Дыхание в измененных условиях: при физической нагрузке, при повышенном и пониженном 2 страница



2. Свойства возбудимых тканей. Понятие о лабильности, парабиозе, реобазе, хронаксии. Гальванические токи в ротовой полости.Основные физиологические свойства возбудимых тканей: Возбудимость - способность ткани отвечать на раздражение возбуждением. Возбудимость зависти от уровня обменных процессов и заряда клеточной мембраны. Показатель возбудимости - порог раздражения - та минимальная сила раздражителя, которая вызывает первую видимую ответную реакцию ткани. Раздражители бывают: подпороговые, пороговые, надпороговые. Возбудимость и порог раздражения - обратно пропорциональные величины. Проводимость - способность ткани проводить возбуждение по всей своей длине. Показатель проводимости - скорость проведения возбуждения. Скорость проведения возбуждения по скелетной ткани - 6-13 м/с, по нервной ткани до 120 м/с. Проводимость зависит от интенсивности обменных процессов, от возбудимости (прямо пропорционально). Рефрактерность (невозбудимость) - способность ткани резко снижать свою возбудимость при возбуждении. В момент самой активной ответной реакции ткань становится невозбудимой. Различают: абсолютно рефрактерный период - время, в течении которого ткань не отвечает абсолютно ни на какие возбудители; относительный рефрактерный период - ткань относительно невозбудима - происходит восстановление возбудимости до исходного уровня. Показатель рефрактерности - продолжительность рефрактерного периода (t). Продолжительность рефрактерного периода у скелетной мышцы - 35-50 мс, а у нервной ткани - 0,5-5 мс. Рефрактерность ткани зависит от уровня обменных процессов и функциональной активности (обратная зависимость). Лабильность (функциональная подвижность) - способность ткани воспроизводить определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимых раздражений. Это свойство характеризует скорость возникновения возбуждения. Показатель лабильности: максимальное количество волн возбуждения в данной ткани: нервные волокна - 500-1000 импульсов в секунду, мышечная ткань - 200-250 импульсов в секунду, синапс - 100-125 импульсов в секунду. Лабильность зависит от уровня обменных процессов в ткани, возбудимости, рефрактерности. Для мышечной ткани к четырем перечисленным свойствам добавляется пятое - сократимость. Парабиоз — состояние, пограничное между жизнью и не жизнью клетки. Является фазной реакцией ткани на действие чередуюшихся раздражителей. Реобазой называют минимальную силу тока, вызывающую ответ: сокращение мышцы либо биоэлектрический потенциал в одиночной нервной клетке, при неограниченном времени воздействия (на практике обычно не более нескольких сот миллисекунд). Реобаза составляет половину силы тока, которая вызывает реакцию мышечной или нервной ткани за время хронаксии. Хронаксия — минимальное время, требуемое для возбуждения мышечной либо нервной ткани постоянным электрическим током удвоенной пороговой силы (реобаза). 3. Потенциал покоя, его параметры, механизм возникновения, физиологическая роль.Потенциа́л поко́я —мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ. У нейронов и нервных волокон обычно составляет -70 мВ. Потенциал покоя возникает в результате двух причин: 1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов C l больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ. За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы C l пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. 4. Потенциал действия, его параметры, механизм возникновения, физиологическая роль. Порог деполяризации, критический уровень деполяризации. Периоды рефрактерности во время развития одиночного потенциала действия. Потенциа́л де́йствия — это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны. Потенциал действия является физиологической основой нервного импульса. Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране. При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный. Компоненты потенциала действия: 1) локальный ответ; 2) высоковольтный пиковый потенциал (спайк); 3) следовые колебания. Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Еще одним важным следствием инактивации Na+-системы является развитие рефрактерности мембраны. Если мембрана деполяризуется сразу после развития потенциала действия, то возбуждение не возникает ни при значении потенциала, соответствующем порогу для предыдущего потенциала действия, ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс, называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда путем значительной деполяризации все же можно вызвать потенциал действия, хотя его амплитуда и снижена по сравнению с нормой. Разницу между значениями потенциала покоя и уровнем критической деполяризации характеризует порог деполяризации (чем меньше порог деполяризации, тем больше возбудимость). В состоянии покоя порог деполяризации определяет исходную или нормальную возбудимость ткани. Критический уровень деполяризации - пороговый уровень деполяризации плазмалеммы возбудимой клетки. Уровень деполяризации, при достижении которого возникает потенциал действия. В пределах от потенциала покоя до критического уровня деполяризации между интенсивностью раздражителя и уровнем деполяризации существует приблизительно линейная зависимость. При деполяризации достигающей критического уровня такая зависимость отсутствует (закон «все или ничего»). 5. Классификации нервных волокон. Механизмы и скорость проведения возбуждения по миелиновым и безмиелиновым нервным волокнам.После этого головки поперечных мостиков в силу своей эластичности возвращаются в исходное положение и устанавливают контакт со следующим участком актина; далее вновь происходит очередное гребковое движение и скольжение актиновых и миозиновых нитей. Подобные элементарные акты многократно повторяются. МЕХАНИЗМ СОКРАЩЕНИЯ ГЛАДКИХ МЫШЦ: Сопряжение возбуждения (ПД) и сокращения в ГМК идет иначе, чем в скелетных мышцах, здесь слабо выражен саркоплазматическнй ретикулюм, а для инициации сокращения кальций, вероятно, поступает из внеклеточного пространства. Регуляция взаимодействия актина и миозина отличается в ГМК от скелетных мышц. Механизм актин-связьщающей регуляции протекает иначе. Она заключается в том, что контакт миозина с актином возможен в том случае, когда легкая цепь миозина (хвост миозиновой нити) получит фосфатную группу (когда произойдет фосфорилирование этой цепи). В результате образуется комплекс «актин—миозин», обладающий АТФ-азноЙ активностью. Расщепление АТФ вызывает высвобождение энергии, которая трансформируется в акт сокращения. Расслабление же происходит в том случае, когда фосфатная группа снимается с легкой цепи миозина. Установлено, что фосфорилирование легкой цепи миозина осуществляется с помощью фермента, названного киназой легких цепей миозина (КЛЦМ), а дефосфорилирование осуществляется специфической фосфатазой. Относительно энергетики ГМК известно, что для совершения одной и той же работы ей требуется в 100—500 раз меньше энергии, чем скелетной мышце. Это, скорее всего, связано с тем, что процесс сокращения, протекающий очень медленно, требует меньше энергии в силу ее более экономного использования. 6. Физиологическое значение и классификации синапсов. Механизмы нервно-мышечной передачи возбуждения. Центральные синапсы.КЛАССИФИКАЦИЯ СИНАПСОВ: Синапс — это морфофункциональное образование ЦНС, которое обеспечивает переда-чу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку). Все синапсы ЦНС можно классифицировать следующим образом. 1.По локализации: центральные и периферические. Центральные синапсы можно в свою очередь разделить на аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, дендро-дендритические, дендро-соматические и т. п. 2.По развитию в онтогенезе:стабильные и динамичные, появляющиеся в процессе индивидуального развития. 3.По конечному эффекту: тормозные и возбуждающие. 4. По механизму передачи сигнала: электрические, химические, смешанные. 5. Химические можно классифицировать: а) по форме контакта — терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона); б) по природе медиатора — холинергические (медиатор — ацетилхолин, АХ), адренергические (медиатор — норадреналин, НА), дофаминергические (дофамин), ГАМК-ергические (медиатор — гамма-аминомасляная кислота), глицинергические, глутаматергические, аспартатергические, пептидергические (медиатор — пептиды, например, вещество Р), иуринергические (медиатор — АТФ). Структурно-функциональная организация. Каждый синапс имеет пре- и постсинаптическую мембраны и синаптическую щель. Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона. Через нее осуществляется выброс (экзоцитоз) медиатора (лат. mediator — посредник) в синаптическую щель. В нервно-мышечном синапсе медиатором является ацетилхолин. Постсинаптическая мембрана (концевая пластинка в нервно-мышечном синапсе) — это часть клеточной мембраны иннервируемой мышечной клетки, содержащая рецепторы, способные связывать молекулы ацетилхолина. Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость, ацетилхолинэстеразу и мукополисахаридное плотное вещество в виде полосок, мостиков, в совокупности образующих базальную мембрану, соединяющую пре- и постсинаптическую мембраны. Механизмы синаптической передачи включают три основных этапа. (нервно-мышечная передача). Первый этап — процесс выброса медиатора в синаптическую щель, который запускается посредством ПД пресинаптического окончания. Деполяризация его мембраны ведет к открытию потенциалуправляемых Са-каналов. Са2+ входит в нервное окончание согласно электрохимическому градиенту. Часть медиатора в пресинаптическом окончании локализуется на пресинаптической мембране изнутри. Са2+ активирует экзоцитозный аппарат пресинапса, представляющий собой совокупность белков (синапсин, спектрин и др.), пресинаптического окончания, активация кото-рых обеспечивает выброс ацетилхолина посредством экзоцитоза в синаптическую щель. Второй этап — диффузия ацетилхолина в течение 0,1—0,2 мс к пост- синаптической мембране и действие его на N-холинорецепторы (стимулируются также никотином, вследствие чего и получили свое название). Удаление ацетилхолина из синаптической щели осуществляется путем разрушения его под действием ацетилхолинэстеразы, расположенной в базальной мембране синаптической щели, в течение нескольких десятых долей миллисекунды. Около 60 % холина захватывается обратно пресинаптическим окончанием, что делает синтез медиатора более экономичным, часть ацетилхолина рассеивается. Третий этап —взаимодействие ацетилхолина с N-холинорецепторами постсинаптической мембраны, в результате чего открываются ионные каналы и, вследствие преобладания входа Na+ в клетку, происходит деполяризация постсинаптической мембраны (концевой пластинки). Эту деполяризацию в нервно-мышечном синапсе называют потенциалом концевой пластинки. Особенностью нервно-мышечного синапса скелетного мышечного волокна является то, что при одиночной его активации формируется ПКП большой амплитуды (30—40 мВ), электрическое поле которого вызывает генерацию ПД на мембране мышечного волокна вблизи синапса. Большая амплитуда ПКП обусловлена тем, что нервные окончания делятся на многочисленные веточки, каждая из которых выбрасывает медиатор. 7. Механизм мышечного сокращения поперечно-полосатых и гладких мышц.Укорочение мышцы является результатом сокращения множества саркомеров. При укорочении актиновые нити скользят относительно миозиновых, в результате чего длина каждого саркомера мышечного волокна уменьшается. При этом длина самих нитей остается неизменной. Миозиновые нити имеют поперечные выступы (поперечные мостики) длиной около 20 нм. Каждый выступ состоит из головки, которая соединена с миозиновой нитью посредством «шейки». При расслабленном состоянии мышцы головки поперечных мостиков не могут взаимодействовать с актиновыми нитями, поскольку их активные участки (места взаимного контакта с головками) изолированы тропомиозином. Укорочение мышцы является результатом конформационных изменений поперечного мостика: его головка совершает наклон с помощью сгибания «шейки». Последовательность процессов, обеспечивающих сокращение мышечного волокна (электромеханическое сопряжение): 1. После генерации ПД в мышечном волокне вблизи синапса (за счет электрического полр ПКП) возбуждение распространяется по мембране миоцита, в том числе по мембранам поперечных Т-трубочек. 2. Потенциал действия Т-трубочек за счет своего электрического поля активирует потенциалуправляемые кальциевые каналы на мембране СПР, вследствие чего Са2+ выходит из цистерн СПР согласно электрохимическому градиенту. 3. В межфибриллярном пространстве Са2+ контактирует с тропонином, что приводит к его конформации и смещению тропомиозина, в результате чего на нитях актина обнажаются активные участки, с которыми соединяются головки миозиновых мостиков. 4. В результате взаимодействия с актином АТФазная активность головок миозиновых нитей усиливается, обеспечивая освобождение энергии АТФ, которая расходуется на сгибание миозинового мостика, внешне напоминающего движение весел при гребле (гребковое движение) обеспечивающее скольжение актиновых нитей относительно миозиновых. На совершение одного гребкового движения расходуется энергия одной молекулы АТФ. При этом нити сократительных белков смещаются на 20 нм. 8. Сила и работа мышц. Сила сокращения жевательных мышц; факторы, которые ее определяют.Единицы измерения. В системе СИ сила выражается в ньютонах (Н). В физиологической практике силу мышцы, как правило, определяют по максимальной массе груза, который может быть поднят при ее сокращении. В условиях целостного организма определяют «становую», «кистевую» силу, силу сгибателей и т.п. Факторы, определяющие силу мышцы. Анатомическое строение: перистые мышцы (волокна расположены косо, под углом к продольной оси) способны развивать гораздо большее напряжение, чем мышцы с параллельным расположением волокон. В связи с этим принято определять так называемое физиологическое поперечное сечение мышцы, т.е. сумму поперечных сечений всех волокон, из которых состоит мышца. У перистых мышц физиологическое поперечное сечение значительно превосходит анатомическое (геометрическое). К числу наиболее сильных относятся жевательные мышцы. Выделяют понятие «удельная сила мышцы» — отношение общей силы мышцы в ньютонах к физиологическому поперечному сечению мышцы (Н/см2). Удельная сила находится в пределах 50— 150 Н/см2. Утомление мышцы. При мышечной работе у человека со временем развивается утомление — сила мышечных сокращений постепенно уменьшается, и в конечном итоге наступает момент, когда человек уже не в состоянии продолжать работу. Скорость развития утомления зависит от ритма работы и величины груза. Большой груз или слишком частый ритм работы приводят к быстрому развитию утомления, в результате чего выполненная работа бывает ничтожна. Наибольшей бывает работа при некотором среднем, оптимальном для данного человека, ритме работы и среднем, оптимальном грузе (правило средних нагрузок). При любой силе изометрического сокращения мышцы работа равна нулю, несмотря на расход энергии и развивающееся утомление. Причиной утомления является накопление К+ в Т-трубочках (при частых сокращениях), накопление молочной кислоты, расход энергетического материала. Сила жевательных мышц. Жевательные мышцы, поднимающие челюсть, могут развивать силу до 380—400 кг. Принимаемая пища имеет различные консистенцию и твердость, поэтому для ее дробления требуются усилия, которые развиваются мышечной системой. Следовательно, в зависимости от консистенции пищи мышцы развивают определенную жевательную силу. Степень сокращения мышц регулируется центральной нервной системой, получающей соответствующие сигналы о консистенции пищи от зрительных, а также от тактильных и болевых анализаторов, имеющихся в обилии в тканях пародонта. 9. Виды сокращения мышц: одиночное, тетаническое, изометрическое, изотоническое. В зависимости от характера сокращений мышцы различают три их вида: изометрическое, изотоническое и ауксотоническое. Ауксотоническое сокращение мышцы заключается в одновременном изменении длины и напряжения мышцы. Этот вид сокращения характерно для натуральных двигательных актов и бывает двух видов: эксцентрическое, когда напряжение мышцы сопровождается ее удлинением — например, в процессе приседания (опускания), и концентрическое, когда напряжение мышцы сопровождается ее укорочением — например, при разгибании нижних конечностей после приседания (подъем). Изометрическое сокращение мышцы — когда напряжение мышцы возрастает, а длина ее не изменяется. Этот вид сокращения можно наблюдать в эксперименте, когда оба конца мышцы зафиксированы и отсутствует возможность их сближения, и в естественных условиях — например, в процессе приседания и фиксации положения. Изотоническое сокращение мышцы заключается в укорочении мышцы при ее постоянном напряжении. Этот вид сокращения возникает, когда сокращается ненагруженная мышца с одним закрепленным сухожилием, не поднимая (не перемещая) никакого внешнего груза либо поднимая груз без ускорения. В зависимости от длительности сокращений мышцы выделяют два их вида: одиночное и тетаническое. Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы. Обычно мышца укорачивается на 5—10 % от исходной длины. На кривой одиночного сокращения выделяют три основных периода: 1) латентный — время от момента нанесения раздражения до начала сокращения; 2) период укорочения (или развития напряжения) 3) период расслабления. Продолжительность одиночных сокращений мышц человека вариабельна. Например, у камбаловидной мышцы она составляет 0,1 с. В  латентный период возникает возбуждение мышечных волокон и его проведение вдоль мембраны. Соотношения длительности одиночного сокращения мышечного волокна, его возбуждения и фазовые изменения возбудимости мышечного волокна показаны на рис. 5.5. Длительность сокращения мышечного волокна значительно дольше таковой ПД потому, что необходимо время на работу Са-насосов для возвращения Са2+ в СПР и окружающую среду и большей инерционности механических процессов по сравнению с электрофизиологическими. Тетаническое сокращение — это длительное сокращение мышцы, возникающее под действием ритмического раздражения, когда каждое последующее раздражение или нервные импульсы поступают к мышце, пока она еще не расслабилась. В основе тетанического сокращения лежит явление суммации одиночных мышечных сокращений. Если повторные импульсы или раздражения поступают в фазу расслабления мышц, возникает зубчатый тетанус. Если повторные раздражения приходятся на фазу укорочения, возникает гладкий тетанус.

Дата добавления: 2018-06-27; просмотров: 173; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!