Влияние физиологических, генетических и факторов ОС на биотрансформацию ксенобиотиков.



 

Скорость, с которой протекают реакции метаболизма, и их относительная важность зависят от многих факторов, в результате чего происходят изменения в картине метаболизма и возникают различия в токсичности. Эти факторы по своему происхождению могут быть генетическими, физиологическими или связанными с условиями окружающей среды.

К генетическим факторам относятся видовые различия и различия внутри одного вида.

К физиологическим факторам, которые влияют на метаболизм, относятся возраст, пол, состояние питания, заболевания и т.д.

К факторам окружающей среды можно отнести стресс из-за неблагоприятных условий, облучение ионизирующей радиацией, свет, ОВП и т.д., наличие других ксенобиотиков, а также большое влияние на процессы (скорость) метаболизации оказывает природа (структура) самих ксенобиотиков

Стресс. Неблагоприятные внешние условия приводят к увеличению микросомального окисления, зависящего от НАДФН2, т.е. интенсивность метаболического превращения повышается.

Ионизирующая радиация подавляет образование НАДН и НАДФН, и поэтому возможно нарушение микросомального окисления в печени. Ионизирующая радиация приводит к угнетению гидроксилирования стероидов.

 

17) Основные пути поступления и выведения гидрофильных и гидрофобных ксенобиотиков живыми организмами. Ксенобиотик, который тем или иным образом попадает в организм, чаще всего подвергается метаболическому превращению с последующим его выведением.   Основные пути поступления токсических ксенобиотиков в организм человека – это органы дыхания и кожа, а также пищеварительный тракт. Через слизистую оболочку дыхательных путей и пищ. тракта поступают ксенобиотики, находящиеся в газо- и парообразном состоянии. Через кожу проникают преимущественно липофильные вещества, находящиеся в жидком или газообразном состоянии при непосредственном контакте. Через всасывание из пищеварительного тракта. Участок всасывания (слизистая оболочка желудка, тонкой или толстой кишки) определяется физико-химическими свойствами ксенобиотика, его способностью к ионизации, взаимодействию с мембранами эпителиацитов. Экскреция ксенобиотикови их метаболитов через почки, легкие, кожу, кишечник, слюнные, потовые, слезные, сальные железы, а также молочные железы при лактации. 1)Почечная экскреция ксенобиотиков – основной путь удаления гидрофильных ксенов. В основе почечной экскреции лежат следующие биологические процессы: клубочковая фильтрация, канальцевая секреция, канальцевая реабсорбция. В клубочковой фильтрации подвергаются вода, глюкоза, аминокислоты, белки, ксенобиотики-неэлектролиты. Канальцевая секреция – активный процесс, осуществляемый с помощью ферментных систем мембранного транспорта (органические кислоты или органические основания). Канальцевая реабсорбция – процесс обратного всасывания метаболитов и ксенобиотиков, неионизированные формы веществ подвергаются реабсорбции и экскреции путем пассивной диффузии.

2) Экскреция ксенобиотиков легкими. удаляются в основном летучие и газообразные вещества, например промышленные газы, а также продукты печеночной биотрансформации многих токсических веществ.3) Экскреция ксенобиотиков печенью. Выделение через систему желчных ходов или после обратного всасывания в синусоиды – через почки. Однако для многих полярных ксенов (метаболитов, конъюгатов) выделение в желчь из гепатоцитов осуществляется путем активного транспорта против градиента электрохимического потенциала. У растений нет спец. путей поступления и выведения ксенобиотиков (через корни и листья, а строение корня опр. пути и механизмы поступления). Поступление в корни происходит в две фазы: 1) быстро протекающая диффузия в апопласт и 2) продолжительное поступление. Поступает широкий спектр гидрофильных и липофильных органических молекул ксенобиотиков (спирты, фенолы, амины). Ксены поступают в растение через листья: через устьица или кутикулу. Через кутикулу соединения диффундируют медленнее, чем через устьица. Однако из водных растворов поступление через устьица неэффективно, т.к. у входа в устьичную щель выпуклый мениск препятствует поступлению экзогенного соединения. Кутикула проницаема для гидрофильных и липофильных молекул. В распределении ксенобиотиков в тканях и органах растений большую роль играют сосуды ксилемы и флоэмы. Ксены, переносимые по сосудам ксилемы поступая в корни растений создают фототоксические конц-и в наземных органах растений. редко отмечается акк-я флоэмнобильных ксенов в корнях при поступлении их через листья (из-за выдел-я ксенов в ризосферу). Выделение через листья очень редко.

18) Характеристика основных процессов поведения ксенобиотиков в экосистемах. Роль адсорбции и перемещения.

Для ксенобиотиков, попавших в экосистемы и входящие в них организмы, можно выделить следующие этапы.

1. Реакции превращения ксенобиотиков( распад, ОВР, гидролитические и реакции конъюгации. 2. Адсорбция ксенобиотиков на частицах биологического и абиотического происхождения. 3. Переход ксенобиотиков из одной среды в другую.

Реализация этих этапов в реальных биогеоценозах происходит при теснейшем взаимодействии между различными факторами. Для понимания характера воздействия ксенобиотиков на экосистемы чрезвычайно важное значение имеет скорость превращения ксенобиотиков. Высокая скорость превращения обычно приводит к исчезновению вещества и, следовательно, к исчезновению проблемы, связанной с загрязнением окружающей среды; при медленном разрушении вещество сохраняется длительное время, что может вызвать его концентрирование.

Адсорбция ксенобиотиков на частицах . Доступность ксенобиотика для ферментов,и его «деградабельность» снижается в результате сорбции молекул на частицах. Процессы сорбции–десорбции ксенобиотиков нередко определяют их устойчивость и взаимосвязаны с переносом в биосфере на большие расстояния. Пример: многие пестициды в почве гидролизуются с образованием соединений, которые адсорбируются на частицах почвы, связываются с гумусом и сохраняются длительное время, т. е. возрастает устойчивость этих токсикантов. В адсорбированном состоянии они не разрушаются. По мере разрушения гумуса грибами (что является ферментативным процессом) ранее связанные молекулы пестицида освобождаются и могут проявить свое токсическое действие на организмы данной экосистемы.

Переходы веществ из одной среды в другую. Изменения физико-химических свойств веществ в результате модификации структуры их молекул, сорбция ксенобиотиков на частицах и др. оказываются существенными при переходе веществ (и продуктов их превращений) из одного блока биогеоценоза в другой. Таковы переходы ксенобиотиков из воды в воздух и обратно, из организмов в воду и обратно, из почвы в воду и т. д. Подобные переходы могут иметь решающее значение для крупномасштабного перемещения ксенобиотиков в атмосфере и порождает экологические проблемы. Например, летучесть ряда пестицидов (особенно хлорорганических), их переход в результате испарения из почвы или воды в воздух обусловливает их дальнейший перенос на большие расстояния. Однако не менее серьезные проблемы возникают и вследствие затрудненности перехода подобного типа. Например, переход ртути из почвы в воду происходит очень медленно (период полувыведения из почвы в поверхностные воды составляет 850 лет). Попавшая в водоемы ртуть далеко не безвредна: она метилируется и накапливается в гидробионтах. Поэтому возникает огромное запаздывание в миграции ртути по биосфере, которое затрудняет борьбу с ртутным загрязнением. В самом деле, даже если удалось бы сегодня полностью прекратить антропогенное загрязнение биосферы (в частности, почвы) ртутью, то все равно еще сотни лет будет продолжаться ее выход (вымывание) из почвы в водоемы, а следовательно, их загрязнение и последующее накопление в гидробионтах.

19) Экологическая опасность процессов разрушения ксенов вбиоценозах.

Из-за неспособностьи экосистем к полной биодеградации создается экологическая опасность, обусловленная наличием как устойчивых или вообще неразлагающихся в окружающей среде ксенобиотиков, так и биодеградабельных ксенобиотиков. В этой связи возникает несколько возможных ситуаций:

– нарушение функционирования экосистем, обусловленное наличием устойчивых, неразлагающихся или разлагающихся крайне медленно ксенобиотиков; в конечном итоге они, постоянно накапливаясь, будут оказывать негативное воздействие на экосистемы;

– нарушение нормального функционирования экосистем, связанное с наличием биодеградабельных ксенобиотиков и обусловленное следующими причинами: природой превращений и аккумуляцией ксенобиотиков; опасностью воздействия больших доз; воздействием малых (сублетальных) концентраций.Рассмотрим каждую из указанных причин на отдельных примерах.

Природа превращений и аккумуляция ксенобиотиков . Способность ксенобиотиков распространяться в окружающей среде создает проблемы, связанные с длительностью их сохранения в природных условиях. Поэтому сведения о скорости разрушения веществ являются ценными. Легко разрушаемые соединения считаются опасными, но необходимо знать способность различных организмов разрушать то или иное вещество. Данное вещество может легко разрушаться в одной среде, но может быть устойчивым в других условиях. Очень важно знать, какие типы веществ образуются в процессе разрушения. ДДТ оказывает очень большое влияние на природную среду; он очень устойчив к разрушению, но ДДТ все же распадается на ряд производных ДДТ превращается в ДДД, затем в ДДЭ– более опасное вещество,еще медленнее метаболизируется и разрушается, причина возн-я эко проблемы. Поэтому при оценке экологической опасности необходимо учитывать природу и процессы метаболических превращений: органический ксенобиотик может метаболизироваться в организме, и часто образуются многочисленные метаболиты. Степень накопления их в организме зависит от относительных скоростей их образования и последующего метаболизирования и (или) вывода из организма. Природу метаболических превращений следует учитывать при разработке аналитических методов.

Экологическая опасность больших доз биоразрушаемых ксенобиотиков и остатков неразложившихся ксенобиотиков связана с возможностью нарушения практически всех аспектов структуры и функционирования экосистем, видовое богатство и разнообразие видов, структуру популяций, стабильность и продуктивность экосистем. (большие дозы могут нести огромную экологическую опасность, т.к они отравляют организмы раньше, чем они успевают их метаболизировать; опасность, связанная с накоплением ксенобиотиков организмами. В результате биоконцентрации может усиливаться токсическое воздействие, ухудшаться качество кормовой базы для организмов вышестоящих трофических уровней.

Опасность малых доз обусловлена следующими факторами:а) может происходить хроническое отравление малыми концентрациями (дозами), ведущее к падению репродуктивной способности.

б) могут нарушать тонкую регуляцию межвидовых и внутривидовых взаимодействий, которая опосредована различными хемомедиаторами и хеморегуляторами;

в) оказывая неодинаковое влияние на конкурентные друг с другом виды одного трофического уровня, могут нарушать естественный экологический баланс в экосистемах;

г) могут даже стимулировать воспроизводство популяций некоторых крайне нежелательных видов, наносящих экономический ущерб в агроэкосистемах.

Выводы:

1)экологическая опасность ксенобиотиков-поллютантов определяется не только их непосредственной токсичностью, но и токсичностью и персистентностью продуктов их биотрансформации, а также способностью ксенобиотиков и продуктов их биотрансформации влиять на биохимические и физико-химические процессы в экосистемах.

2) значение имеет соотношение между скоростью поступления ксенобиотиков в конкретные экосистемы и скоростью их деградации.

3) ксены способны мигрировать по всей биосфере и переходить из одной среды в другую: из атмосферы в океан, с суши в водоемы и т. Д

4) биологическое действие многих ксенобиотиков, действующих совместно, усиливается

Один из путей снижения нежелательных последствий загрязнения биосферы – разработка, производство и применение биодеградабельных соединений, т. е. материалов и веществ, относительно быстро разлагаемых в экосистемах без образования токсичных или персистентных продуктов распада.

Еще один важный путь – использование природных веществ для регуляции различных физиологических процессов и создания интегрированной системы защиты растений.

 

20) Реакции метаболического окисления органических ксенобиотиков, основные типы и ферменты.

1. Окисление спиртов и альдегидов осуществляется алкогольдегидрогеназой, альдегидоксидазами и др. ферментами. дегидрогеназы удаляют водород; например, окисление спиртов до альдегидов, которые в свою очередь окисляются до карбоновых кислот. Окисление спиртов в альдегиды или кетоны:

RCH2OH ® RCHO + Н2О,

R1CHOHR2 ® R1COOR22О.

Окисление альдегидов в карбоновые кислоты:

 [O]

RCHO ® RCOOH.

2. Окисление аминов (включая арил-замещенные алифатические амины). Один из примеров – реакция диэтиламина с нитритом в кислой среде желудка, в результате которой получается канцероген – диэтилнитрозамин.

3. Окисление ароматических аминов. Эти вещества подвергаются N-гидроксилированию с участием оксигеназ, что может вызывать появление канцерогенных продуктов.                            

4. Окисление ароматических алкил-замещенных соединений. Они обычно расщепляются между атомами С1 и С2 боковой цепи с образованием соответствующей ароматической кислоты, при участии фермента диоксигеназы. Эти реакции происходят с участием микроорганизмов, а также в растениях.

5. Гидроксилирование кольцевых систем. Алициклические кольцевые структуры гидроксилируются легче, чем ароматические. Если в ароматическом кольце есть неуглеродный заместитель, то гидроксилирование обычно происходит в пара-положении. Однако если последнее занято, то в ортоположении с образованием в некоторых случаях канцерогенных метаболитов. Катализируют реакции оксигеназы.

Ароматическое гидроксилирование и Алифатическое гидроксилирование:

6. Ароматизация алициклических соединений. Происходит в случае окисления некоторых циклогексанкарбоновых кислот (с четным числом СН2-групп в боковой цепи) с участием митохондрий. Конечный продукт – бензойная кислота.

7. При реакциях окисления с участием фермента эпоксидазы образуется эпоксидное кольцо (реакция эпоксидации):                        

 

Например, в результате микросомального или микробиологического окисления (эпоксидации) пестицида альдрина получится токсический эпоксид – диэльдрин.

8. Окисление или окислительное замещение органической серы. Гетероциклическая сера обычно окисляется в сульфоксиды или дисульфоны. Сера в алифатических комбинациях или ароматических боковых цепях иногда замещается кислородом. (RO)3P = S ® (RO)3P = O.

Превращение связи P=S в связь P=O приводит к повышению токсичности продуктов.

9. Окислительное дезалкилирование О- и N -атомов. Эти реакции требуют молекулярного кислорода и осуществляются монооксигеназами. Наиболее часто дезалкилированию подвергаются ксенобиотики следующих классов: динитроанилины (гербициды трифлурамин, динитрамин и др.), фенилмочевины (гербициды хлороксурон, диурон, монурон, флуометурон, линурон и др.), симметричные триазины, фосфорорганические соединения, алкиламины и др. ксенобиотики. Эти реакции осуществляются оксигеназами микроорганизмов, а также клетками печени.

Оксигеназа (монооксигеназа) – это фермент, катализирующий реакцию элементарного кислорода с некоторым субстратом, в процессе которой один из атомов кислорода входит в состав субстрата, тогда как второй атом кислорода реагирует с другим акцептором, чаще всего водородом, образуя воду. монооксигеназные системы содержат цитохром Р-450,основная функция цитохрома – обезвреживание эндогенных субстратов. В каталитических реакциях монооксигеназ выполняет роль активного центра. Он взаимодействует с субстратом и молекулярным кислородом, а также принимает электроны от соответствующих доноров. Различают микросомальную, митохондриальную и бактериальную монооксигеназные системы цитохрома Р-450.

Одной из особенностей окислительных ферментов является их различная избирательность (специфичность) к субстрату в зависимости от вида тканей, в которых они находятся. Другая важная особенность- их активность может вызываться самими веществами, на которые они воздействуют.

 

                                                                  

 


Дата добавления: 2019-07-17; просмотров: 264; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!