Дыхание в измененных условиях: при физической нагрузке, при повышенном и пониженном 9 страница



56. Физиологические свойства миокарда. Потенциал действия типических кардиомиоцитов желудочков, его фазы, природа, физиологическая роль. Периоды рефрактерности во время развития потенциала действия типических кардиомиоцитов, их физиологическое значение. Особенности сократимости миокарда.Миокард – это функционально единая система, поэтому возбуждение быстро охватывает всю мышцу и происходит одновременное сокращение всех мышечных клеток желудочков.Проведение возбуждения в миокарде ко всем рабочим кардиомиоцитам выполняет проводящая система сердца, которая образована атипичными мышечными клетками. Благодаря этим клеткам, миокард обладает специфическими свойствами:1) автоматия – способность атипичных мышечных клеток проводящей системы генерировать импульсы без каких-либо внешних воздействий;2) проводимость – способность проводящей системы к передаче возбуждения;3) возбудимость – способность клеток мышцы сердца возбуждаться под действием импульсов, которые приходят по проводящей системе сердца; 4) сократимость – способность сокращаться под действием этих импульсов. Потенциал действия кардиомиоцита желудочка - это неспецифический эффект его возбуждения. Как и в любых возбудимых клетках, возбуждение кардиомиоцитов начинается быстрой деполяризацией его мембраны до нулевого уровня, которая продолжается быстрой сменой знака полярности с отрицательной на положительную (реверсия потенциала), фаза 0 на схеме. Этим быстрым изменением полярности мембраны кардиомиоцита с уровня потенциала покоя ~(-80 мВ) до ~(+30 мВ) начинается потенциал действия кардиомиоцита. Длительность фазы деполяризации и реверсии знака потенциала мембраны составляет ~1 ÷ 2 мс. За этой фазой следует фаза реполяризации. Во время потенциала действия различают три уровня рефрактерности. Степень рефрактерности исходно отражает количество быстрых Na+ каналов, которые вышли из своего неактивного состояния и способны открыться. В течение фазы 3 потенциала действия увеличивается число Na+ каналов, вышедших из неактивного состояния и способных отвечать на деполяризацию. Это, в свою очередь, повышает вероятность того, что стимулы вызовут развитие потенциала действия и приведут к его распространению. Особенности сократительной функции миокарда: 1. Сила сокращения миокарда не зависит от силы раздражителя("все или ничего"). Это объясняется особенностями строения миокарда. Его клетки образуют функциональный синцитий, т.е. возбуждение может распространяться непосредственно от клетки к клетке. Поэтому любой надпороговый раздражитель, независимо от его силы, приводит к возбуждению всех клеток миокарда. 2. Сила сердечных сокращений зависит от степени исходного растяжения волокон миокарда: чем больше растяжение сердца в диастолу, тем сильнее его сокращение в систолу. Закон сердца (Франка-Сгарлинга). 57. Проводящая система сердца. Природа автоматии. Потенциал действия атипических кардиомиоцитов сино-атриального узла, его физиологическая роль. Градиент автоматии. Скорость проведения возбуждения по структурам сердца. Проводящая система сердца состоит из синусно-предсердного узла, предсердно-желудочкового узла, предсердно-желудочкового пучка, его ножек и разветвлений проводящих волокон. Проводящая система передает ритмичные нервные импульсы, которые генерируются специализированными клетками синусно-предсердного узла (основной водитель ритма сердца). Импульсы возникают в так называемом водителе ритма (пейсмейкере), который располагается в правом предсердии в устье полых вен – синоатриальный узел, или узел первого порядка. Он генерирует импульсы с частотой 60 – 80 сокращений в мин (60 – 80 импульсов/мин). Автоматия клеток водителя ритма обусловлена низким уровнем трансмембранного потенциала (40-60 мВ) и наличием спонтанной деполяризации, которые возникают вследствие особенностей ионных каналов в мембранах атипичных кардиомиоцитов. Сразу после окончания предыдущего потенциала действия возникает спонтанная деполяризация за счет постепенного увеличения проницаемости мембраны для Na+ и Са2+, а также снижения ее проницаемости для К+. Когда деполяризация достигает уровня в 30-40 мВ, довольно медленно начинает развиваться потенциал действия, так как он обусловлен входом Na+ и Са2+ через медленные натриево-калиевые каналы. Быстрых Na+ -каналов в мембранах клеток водителя ритма нет. Синоатриальный узел образован преимущественно Р-клеткми. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости, кардиомиоцитов, миокард является функциональным синцитием. т.е. сердечная мышца реагирует на раздражение как единое целое. Градиент автоматии – уменьшение способности к автоматии у клеток проводящей системы сердца по мере удаления от синоатриального узла. У человека синоатриальный узел (САУ) генерирует ПД с частотой 60-80 в минуту, атриовентрикулярный узел (АВУ) – с частотой 40-50 в мин, клетки системы Гиса – 30-40 в мин, волокна Пуркинье – 10-20 в мин. По структурам атриовентрикулярного узла возбуждение проводится со скоростью 0,08 м/сек, пучка Гисса 0 1,5 м/сек. Наибольшей скоростью проведения возбуждения обладают волокна Пуркинье - 4-5 м/сек, так как в них содержится большое количество десмосом. В мышцах желудочков скорость проведения снова уменьшается, она составляет 0,5-0,8 м/сек. 58. Сердечный цикл, его фазы, роль клапанов. Давление в полостях  сердца в различные фазы сердечного цикла. Систолический и минутный объем крови в покое и при физической нагрузке. Работа сердца представляет собой непрерывное чередование периодов сокращения (систола) и расслабления (диастола). Систола и диастола составляют сердечный цикл. Если частота сердечных сокращений составляет 60 – 80 сокращений в мин, то каждый цикл равен 0,8 с. При этом 0,1 с – систола предсердий, 0,3 с – систола желудочков, 0,4 с – общая диастола сердца. Ударный объем сердца, или систолический объем (СО) – количество крови, поступающее в аорту при каждом сокращении сердца. В покое равен 50 – 70 мл у мужчин и 40 – 50 мл у женщин. Наибольший систолический объем наблюдается при ЧСС 130-180 уд/мин. При ЧСС свыше 180 уд/мин он сильно снижается. Поэтому наилучшие возможности для тренировки сердца имеют физические нагрузки в режиме 130-180 уд/мин. Минутный объем кровотока (МОК) – это произведение ударного объема на частоту сердечных сокращений. В покое МОК составляет 4,5 – 5 л/мин у мужчин и 3,9 – 4,5 л/мин у женщин. при легкой мышечной работе увеличивается до 10-15 л, при напряженной физической работе у спортсменов может достигать 42 л и более. Изменение давления в полостях сердца в различные фазы сердечного цикла. Цикл работы сердца начинается с систолы предсердий. В этот момент давление крови в левом предсердии повышается от 0 до 5 мм рт.ст., ускоряется движение крови в желудочки сердца. Затем начинается систола желудочков: 1. Фаза синхронного сокращения. Давление в желудочках близко к нулю, атриовентрикулярный клапан открыт, а аортальный клапан закрыт. 2. Фаза изометрического сокращения. Начинается резкий рост давления в желудочке от 0 до70 мм рт. ст. ( в левом желудочке). 3. Как только давление в желудочке стало больше диастолического давления в аорте, открываются аортальные клапаны и начинается фаза быстрого изгнания крови. Давление в левом желудочке растет до 120 мм. 4. Фаза быстрого изгнания крови сменяется фазой медленною изгнания. Давление в желудочке начинает уменьшаться. Начинается расслабление желудочков. 5. Протодиастолический период-время от начала расслабление желудочков до закрытия аортального клапана. Начинается диастола желудочков. 6. После захлопывания аортального клапана возникает период изометрического расслабления желудочков. Давление быстро падает до 0. 7. Как только давление в желудочках стало меньше давления в предсердии открываются атриовентрикулярные клапаны и кровь заполняет желудочки - фаза быстрого наполнения кровью желудочков. 8. Фаза быстрого наполнения сменяется фазой медленного наполнения желудочков. К концу этой фазы желудочки на 30% заполнены.   59. Тоны сердца, их характеристика и механизм происхождения. Тоны сердца - это сумма различных звуковых феноменов, возникающих в период сердечного цикла. Обычно выслушиваются два тона, но у 20% здоровых лиц выслушиваются 3-й и 4-й тоны. При патологии характеристика тонов меняется. 1-й тон (систолический) выслушивается в начале систолы.Колебания стенок предсердий в конце систолы предсердий (пред-сердный компонент).Первый тон в норме выслушивается во всех аускультативных точках. Место его оценки - верхушка и точка Боткина. Метод оценки - сравнение со 2-м тоном.1-ый тон характеризуется тем, чтоа) возникает после длинной паузы, перед короткой;б) на верхушке сердца он больше 2-го тона, продолжительнее и ниже 2-го тона;в) совпадает с верхушечным толчком.После короткой паузы начинает выслушиваться менее звучный 2-й тон. 2-й тон образуется в результате закрытия двух клапанов (аорты и легочной артерии) в конце систолы.Существуют механическая систола и электрическая систола, не совпадающая с механической. 3-й тон может быть у 20% здоровых, но чаще - у больных лиц.Физиологический 3-й тон образуется в результате колебания стенок желудочков при быстром наполнении их кровью в начале диастолы. Обычно отмечается у детей и подростков из-за гиперкинетического типа кровотока. 3-й тон регистрируется в начале диастолы, не ранее чем через 0,12 сек после 2-го тона.Патологический 3-й тон образует трехчленный ритм. Он возникает в результате быстрого расслабления потерявшей тонус мускулатуры желудочков при быстром поступлении крови в них. Это "крик сердца о помощи" или ритм галопа.4-й тон может быть физиологическим, возникающим перед 1-м тоном в фазе диастолы (пресистолический тон). Это колебания стенок предсердий в конце диастолы.В норме встречается только у детей. У взрослых он всегда патологический, обусловлен сокращением гипертрофированного левого предсердия при потере тонуса мускулатуры желудочков. Это пресистолический ритм галопа.В процессе аускультации можно выслушивать также щелчки. Щелчок - это высокий звук небольшой интенсивности, во время систолы. 60. Электрокардиография. Векторная теория формирования ЭКГ. Анализ электрокардиограммы.Электрокардиография – регистрация биоэлектрических явлений, возникающих при деятельности сердца, – является важнейшим объективным методом исследования сердца. Она отражает процессы возбуждения в сердце, их величину и скорость проведения возбуждения по проводящей системе и мускулатуре сердца. Сердце расположено асимметрично в грудной клетке, его анатомическая и электрическая ось расположена под углом к фронтальной плоскости. Регистрируемое электрическое колебание представляет собой алгебраическую сумму всех изменений потенциала в отдельных клетках в последовательные моменты времени. В работающем сердце в связи с тем, что возбужденный участок всегда становится электроотрицательным по отношению к невозбужденному, возникает разность потенциалов порядка нескольких десятков милливольт и появляется электрический ток, называемый током действия. Ткани, окружающие сердце, в физическом отношении являются проводниками второго рода и, следовательно, способны проводить электрический ток. Это обстоятельство позволяет отводить токи действия сердца с поверхности кожи, не причиняя человеку никаких неприятностей. Электрокардиограмма представляет собой характерную кривую с пятью зубцами P, Q, R, S, и T. Из них три зубца P, R, T – направлены вверх и два Q, S – вниз. Зубец P характеризует процесс возбуждения предсердий и называется предсердным комплексом. Зубцы Q, R, S, и T составляют желудочковый комплекс. Вольтаж зубцов характеризует интенсивность процессов возбуждения в сердце, а длительность интервалов – время возбуждения отделов сердца. Анализ ЭКГ врачи осуществляют в последовательном порядке, определяя норму и нарушения: Оценивают сердечный ритм и измеряет частоту сердечных сокращений (при нормальной ЭКГ – ритм синусовый, ЧСС – от 60 до 80 ударов в минуту);Рассчитывают интервалы (QT, норма – 390-450 мс), характеризующие продолжительность фазы сокращения (систолы) по специальной формуле (чаще использую формулу Базетта). Если этот интервал удлиняется, то врач вправе заподозрить ИБС, атеросклероз, миокардит, ревматизм. А гиперкальциемия, наоборот, приводит к укорочению интервала QT. Отраженную посредством интервалов проводимость импульсов, рассчитывают с помощью компьютерной программы, что значительно повышает достоверность результатов;2Положение ЭОС начинают рассчитывать от изолинии по высоте зубцов (в норме R всегда выше S) и если S превышает R, а ось отклоняется вправо, то думают о нарушениях деятельности правого желудочка, если наоборот – влево, и при этом высота S больше R в II и III отведениях – подозревают гипертрофию левого желудочка;3Изучают комплекс QRS, который формируется при проведении электрических импульсов к мышце желудочков и определяет деятельность последних (норма – отсутствие патологического зубца Q, ширина комплекса не более 120 мс). В случае, если данный интервал смещается, то говорят о блокадах (полных и частичных) ножек пучка Гиса или нарушении проводимости. Причем неполная блокада правой ножки пучка Гиса является электрокардиографическим критерием гипертрофии правого желудочка, а неполная блокада левой ножки пучка Гиса – может указывать на гипертрофию левого;4 Описывают сегменты ST, которые отражают период восстановления исходного состояния сердечной мышцы после ее полной деполяризации (в норме находится на изолинии) и зубец Т, характеризующий процесс реполяризации обоих желудочков, который направлен вверх, ассиметричен, его амплитуда ниже зубца по продолжительности он длиннее комплекса QRS. 61. Интракардиальная регуляция сердца. Миогенные механизмы регуляции деятельности сердца. Закон сердца Франка-Старлинга. Интракардиальная регуляция сердечной деятельности - за счёт местных рефлекторных дуг. Интракардиальные механизмы в свою очередь подразделяются на миогенные (внутриклеточные) и нервные (за счет внутрисердечной нервной системы). Внутриклеточные механизмы обусловлены свойствами кардиомиоцитов и лежат в основе закона Франка – Старлинга: чем больше растягивается миокард во время диастолы, тем сильнее он сокращается во время систолы, т.е. чем больше крови поступает в желудочки, тем сильнее они потом сокращаются. Феномен Анрепа заключается в том, что чем больше сопротивление выбросу крови из желудочков (например, при сужении аорты), тем сильнее происходит сокращение желудочков. Феномен Боудича (или феномен лестницы) проявляется в том, что чем больше частота сердечных сокращений, тем сильнее сила сокращений. Нервные внутрисердечные механизмы осуществляются рефлексами, дуги которых замыкаются в пределах сердца. 62. Влияние симпатических и парасимпатических нервов на деятельность сердца. Кардиорефлексы. Орально-кардиальный рефлекс и его значение во врачебной практике. Экстракардиальные механизмы подразделяются на нервные и гуморальные механизмы, которые осуществляются за счет структур ЦНС, внесердечных вегетативных ганглиев, желез внутренней секреции. Экстракардиальные нервные влияния осуществляются вегетативной нервной системой. Парасимпатические волокна в составе блуждающего нерва оказывают угнетающее влияние на частоту и силу сердечных сокращений, а также понижают возбудимость и проводимость сердечной мышцы. Сердце находится под постоянным тормозным влиянием со стороны блуждающего нерва. Симпатическая иннервация сердца осуществляется симпатическими волокнами в основном через β-адренорецепторы, активация которых вызывает увеличение силы и частоты сердечных сокращений. Ее влияние, в отличие от влияния блуждающего нерва, проявляется периодически. Регуляция работы сердца может осуществляться благодаря собственным рефлексам сердечно-сосудистой системы, которые возникают при раздражении рецепторов самой сердечно-сосудистой системы. Например, при снижении давления в аорте происходит рефлекторное увеличение частоты сердцебиений, при недостатке кислорода развивается рефлекторная тахикардия, а при дыхании чистым О2 – брадикардия. Эти реакции очень чувствительны: увеличение частоты сердцебиения наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме еще не обнаруживается. Они осуществляются посредством артериальных хеморецепторов, реагирующих на изменения содержания О2 в крови. При увеличении давления и растяжения полых вен и правого предсердия частота и сила сердечных сокращений увеличиваются (рефлекс Бейнбриджа). Есть еще и сопряженные кардиальные рефлексы, обусловленные раздражением рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. Например, рефлекс Гольца: урежение сердцебиений (вплоть до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости (при проведении операций на брюшной полости, при нокауте у боксеров). Рефлекторная остановка сердца может быть при резком охлаждении кожи живота (например, при нырянии в холодную воду). Также брадикардия имеет место при надавливании на глазные яблоки (рефлекс Ашнера). Влияние ЦНС на работу сердца осуществляется через регуляторное воздействие гипоталамуса, лимбической системы и коры больших полушарий. В гипоталамусе находятся высшие центры регуляции вегетативных функций, которые влияют на активность симпатической и парасимпатической систем. Лимбическая система регулирует эмоциональные реакции, которые влияют на работу сердца. 63. Гуморальная регуляция деятельности сердца. Влияние ионного состава крови на деятельность сердца.Гуморальная регуляция осуществляется через систему эндокринных желез и выделение биологически активных веществ. Прямое или опосредованное действие на сердце оказывают практически все биологически активные вещества, содержащиеся в плазме крови. Например, гормоны мозгового вещества надпочечников адреналин, норадреналин вызывают усиление и учащение сердцебиений. Кортикостероиды, вазопрессин, глюкагон, тироксин действуют слабее, чем адреналин, но также увеличивают силу сердечных сокращений. Сердце очень чувствительно к ионному составу протекающей крови. Недостаток в крови ионов калия, например, в результате действия мочегонных препаратов, может приводить к нарушениям сердечного ритма, недостаток кальция приводит к снижению силы сердечных сокращений.   64. Классификация сосудов. Факторы, обеспечивающие движение крови в сосудах. Функции разных отделов сосудистого русла. Линейная и объемная скорость кровотока в разных отделах сосудистого русла. Факторы, влияющие на их величину. Время полного кругооборота крови.Типы сосудов: Артерии, артериолы, капилляры, венулы, вены. Структурно-функциональная классификация сосудов: а) амортизирующие (эластического типа): аорта, легочная артерия и другие большие артерии; б) резистивные: (концевые артерии, артериолы); в)сосуды-сфинктеры (последние отделы прекаппилярных артериол); г)обменные: (капилляры); д) ёмкостные (объемные): вены; е) шунтирующие: (артерио-венозные анастомозы). Основной фактор, обеспечивающий движение крови по сосудам: работа сердца как насоса. Вспомогательные факторы: 1. замкнутость сердечно-сосудистой системы; 2.разность давления в аорте и полых венах; 3. эластичность сосудистой стенки (превращение пульсирующего выброса крогви из сердца в непрерывный кровоток); 4. клапанный аппарат сердца и сосудов, обеспечивающий однонаправленное движение крови; 5. наличие внутригрудного давления - "присасывающее" действие, обеспечивающее венозный возврат крови к сердцу. Работа мышц - проталкивание крови и рефлекторное увеличение активности сердца и сосудов в результате активации симпатической нервной системы. Активность дыхательной системы: чем чаще и глубже дыхание, тем больше выражено присасывающее действие грудной клетки. В сосудах различают скорость кровотока объемную и линейную. Объемная скорость кровотока — количество крови, протекающее через поперечное сечение сосуда в единицу времени. Объемная скорость кровотока через сосуд прямо пропорциональна давлению крови в нем и обратно пропорциональна сопротивлению току крови в этом сосуде. Линейная скорость кровотока отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на площадь сечения кровеносного сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда линейная скорость максимальна, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку. Время, за которое кровь успевает пройти большой и малый круг кровообращения, называют временем полного кругооборота крови. Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70—80 в минуту кругооборот крови происходит приблизительно за 20—23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Дата добавления: 2018-06-27; просмотров: 174; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!