спинного мозга (пирамидный, руброспиналь-ный, ретикулоспинальный и т. д.) образованы аксонами эфферен­тных нейронов соответствующих отделов центральной нервной сис­темы.

Нейроны автономной нервной системы, например ядер блужда­ющего нерва, боковых рогов спинного мозга, также относятся к эфферентным.


2.2.6. Неироглия

Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз­личной формы. Она обнаружена Р. Вирховым и названа им нейрог-лией, что означает «нервный клей». Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Различают несколько видов нейроглии, каждая из которых об­разована клетками определенного типа: астроциты, олигодендроци-ты, микроглиоциты (табл. 2.3).

Таблица 2.3. Количество глиальных элементов в структурах мозга, %

 

Виды глиальных клеток Кора большого мозга Мозолистое тело Ствол мозга
Астроциты Олигодендроциты Микроциты 61,5 29 9,5 54 40 6 30 62 8

Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Раз­меры астроцитов 7—25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохон­дрии. Считают, что астроциты служат опорой нейронов, обеспечи­вают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полно­стью покрывая их. В итоге между нейронами и капиллярами рас­полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.

Олигодендроциты — клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендро­цитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.

Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Ис-


точником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.

Одной из особенностей глиальных клеток является их способность к изменению размеров. Это свойство было обнаружено в культуре ткани при помощи киносъемки. Изменение размера глиальных кле­ток носит ритмический характер: фаза сокращения составляет 90 с, расслабления — 240 с, т. е. это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при элек­трической стимуляции глии; латентный период в этом случае весьма большой — около 4 мин.

Глиальная активность изменяется под влиянием различных би­ологически активных веществ: серотонин вызывает уменьшение «пульсации» олигодендроглиоцитов, норадреналин — усиление. Фи­зиологическая роль «пульсации» глиальных клеток мало изучена, но считают, что она проталкивает аксоплазму нейрона и влияет на ток жидкости в межклеточном пространстве.

Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается оли-годендроцитами, а в периферической — леммоцитами (шванновские клетки).

Глиальные клетки не обладают импульсной активностью, по­добно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается боль­шой инертностью. Изменения мембранного потенциала медленны, зависят от активности нервной системы, обусловлены не синап-тическими влияниями, а изменениями химического состава меж­клеточной среды. Мембранный потенциал нейроглии равен 70— 90 мВ.

Глиальные клетки способны к передаче возбуждения, распрост­ранение которого от одной клетки к другой идет с декрементом. При расстоянии между раздражающим и регистрирующим электро­дами 50 мкм распространение возбуждения достигает точки реги­страции за 30—60 мс. Распространению возбуждения между гли-альными клетками способствуют специальные щелевые контакты их мембран. Эти контакты обладают пониженным сопротивлением и создают условия для электротонического распространения тока от одной глиальной клетки к другой.

Вследствие того что нейроглия очень тесно контактирует с нейронами, процессы возбуждения нервных элементов сказываются на электрических явлениях глиальных элементов. Это влияние может быть обусловлено тем, что мембранный потенциал нейрог­лии зависит от концентрации ионов К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ в нейрон усиливается, что значительно изменяет его концентрацию вокруг нейроглии и приводит к деполяризации ее клеточных мембран.


2.2.7. Проведение возбуждения по нервам

Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе.

Отдельное миелиновое нервное волокно состоит из осевого цилиндра, покрытого миелиновой оболочкой, образован­ной шванновскими клетками. Осевой цилиндр имеет мембрану и аксоплазму. Миелиновая оболочка является продуктом деятельности шванновской клетки и состоит на 80% из липидов, обладающих высоким омическим сопротивлением, и на 20% из белка.

Миелиновая оболочка не покрывает сплошным покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого ци-


линдра, называемые узловыми перехватами (перехваты Ранвье). Длина участков между этими перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами (рис. 2.17).

Безмиелиновые нервные волокна покрыты только шванновской оболочкой.

Проведение возбуждения в безмиелиновых волокнах отличается от такового в миелиновых волокнах благодаря разному строению оболочек. В безмиелиновых волокнах возбуждение постепенно ох­ватывает соседние участки мембраны осевого цилиндра и так рас­пространяется до конца аксона. Скорость распространения возбуж­дения по волокну определяется его диаметром.

В нервных безмиелиновых волокнах, где процессы метаболизма не обеспечивают быструю компенсацию расхода энергии на возбуж­дение, распространение этого возбуждения идет с постепенным ос­лаблением — с декрементом. Декрементное проведение возбуждения характерно для низкоорганизованной нервной системы.

У высших животных благодаря прежде всего наличию миелиновой оболочки и совершенства метаболизма в нервном волокне возбуж­дение проходит, не затухая, бездекрементно. Этому способствуют наличие на всем протяжении мембраны волокна равного заряда и быстрое его восстановление после прохождения возбуждения.

В миелиновых волокнах возбуждение охватывает только участки узловых перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения по волокну называется сальтаторным (скачкообразным). В узловых перехватах количество натриевых ка­налов достигает 12 000 на 1 мкм , что значительно больше, чем в лю­бом другом участке волокна. В результате узловые перехваты являют­ся наиболее возбудимыми и обеспечивают большую скорость проведе­ния возбуждения. Время проведения возбуждения по миелиновому волокну обратно пропорционально длине между перехватами.

Проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) времени. Это свидетельствует о малой утомляемости нервного волокна. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохож­дении возбуждения.

В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых каналов.

Дж. Эрлангер и X. Гассер (1937) впервые классифицировали нер­вные волокна по скорости проведения возбуждения. Различная ско­рость проведения возбуждения по волокнам смешанного нерва вы­является при использовании внеклеточного электрода. Потенциалы волокон, проводящих возбуждение с неодинаковой скоростью, ре­гистрируются раздельно (рис. 2.18).

В зависимости от скорости проведения возбуждения нервные


волокна делят на три типа: А, В, С. В свою очередь волокна типа А подразделяют на четыре группы: Ааlfa, Abeta, Agama, Аdelta. Наибольшей скоростью проведения (до 120 м/с) обладают волокна группы Аа, которую составляют волокна диаметром 12—22 мкм. Другие волокна имеют меньший диаметр и соответственно проведение возбуждения по ним происходит с меньшей скоростью (табл. 2.4).

Нервный ствол образован большим числом волокон, однако воз­буждение, идущее по каждому из них, не передается на соседние. Эта особенность проведения возбуждения по нерву носит название закона изолированного проведения возбуждения по отдельному нер­вному волокну. Возможность такого проведения имеет большое фи­зиологическое значение, так как обеспечивает, например, изолиро­ванность сокращения каждой нейромоторной единицы.

Таблица 2.4. Скорость проведения возбуждения по нервным волокнам

 

Группа волоком Диаметр волокна, мкм Скорость проведения, м/с
А    
Аа 12—22 70—120
А b 8—12 40—70
Ar 4—8 15—40
Ad 1—4 5—15
В 1—3 3—14
С 0,5—1,0 0,5—2

Способность нервного волокна к изолированному проведению возбуждения обусловлена наличием оболочек, а также тем, что сопротивление жидкости, заполняющей межволоконные простран­ства, значительно ниже, чем сопротивления мембраны волокна. Поэтому ток, выйдя из возбужденного волокна, шунтируется в жидкости и оказывается слабым для возбуждения соседних волокон. Необходимым условием проведения возбуждения в нерве является не просто его анатомическая непрерывность, но и физиологическая


целостность. В любом металлическом проводнике электрический ток будет течь до тех пор, пока проводник сохраняет физическую не­прерывность. Для нервного «проводника» этого условия недостаточ­но: нервное волокно должно сохранять также физиологическую целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, аммиаком и др.), проведение возбуждения по волокну прекращается. Другим свойством, характерным для прове­дения возбуждения по нервному волокну, является способность к двустороннему проведению. Нанесение раздражения между двумя отводящими электродами на поверхности волокна вызовет электри­ческие потенциалы под каждым из них.


Дата добавления: 2019-02-13; просмотров: 298; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!