Принцип количественного определения активности ферментов. Способы определения: фотоколориметрия, спектрофотометрия, потенциометрия, полярография, понятие о биосенсорах.



В повседневной биохимической практике практически не оценивается количество фермента, а только его активность. Активность – более широкое понятие, чем количество. Она подразумевает в первую очередь результат реакции, а именно убыль субстрата или накопление продукта. Естественно, при этом нельзя игнорировать время, которое проработал фермент и число молекул фермента. Но так как число молекул фермента подсчитать обычно нереально, то используют количество биологического материала, содержащего фермент (объем или массу). Таким образом при определении активности ферментов нужно одновременно учитывать три меняющихся фактора: 1) масса полученного продукта или исчезнувшего субстрата, 2) время, потраченное на реакцию, 3)количество биологического материала, содержащего фермент.

Основы количественного определения активности ферментов

1. Активность фермента выражается в скорости накопления продукта или скорости убыли субстрата в пересчете на количество материала, содержащего фермент.

Активность фермента может выражаться, например, в ммоль/с×л, г/час×л, МЕ/л, кат/мл и т.д.

2. Создание стандартных условий, чтобы можно было сравнивать результаты, полученные в разных лабораториях – оптимальная рН и фиксированная температура, например, 25°С или 37°С, соблюдение времени инкубации субстрата с ферментом.

3. Необходимо наличие избытка субстрата, чтобы работали все имеющиеся в растворе молекулы фермента.

За единицу активности любого фермента принимают такое его кол-во которое катализирует превращ-е 1мкм вещ-ва в 1 минуту. Активность ферментов опр-ют: пог скорости убыв субстрата; по скороти обр-я продукта. Удельная активность=мкм/мин.мг белка.

Фотоколориметрия

Фотоколориметрический метод анализа основан на измере­нии поглощения света немонохроматического излучения окра­шенными соединениями в видимой области спектра.

Если исследуемые соединения бесцветны, их переводят в-окрашенные соединения путем взаимодействия с различными-реактивами. В этом случае окрашенные соединения в большин­стве своем являются комплексными или внутрикомилфсными соединениями. Последние должны быть прочными, иметц посто­янный состав, высокую интенсивность окраски. ,

В зависимости от способа измерения концентрации веществ-в окрашенных растворах, от применяемой аппаратуры методы фотоколориметрического анализа подразделяются в основном на два вида: визуальные и фотоэлектрические.

При визуальном методе, называемом колориметрическим, интенсивность окраски исследуемых растворов сравнивается с интенсивностью окраски стандартных растворов, в которых кон­центрация вещества известна.

При фотоэлектрических методах анализа интенсивность ок­раски, т. е. погашение (А) окрашенного раствора исследуемого-вещества, измеряют с помощью приборов - фотоэлектроколо-риметров (ФЭК) (рис. 7) или спектрофотометра в видимой области спектра.

Методы анализа, связанные с измерением поглощения света (спектрофотометрия, фотоколориметрия) базируются на объединенном законе Бугера - Ламберта - Бера, который уста­навливает зависимость между поглощающей способностью ис­следуемого раствора, концентрацией вещества этого раствора и толщиной поглощающего слоя.

Согласно этому закону погашение (А) раствора прямо про­порционально концентрации раствора поглощающего вещества (С), толщине слоя (Ь) в сантиметрах и молярному или удель­ному показателю поглощения (х). Эта зависимость выражается формулой:

Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—400 нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии, — зависимость интенсивности поглощения (как правило измеряется оптическая плотность - логарифм светопропускания т.к. она зависит линейно от концентрации вещества) падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы спектрофотометрии — спектрофотометры.

Потенциометрия— метод определения различных физико-химических величин, основанный на измерении электродвижущих сил (ЭДС) обратимых гальванических элементов. Иначе говоря, зависимость равновесного потенциала электрода от активности концентраций определяемого иона, описываемая уравнением Нернста. Широко применяют потенциометрию в аналитической химии для определения концентрации веществ в растворах (потенциометрическое титрование), для измерения рН.

Полярография — метод качественного и количественного химического анализа, основанный на получении кривых зависимости величины тока от напряжения в цепи состоящей из исследуемого раствора и погруженных в него электродов, один из которых сильно поляризующийся, а другой практически неполяризующийся. Получение таких кривых — полярограмм — производят при помощи полярографов.

Полярография — физико-химический метод анализа, основанный на получении вольтамперных кривых (подпрограмм, поляризационных кривых), выражающих зависимость величины тока от напряжения в цепи, состоящей из исследуемого раствора и двух погруженных в него электродов, один из которых должен быть сильно поляризующимся.

В качестве поляризующегося электрода обычно используют капельный ртутный электрод, который может служить как катодом (при определении электровосстанавливающихся веществ), так и анодом (если определяемые вещества способны к электроокислению). Вторым вспомогательным электродом служит практически не поляризующийся ртутный электрод с большой поверхностью. Можно использовать также твердые электроды, например платиновые, причем поверхность поляризующегося электрода должна быть в тысячи раз меньше поверхности вспомогательного электрода.

Полярографический метод анализа обладает большой чувствительностью и дает возможность определять вещества при очень незначительной (до 0,0001%) концентрации их в растворе. Для выполнения анализа достаточно 3—5 мл раствора; количество раствора можно уменьшить до 0,1—0,5 мл. Проведение анализа на авторегистрирующих полярографах занимает около 10 мин.

Полярография широко используется в медико-биологических исследованиях для качественного и количественного определения в биологических объектах и лекарственных препаратах неорганических и органических электролитов, белков, гормонов, витаминов и других веществ, для определения степени насыщения крови кислородом, состава выдыхаемого воздуха, для определения вредных веществ в воздухе промышленных предприятий. При ряде заболеваний (злокачественные опухоли, лучевая болезнь и др.) высота полярографической волны сыворотки крови и ее безбелкового фильтрата претерпевает заметные изменения, что может быть использовано для разработки новых методов диагностики и для определения эффективности лечения.

БИОСЕНСОРЫ

Под термином "биосенсор" следует понимать устройство, в котором чувствительный слой, содержащий биологический материал, непосредственно реагирующий на присутствие определяемого компонента, генерирует сигнал, функционально связанный с концентрацией этого компонента. Конструктивно биосенсор представляет комбинированное устройство, состоящее из двух преобразователей - биохимического и физического, находящихся в тесном контакте друг с другом. Биохимический преобразователь выполняет функцию биологического элемента распознавания, преобразуя определяемый компонент, а точнее, информацию о химических связях, в физическое или химическое свойство или сигнал, а физический преобразователь это свойство фиксирует с помощью специальной аппаратуры.

Принципы конструирования биосенсоров. Любой биосенсор состоит из двух принципиальных функциональных элементов: биоселектирующей мембраны, использующей раз-личные биологические структуры, и физического преобразователя сигнала (трансдьюсера), трансформирующего концентрационный сигнал в электрический. Для считывания и записи информации используют электронные системы усиления и регистрации сигнала. В качестве биоселектирующего материала используют все типы биологических структур: ферменты, антитела, рецепторы, нуклеиновые кислоты и даже живые клетки

Существует большое разнообразие физических трансдьюсеров: электрохимические, спектроскопи­ческие, термические, пьезоэлектрические, трансдьюсеры на поверхностных акустических волнах и т.п. В настоящее время наибольшее распространение получили электрохи­мические преобразователи.

Наличие в устройстве биоматериала с уникальными свойствами позволяет с высокой селективностью определять нужные соединения в сложной по составу смеси, не прибегая ни к каким дополнительным операциям, связанным с использованием других реагентов, концентрированием и т.д. (отсюда и название - безреагентные методы анализа).

Первое упоминание об аналитический устройствах на основе ферментов или ферментсодержащих материалов появилось сравнительно недавно, в 60-х годах нашего столетия. Затем в обиход вошло понятие "биосенсор" или "биочип". Это важное событие в науке. Здесь отражаются глубокие причины, связанные с так называемыми интеграционно-синтетическими процессами в науке, приводящими к появлению новых знаний. Функционально биосенсоры сопоставимы с датчиками живого организма - биорецепторами, способными преобразовывать все типы сигналов, поступающих из окружающей среды, в электрические. Наибольшее распространение сейчас получили биосенсоры на основе ферментов. Среди таких устройств различают субстратные и ингибиторные биосенсоры. С их помощью решают различные медико-биологические задачи (например, определение сахара в крови) и контролируют состояние среды обитания (контроль содержания токсикантов). Чувствительность ингибиторных биосенсоров чрезвычайно высока, например, возможно определение остаточных количеств некоторых пестицидов на уровне 0.01 мкг/л и меньше.

       По-видимому, самым распространенным в настоящее время является амперометрический биосенсор на основе иммобилизованной глюкозоксидазы для определения сахара в крови. Исторически этот биосенсор является самым "древним". В качестве физического трансдьюсера в нем использован так называемый электрод Кларка. В настоящее время для определения глюкозы создано наибольшее число различных биосенсоров, что связано с необходимостью контроля за содержанием сахара в биологических жидкостях, например в крови, при диагностировании и лечении некоторых заболеваний, прежде всего диабета.

 


Дата добавления: 2019-07-17; просмотров: 1603; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!