Оцінка точності функцій виміряних величин



 

В практичній діяльності для вимірювання шуканих величин часто застосовують посередні методи. При цьому шукана величина Y визначається шляхом обчислень по виміряних величинах Х1, Х2 ..., Хn. Шукану величину Y називають функцією, а виміряні величини Хі - аргументами, тоді

 

 

де Х1, Х2 ..., Хn - істинні значення функції та її аргументів.

Зрозуміло, що виміри виконуються з похибками, тому і функція буде обтяжена похибкою. В результаті повторних вимірювань аргументів Хi можна визначити їх точність, або їх точність визначається методикою вимірювань на основі інструкцій і т.і.

Похибка функції буде залежати від похибок її аргументів. Якщо виміряно аргументи Х1, Х2 ..., Хn, то шляхом обчислень можна визначити функцію

 

 

де Х1, Х2 ..., Хn - виміряні величини з середніми квадратичними похибками ..., mxn. Припустимо, що нам відомі істинні похибки вимірів . Очевидно і функція отримає істинний приріст . Функція зведеться до вигляду

 

 

де  - часткові похідні від функції по перемінних наближених значеннях аргументів;

xі —Хі =  - істинні похибки аргументів функції;

R - величини другого та вищих порядків малості і в подальших розрахунках може бути прийнятою за нуль, тобто R=0.

Визначимо приріст функції у, для чого від рівняння віднімемо рівняння

 

 і отримаємо

 

Для оцінки точності функцій застосуємо метод повторних вимірювань аргументів. Тобто припустимо, що аргументи функції виміряні n-разів і при відомих істинних похибках аргументів обчислено таку ж кількість похибок функції, тобто

 

,  (i = l,n)

 

Зведемо їх до квадрата, складемо і поділимо на n. Отримаємо

 

 

Із кореляційного аналізу можна визначити коефіцієнт кореляції за формулою

 

 

Тоді дисперсія функції зведеться до вигляду

 

 

де  - коефіцієнт кореляції, який виражає залежність між аргументами xi та xj.

Дві останні формули виражають дисперсію функції, тобто її точність залежно від виду функції і точності залежних між собою аргументів.

Практично досить важко і економічно невигідно визначати коефіцієнти кореляції. Тоді умовно приймають їх незалежними, а коефіцієнт кореляції rij = 0.

Для незалежних аргументів дисперсія функції буде

 

 

де my, m1, m2, …, mn - середні квадратичні похибки функції та її аргументів.

В узагальненому вигляді середню квадратичну похибку функції для незалежних аргументів виражають формулою

 

 

В теорії похибок вимірів для визначення дисперсії функції застосовують правило:

1. Диференціюють функцію

 

 

2. В отриманій формулі зводять до квадрату кожен член разом із своїм знаком

 

 

3. В формулі замінюють

 

 …

 

тобто

 

 

Визначення ваги функції

Вага функції є мірою відносної точності і її можна збільшувати або зменшувати в певну кількість разів .

Розглянемо дисперсію функції для незалежних аргументів.

Відомо, що . Тоді можна замінити  отримаємо:

 

 

Це і є формула оберненої ваги функції, після обчислення якої можна перейти до ваги функції. Коефіцієнт С вибирають так, щоб значення ваги Ру було близьке до одиниці для зручності її використання.

Для визначення ваги функції в теорії похибок вимірів користуються правилом:

1. Визначають дисперсію функції.

2. Дисперсії всіх перемінних ..., і т. д. замінюють на обернені ваги відповідно

 

, …, і т. д.

 

Зазначимо, що вага однієї функції не дає уявлення про точність функції. Її можна використати у порівнянні з вагами функції однорідних фізичних величин. Вага функцій визначає відносно більшу або меншу точність однієї функції порівняно з іншою.

Вага системи функції

Якщо маємо систему функцій

 

_ _ _ _ _ _ _ _ _ _ _


Вага системи функції для незалежних аргументів визначається за формулою:

 

a11  a12  …  ain

a21  a22  …  a2n

A = …  … … 

am1 am2 … amn

 

 

де  Кх – кореляційна матриця аргументів хі;  - дисперсія одиниці ваги;  - обернені ваги аргументів.

Після перемноження матриць отримаємо:

     
 


К12 К13... К1m

 = K21   К23...  К2m

…  …  … …

Km1  Km2  Km3

 

де  - обернені ваги функції уі;

Kij – кореляційні моменти, які характеризують зв’язок між вагами функцій.

Коєфіцієнти кореляції між функціями визначаються за формулою:

 


РОЗДІЛ 2. ВИПАДКОВІ ВЕЛИЧИНИ, ЇХ ХАРАКТЕРИСТИКИ І ЗАКОНИ РОЗПОДІЛУ ЙМОВІРНОСТЕЙ

Випадкові величини

 

Випадкові події якісно характеризують випадковий результат проведеного досліду. Разом з тим випадковий результат можна характеризувати і кількісно.

Випадковою величиною називають таку величину, яка в результаті досліду може набути будь-якого довільного значення до того заздалегідь невідомо якого саме.

Поняття випадкової величини є одним із важливих понять теорії ймовірностей. Позначимо випадкові величини великими буквами латинського алфавіту - X, У, ..., а їх можливі значення позначимо відповідними малими буквами х,у,... .

Випадкові величини в практичній діяльності можуть бути дискретні та неперервні.

Дискретною (перервною) випадковою величиною називають таку величину, яка може приймати окремі кінцеві значення або їх нескінченну кількість (безліч, елементи якої можуть бути занумеровані).

Приклади дискретних випадкових величин:

1. Кількість правильних вимірів кута при 10 прийомах.

2. Число бракованих приладів в партії із n штук.

Неперервною випадковою величиною називають таку величину, можливі значення якої повністю заповняють деякий інтервал (кінцевий або нескінченний) числової осі. Таким чином і число можливих значень неперервної випадкової величини буде нескінченним.

Приклади неперервних випадкових величин:

1. Помилка виміру довжини лінії, чи величини кута.

2. Графік рівня води в річці, отриманий за допомогою реєстраційного автоматичного приладу.

Цілком зрозуміло, що при випробуваннях окремі значення випадкових величин помітно відрізняються одне від одного і на перший погляд вони не здаються неперервними. Але треба усвідомити, що ці значення не можна перечислити заздалегідь і мова йде про ті значення, які можна прийняти в результаті досліду. Появу того чи іншого значення не можна заздалегідь задати точно, але можна шукати ймовірності того чи іншого значення випадкової величини. Це означає, що випадкова величина володіє ймовірністю її появи. Тому в практичній діяльності зручніше користуватися дискретними випадковими величинами ніж неперервними випадковими величинами.


Дата добавления: 2019-07-15; просмотров: 213; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!