ГЛАВА 3. УЧЕНИЕ О ВНУТРЕННОСТЯХ 5 страница



«Топографическая анатомия, иллюстрированная разрезами, проведенными через замороженное тело человека в трех направлениях» (1851-1859). Это были первые руководства по топогра­фической анатомии. Вся деятельность Н. И. Пирогова составила эпоху в развитии медицины и анатомии. После смерти Н.И.Пирогова тело его было бальзамировано Д.И.Выводцевым, а через 60 лет ребальзамировано анатомами Р.Д.Синельниковым, А.И.Максименковым и др.

Во второй половине XIX в. окончательно сложилось передовое направление в отечественной медицине, названное нервизмом. Нервизм — это концепция преимущественного значения нервной системы в регулировании физиологических функций и процессов жизнедеятельности организма человека. Нервизм, говорил И.П.Павлов, — это физиологическое направление, стре­
мящееся распространить влияние нервной системы на возможно большее количество функций организма. Идея нервизма зародилась в нашей стране в XVIII столетии и стала основой для развития отечественной медицины. В настоящее время общепризнанными являются представления о взаимодействии нервной регуляции (при сохранении ее ведущего начала) и гуморально-гормональных факторов — нейрогуморальная регуляция.

В.А.Бец (1834-1894) открыл в V слое коры головного мозга гигантские пирамидные клетки (клетки Беца) и обнаружил разницу в клеточном составе различных участков мозговой коры. На основании этого он внес новый принцип в деление коры — принцип клеточного строения — и положил начало учению о цитоархитектонике мозговой коры. Другим анатомом, много сделавшим в области анатомии мозга, был профессор Московского университета Д.Н.Зернов (1843-1917), который дал лучшую классификацию борозд и извилин головного мозга. Показав отсутствие разницы в строении головного мозга у различных народов, в том числе и «отсталых», он создал анатомическую основу для борьбы с расизмом.

Крупный вклад в анатомию головного и спинного мозга внес выдающийся невропатолог и психиатр В.М.Бехтерев (1857-1927), который расширил учение о локализации функций в коре мозга, углубил рефлекторную теорию и создал анатомо-физиологическую базу для диагности­ки и понимания проявлений нервных болезней. В.М.Бехтерев открыл ряд мозговых центров и проводников, получивших его имя, и написал капитальный труд «Проводящие пути головного и спинного мозга» (1896). И.П.Павлов, будучи физиологом, вместе с тем внес много нового и ценного в анатомию, особенно нервной системы. Он в корне изменил представление о мозго - вом центре и мозговой коре, доказав, что вся кора полушарий большого мозга, в том числе двигательная зона, представляет собой совокупность воспринимающих центров. Он значитель­но углубил представление о локализации функций в коре мозга, ввел понятие анализатора, создал учение о двух корковых сигнальных системах.

П.Ф.Лесгафт (1837-1909) — наиболее крупный после Н.И.Пирогова анатом дореволюцион­ной России, основоположник функциональной анатомии и теории физического воспитания. Исходя из идеи единства организма и среды и признавая наследование приобретенных призна­ков, он выдвинул положение о возможности направленного воздействия на организм человека путем физического воспитания и связал анатомию с практикой физической культуры. Вместо пассивного созерцательного отношения к организму человека анатомия приобрела действен­ный характер. П.Ф.Лесгафт широко применял эксперимент, а также призывал к изучению анатомии живого человека и одним из первых использовал в анатомии рентгеновские лучи. Все труды П.Ф.Лесгафта, основанные на материалистической философии, на идее единства организма и среды, единства формы и функции, заложили фундамент нового направления в анатомии — функционального. За свои прогрессивные идеи П.Ф.Лесгафт всю жизнь подвергался нападкам реакционеров и преследованию царского правительства.

Созданное П.Ф.Лесгафгом функциональное направление анатомии продолжали развивать его непосредственные ученики и последователи. Таким образом, в начале XX столетия уровень биологии и медицины в России был достаточно высоким. В анатомии сложилось несколько передовых направлений: 1) функциональное, 2) прикладное, 3) эволюционное.

В.П.Воробьев (1876-1937), профессор анатомии Харьковского медицинского института, рассматривал организм человека в связи с его социальной средой. Использовав бинокулярную лупу, он разработал стереоморфологическую методику исследования конструкции органов и заложил основы макро-микроскопической анатомии, особенно периферической нервной системы. В.П.Воробьев написал ряд учебников по анатомии и издал первый советский атлас в 5 томах. Он разработал (совместно с Б.И.Збарским) особый метод консервирования, с помощью которого было бальзамировано тело В.И.Ленина. В.П.Воробьев создал школу анатомов (В.В.Бобин, Ф.А.Волынский, Р.Д.Синельников, А.А.Отелин, А.А.Шабадаш и др.), из которых Р.Д.Синельников стал преемником его по кафедре и успешно развил дело своего учителя в области бальзамирования и макро-микроскопической анатомии; он издал также прекрасный анатомический атлас.

В.Н.Тонков (1872-1954), профессор Военно-медицинской академии, использовал для иссле­дования сосудистой системы эксперименты на живых животных и явился создателем экспериментального направления в анатомии. Он разработал учение о коллатеральном крово­обращении. После открытия рентгеновских лучей В.Н.Тонков одним из первых (1896) приме­нил их для изучения скелета и наметил путь, идя по которому, анатомы А.С.Золотухин, а затем М.Г.Привес, а также рентгенолог Д.Г.Рохлин разработали новую область анатомии, названную рентгеноанатомией. В.Н.Тонков написал учебник анатомии, выдержавший 6 изданий, и создал школу анатомов, выдающимся представителем которой и преемником В.Н.Тонкова по кафедре явился Б.А.Долго-Сабуров (1900-1960), который успешно развивал дело своего учителя вместе со своими сотрудниками (В.М.Годинов, В.В.Куприянов и др.).

В.Н.Шевкуненко (1872-1952), профессор топографической анатомии Военно-медицинской академии, развил созданное Н.И.Пироговым прикладное направление в анатомии. Он разработал учение о крайних формах индивидуальной изменчивости. Детально изученные им варианты строения нервной и венозной систем были изложены в большом «Атласе перифери­ческой нервной и венозной систем».

Г.М.Иосифов (1870-1933), профессор анатомии Томского, а затем Воронежского медицин­ского института, значительно расширил знания по анатомии лимфатической системы. Моно­графия «Анатомия лимфатической системы» (1914) принесла ему мировую славу. Г.М.Иосифов создал школу анатомов, выдающимся представителем которой явился Д.А.Жданов (1908-1971), профессор I Московского медицинского института. Д.А.Жданов опубликовал ряд крупных монографий по функциональной анатомии лимфатической системы. В дальнейшем это направление развили его ученики (А.В.Борисов, В.Н.Надеждин, М.Р.Сапин и др.).

В.Н.Терновский (1888-1976), академик, кроме работ по анатомии нервной системы, известен своими работами по истории анатомии и переводом на русский язык трудов Везалия и Ибн Сины.

Н.К.Лысенков (1865-1941), профессор Одесского университета, занимался всеми основными анатомическими дисциплинами, изучающими нормальное строение человека: нормальной анатомией, топографической и пластической. Написал руководства, в том числе «Нормальную анатомию человека» (совместно с В.И.Бушковичем, 1932).

М.Г.Привес является одним из создателей нового направления — рентгеноанатомии. М.Р.Сапин, академик, крупный специалист по анатомии лимфатических узлов, развивает новое направление анатомии органов иммунной системы.

Список сокращений


 


 


med. - medialis

mm. - musculi (множ. число)

n. - nervus (ед. число)

nn. - nervi (множ. число)

post. - posterior

r. - ramus (ед. число)

rr. - rami (множ. число)

sin. - sinister

sup. - superior

v. - vena (ед. число)

vag. - vagina (ед. число)

vagg. - vaginae (мн. число)

vv. - venae (мн. число)

лимф. - лимфатический

a. - arteria (ед. число) aa. - arteriae (мн. число) ant. - anterior

b. - bursa (ед. число) bb. - bursae (мн. число) dext. - dexter

ext. - externus f. - fascia

ff. - fasciae (мн. число) inf. - inferior int. - intemus lat. - lateralis

lig. - ligamentum (ед. число) ligg. - ligamenta (мн. число) m. - musculus (ед. число)


ГЛАВА 2. ОПОРНО-ДВИГАТЕЛЬНАЯ СИСТЕМА

Человеческое тело представляет собой совокупность органов, систем и аппаратов, которые действуют слаженно, выполняя жизненно важные функции. Движение является необходимой частью функции связи и взаимодействия, и тело может осуществлять это движение благодаря опорно-двигательному аппарату. Орган — это части организма, выполняющие определённые функции. Они имеют определенную форму и место расположение. Обычно орган состоит из нескольких видов тканей, но какая-то из них может преобладать: главная ткань желез — эпителиальная, а мускула — мышечная.

Органы, объединенные выполнением одной функции, составляют физиологическую систему.

Опорно-двигательная система включает кости, мышцы и соединения костей. Кости — это твердые и прочные части, служащие опорой телу, мышцы — мягкие части, покрывающие кос­ти, а соединения костей — это структуры, при помощи которых кости соединяются. Все кости, а их примерно 206, составляют систему костей, или скелет, который придает телу внешнюю конфигурацию, вид и обеспечивает ему жесткое и прочное устройство, защищает внутренние органы, накапливает минеральные соли и вырабатывает клетки крови.

Кости состоят в основном из воды и минеральных веществ, образованных на основе кальция и фосфора, и из вещества, именуемого остеином. Кость не является застывшим органом: она находится в постоянном процессе развития и разрушения. Для этого у нее имеются остео­бласты, костеобразующие клетки, и остеокласты, клетки, разрушающие ее, чтобы не давать ей чрезмерно утолщаться. В случае перелома остеокласты разрушают осколки кости, а остео­бласты вырабатывают новую костную ткань.

В онтогенезе костная система, как и другие системы организма человека, претерпевает возрастные изменения. Закладка и развитие скелета начинается со 2-го месяца внутриутробного развития и продолжается до 25-30 лет.

Возрастные изменения скелета наиболее заметны в первые два года постнатального периода, в возрасте 8-10 лет и в период полового созревания, когда наблюдаются интенсивные процессы линейного роста.

Рост тесно взаимосвязан с развитием органов и систем ребенка. Рост приводит к появлению количественных различий в структуре и функциях органов и систем развивающегося организма. Развитие обусловливает появление качественных изменений в морфологической структуре и организации деятельности физиологических систем.

Применительно к костям скелета ростовые процессы характеризуются увеличением линейных размеров костей. Развитие костной системы связывают с каскадом дифференцировочных процессов в клетках и тканях, а также накоплением минерала и увеличением костной минеральной плотности с возрастом.

Костная ткань ребенка интенсивно обновляется. В детском и подростковом возрасте костный баланс, т.е. конечная разница между количеством разрушенной и вновь образованной костной ткани (кортикальной и трабекулярной) в каждом цикле ремоделирования остается положительным.

Скорость обновления костной ткани у детей достигает 30-100% в год и осуществляется на 100% её поверхности. Это существенно отличается от перестройки костной ткани у взрослых. В сочетании с высокой частотой активации ремоделирования положительный костный баланс обеспечивает эффективный механизм быстрого увеличения костной массы, свойственный детству.

Интенсивное накопление костной ткани со скоростью примерно 8% в год продолжается до 20-30 лет .

Многочисленные исследования убедительно доказали, что костная масса является главной детерминантой механических свойств костной ткани.


Во время детства костная масса растет параллельно с увеличением размеров тела. Рост костной массы сопровождается повышением содержания в костях кальция. В первые 7 лет жизни ежедневный прирост кальция в костях составляет около 100 мг, в период половой зрелости — увеличивается до 350 мг. После прекращения роста скелета, ежедневное удержание кальция в костях составляет 15 мг. Считается, что костная масса продолжает увеличиваться после прекращения линейного роста. В последнее время появились данные о том, что небольшое увеличение костной массы может продолжаться после прекращения роста. Этот факт объясняется некоторым увеличением размеров и усилением минерализации костей. Физиология накопления костной массы неразрывно связана с достижением так называемой пиковой костной массы, которая определяет прочность скелета взрослого человека. Возраст достижения пиковой костной массы до настоящего времени окончательно не выяснен. В период с 10 до 14 лет в поясничном отделе позвоночника происходит увеличение костной минеральной плотности на 40%.

В старости костная система претерпевает значительные изменения. С одной стороны, наблюдается уменьшение числа костных пластинок и разрежение кости (остеопороз), с другой — происходят избыточное образование кости в виде костных наростов (остеофитов) и обызвествление суставного хряща, связок и сухожилий на месте прикрепления их к кости.

Развитие и прочность кости зависят от витаминов группы D (кальциферола), регулирующих обмен кальция, необходимого для работы мышц. Кальциферолом особенно богаты рыбий жир, мясо тунца, молоко и яйца. Также ультрафиолетовые лучи солнца способствуют всасыванию витамина D.

В развитии скелета позвоночных животных различают три стадии развития: соединительнотканную (перепончатую), хрящевую и костную. Осевым органом в раннем пери - оде онтогенеза у всех позвоночных является хорда. Хорда впервые в филогенезе появляется у низших хордовых животных (ланцетника), она сохраняется в течение всей индивидуальной жизни организма. Вокруг хорды из мезодермы формируется перепончатый скелет.

На протяжении онтогенеза значительно изменяется общая масса мышечной ткани, причем вес мышц в ходе роста увеличивается значительно интенсивнее, чем вес многих других органов. Например, у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет — 27%, в 17-18 лет — 44% (у спортсменов, как известно, мышечная масса может достигать 50%).

В ходе онтогенеза происходят значительные изменения в микроструктуре мышц. Рост мышечной массы в постнатальном периоде происходит за счет увеличения не количества, а размеров мышечных волокон. Происходит утолщение миофибрилл и как результат — утолщение мышечных волокон. Стабилизация, прекращение роста мышечных волокон происходит к 18-20 годам, то есть примерно в те же сроки, что и стабилизация роста скелета. А вот в старости происходит противоположный процесс — атрофия мышечных волокон, приводящая к уменьшению их диаметра. Поперечная исчерченность мышечных волокон при старении ослабляется. Перестает быть строго параллельным направление мышечных волокон, появляются неправильно, спирально и даже кольцеобразно расположенные группы мышеч­ных волокон. Развитие гистоструктуры соединительнотканных элементов мышц идет особен - но интенсивно в раннем детском возрасте, значительного уровня достигая к 7 годам. В 19-20 лет соединительнотканные элементы мышц являются мощным каркасом как для всей мышцы, так и для каждого мышечного волокна в отдельности. При старении соединительная ткань мышц подвергается атрофическим изменениям. В саркоплазме обнаруживаются жировые включения, а также участки восковидного перерождения.

Существенные изменения в ходе онтогенеза претерпевают ядра мышечных волокон, играющие важную роль в развитии и функционировании ткани. Известно, например, что мышцы эмбриона значительно богаче ядрами, чем мышцы детей и взрослых. Уменьшение количества ядер происходит параллельно с утолщением диаметра мышечного волокна. При старении по мере развития дистрофических изменений количество ядер снова начинает увеличиваться, при этом изменяется также их форма.

Двигательные нервные окончания в мышцах появляются еще задолго до рождения и длительное время после рождения их сеть продолжает развиваться. А вот проприорецеп- торный аппарат формируется более быстрыми темпами, и опережает в своем развитии моторные окончания. К моменту рождения нервно-мышечное веретено уже имеет хорошо выраженную капсулу, извитые и разветвленные нервные волокна и мышечный стержень. С возрастом меняется не только структура, но и их распределение в мышце. Так, если у новорожденного «веретена» расположены более или менее равномерно, то к 4-11 годам нервно- мышечные веретена обнаруживаются в большей мере в концевых третях, чем в середине. Примерно до 17 лет и старше особенно быстро увеличивается количество мышеч-ных веретен в участках мышц, испытывающих наибольшее растяжение.

Кровоснабжение мышц в эмбриональном и в раннем детском возрасте развито уже хорошо, но, в отличие от взрослого организма, в этом периоде тип ветвления сосудов мышц иной: он бывает рассыпной или переходный, а у взрослого — магистральный. В общем можно отметить, что структура артериального русла мышц формируется уже к рождению.

В ходе онтогенеза существенным образом изменяются и функции мышц.

Одним из важных показателей функции мышц является их лабильность. Под лабильностью или функциональной подвижностью Н.Е.Введенский понимал большую или меньшую ско- рость тех элементарных реакций, которыми сопровождается физиологическая деятельность данного аппарата, в нашем случае мышечного. Мерой лабильности по Введенскому является наибольшее число потенциалов действия, которое возбудимый субстрат способен воспроиз­вести в 1 сек под влиянием раздражителя.

Наиболее низкая лабильность отмечается во внутриутробном периоде. Скелетная мускула­тура воспроизводит лишь 3-4 сокращения в секунду, тогда как у взрослого — до 60-80. Во внутриутробном периоде при превышении оптимальной величины частоты раздражения мышца продолжает сокращаться столько времени, сколько длится раздражение, при этом отсутствует свойственное у взрослого состояние пессимума. Пессимальное торможение заключается, как известно, в уменьшении величины тетанического сокращения при очень высокой частоте раздражения мышцы, при этом сила ее сокращения снижается.

Для характеристики изменений функционального состояния двигательного аппарата в онтогенезе значительный интерес представляет оценка роли времени в рефлекторных реакциях мышц. Хронаксия (характеризует скорость возникновения возбуждения) мышц у новорож- денных от 1,5 до 10 раз больше, чем у взрослых. По величине хронаксии было показана гетерохронность развития отдельных мышечных групп в онтогенезе. Так, например, хронаксия двуглавой и трехглавой мышцы плеча формируется на уровне взрослого уже к 5 годам, тогда как для большинства мышц это происходит в пределах 9-15 лет. Достигнув определенной величины, показатели хронаксии удерживаются на этом уровне всю жизнь, несколько снижаясь в старости

Наиболее общим проявлением функции движения является работоспособность мышц, которая лежит в основе возрастной эволюции различных двигательных качеств, опреде­ляющих взаимодействие организма со средой. Напомню, что под физической работо­способностью понимается потенциальная способность человека показать максимум физического усилия в статической, динамической или смешанной работе. Изучение возрастных особенностей величины этого показателя у детей младшего школьного возраста существенно затруднен, так как основной метод регистрации уровня физической работоспособности требует определенного уровня физического развития. Поэтому достоверные данные об изменении мышечной работоспособности относятся почти исключительно к детям старше 6-7 лет. Систематические исследования изменений мышечной работоспособности у детей в возрасте от 7 до 18 лет показывает, что с возрастом работа, выполняемая ребенком на эргографе в течении 1 мин увеличивается, причем прирост количества работы изменяется неравномерно в разные возрастные периоды. Существуют и определенные особенности, характеризующие процесс роста и развития ребенка. Так, например, амплитуде эргограмм свойственно снижение (отчетливое) в период от 7-9 до 10-12 лет, которое сменяется затем постепенным увеличением. Обнаруживается четко выраженное снижение суммарной биоэлектрической активности мышц, то есть с возрастом улучшается использование мышцами нервного напряжения. Изменяется также и характер биоэлектрической активности.


Дата добавления: 2018-09-20; просмотров: 278; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!