Охотники на космических просторах



 

 

Если бы меня попросили назвать две черты, которые точно и оптимистично отражают суть человека как биологического вида, я бы сделал ставку на воображение и непоседливость. Доказательства тому повсюду. Возьмем хотя бы то, как мы выражаем свое любопытство и досаду по поводу своего места во Вселенной. О постоянных размышлениях на эту тему свидетельствуют находки, фантазии и данные наблюдений тысячелетней, пятитысячелетней, даже двадцатитысячелетней давности. Хотя антропологи еще спорят по поводу того, какие мотивы стояли за древнейшими пещерными рисунками и скульптурами[166], лично мне кажется, что одна из самых правдоподобных гипотез – та, согласно которой они отражают попытки первобытных людей проанализировать свою Вселенную, состоявшую из животных, пейзажей и ритуалов. Возникает искушение поверить, что подобные рисунки и предметы – просто способ скоротать унылую зиму, но даже если так, мне поневоле кажется, что занятия эти были целенаправленными и осознанными – возможно, наши предки пытались расклассифицировать данные наблюдений, которые плохо складывались в рациональную картину мира. И ведь это происходило не в единичных случаях, а передавалось из поколения в поколение. Самые абстрактные из древних изображений и статуэток – это странные гибриды человека и животных, всевозможные богини-матери и чудовища. Какие-то болезненные сны. Мне кажется, что это свидетельство лихорадочной работы мозга, который пытался залатать пробелы в познаниях и понять Смысл Жизни. Если для того, чтобы все кругом стало понятно и логично, нужно придумать невидимые сущности и силы, – что ж, да будет так.

То же самое можно сказать и о попытках понять, какое отношение небеса имеют к Земле, Солнцу и Луне: для этого зачастую приходилось проводить связывать планеты и созвездия с богами и фантастическими животными, иначе было не объяснить закономерности, которые мы наблюдаем. Неразрешимой загадкой была для человека и природа времени, причем как для наших предков, изучавших окружающий мир, так и для нас, людей XXI века, строящих теории устройства Вселенной. Похоже, мироздание охотно принимает перемены на любом физическом уровне – движется вперед, отказывается от слабого и устаревшего. Выветриваются скалы, гниют и распадаются останки живых существ. Но при этом мы наблюдаем и регистрируем жесткие закономерности – смену времен года, лунные циклы, медленные колебания климата. Все возвращается на круги своя. Наблюдая циклы биологической жизни, мы, люди, обобщили их и изобрели концепцию бесконечного повторения и возрождения в космических масштабах[167] – концепцию, которая в различных вариантах охватывала самые разные культуры и сохранялась на протяжении эпох.

Все это неустанное творчество – рисунки, схемы, попытки отсчитывать время – основано на жажде ясности в космических масштабах. Мы снова и снова возвращаемся к вопросу о том, есть ли жизнь «еще где-нибудь» в пространстве или во времени. И все же все легко согласятся, что у нас никогда не было никаких данных[168] ни о наличии, ни об отсутствии жизни на других планетах. Не хочу никого огорчать, но так и есть, и именно поэтому нам очень повезло, что мы изобрели себе в утешение пиво и шоколад.

Но гнетущее одиночество и незнание ничуть не мешали нам на протяжении тысячелетий выступать с грандиозными гипотезами. Едва ли не самое интересное и соблазнительное направление мысли о природе жизни за всю историю человечества – это идея множественности миров. С ней мы уже сталкивались; человечество вынашивало ее долго, еще со времен великих философов античности.

Древние греки, и прежде всего атомист Демокрит, полагали, что у реальности зернистая структура, состоящая из неделимых атомов и пустоты, а из этого следовало, что существует бесконечное множество разнообразных небесных тел, планет, солнц и лун. Причем мыслители древности не предполагали, что все эти тела существуют в пределах осязаемой Вселенной – возможности для наблюдений были весьма ограниченны: просто они «где-то есть». Такое необычайно широкое мировоззрение привело некоторых сторонников этой философской школы, например, Метродора, жившего в IV веке до н. э., к идее, что было бы очень странно и невероятно, если бы в бесконечном пространстве нашлось только одно место, подобное нашей Земле. Но когда несколько десятилетий спустя на сцену вышел Платон и его последователи, в том числе и Аристотель, они умудрились задавить эту идею и утверждали, что Земля – это венец творения и центр мироздания.

Несмотря на периоды забвения, идея, что на свете существует множество других миров, как я уже говорил, продолжала занимать воображение человечества. Прошло много лет с тех пор, как Греция в III веке до н. э. отказалась от подобных представлений, и идея множественности миров снова заявила о себе – сначала в Средние века на Ближнем Востоке, а потом в конце XVI века, когда Джордано Бруно и его единомышленники всецело согласились с принципом Коперника и со всеми его следствиями. В самом деле, когда Коперник сместил Землю с центрального места в мироздании, это открыло прямую дорогу к возрождению идеи множественности миров, и в последующие столетия она обрела немалый вес. А с точки зрения темы этой книги особенно интересно, что идея множественности миров зачастую становилась неотделимой от идеи, что эти миры еще и обитаемы. Множественность миров означала множественность жизни. Во многих отношениях такой вывод вполне логично следует из модели Коперника: Земля не центр мироздания, в ней нет ничего необычного.

В конце XVIII века блистательный Вильям Гершель[169], английский астроном немецкого происхождения, открывший планету Уран, присоединился к дискуссии о жизни на других планетах. Ему, как и многим другим ученым, казалось логичным и естественным, что другие планеты не пусты и бесплодны, а густо населены людьми и животными. К тому же подобная логика оставляла утешительную возможность, что где-то еще существуют такие же общественные и религиозные установления, что позволяло убить разом двух зайцев: и остаться на заурядной позиции по Копернику, и сохранить свое вселенское значение, поскольку получалось, что мы – важная часть мироустройства в целом. Ведь если мы в пасторальной Англии пьем чай в пять часов и посещаем церковь по воскресеньям, наверняка на Марсе все точно так же – ведь иначе нельзя!

Иногда Гершель давал волю фантазии еще сильнее. Например, он предполагал, что разумные существа живут и на Луне, и даже объявил, что видел в телескоп что-то очень похожее на лес в одном из лунных морей, они же равнины: «Внимание мое было в основном поглощено Морем Влажности, и теперь я полагаю, что оно представляет собою лес – разумеется, в широком смысле этого слова: оно покрыто крупными растущими субстанциями… и я полагаю, что по опушкам леса растут деревья, которые должны быть высотою в 4, 5 или 6 раз больше наших, иначе их не было бы видно. Однако мысль о лесах, лужайках и пастбищах по-прежнему представляется мне весьма правдоподобной…»

Мало того, Гершель считал, что у Солнца есть раскаленная атмосфера, которая покрывает его холодную поверхность, и что именно она виднеется сквозь пятна (Гершель ошибочно полагал, что это просветы в горящем газе). Разумеется, Солнце тоже обитаемо. Как писал Гершель в 1794 году, «Солнце… судя по всему, не что иное, как очень примечательная, большая и светоносная планета… что ведет нас к предположению, что и оно, весьма вероятно, тоже обитаемо, как и прочие планеты, и населено существами, чьи органы приспособлены к необычным условиям на этой огромной сфере».

Представления Гершеля о жизни на Луне и Солнце, конечно, были далеки от общепринятых, однако и не то чтобы маргинальны. О возможности жизни на других планетах Солнечной системы задумывался даже знаменитый Пьер-Симон Лаплас, гениальный французский физик и математик. А несколько позднее, в 1830-е годы, Томас Дик[170], шотландский священник и астроном-любитель, человек научного склада, не пожалел усилий для оценки численности живых существ во всей Вселенной. Исходил он из предположения, что плотность населения на любой другой планете или астероиде равна плотности населения Соединенного Королевства в те годы – современному человеку очевидно, что это феерическая глупость.

Из этого Дик сделал вывод, что на Венере живет более 50 миллиардов особей, на Марсе – 15 миллиардов, а на Юпитере, страшно сказать, целых 7 триллионов. Далее Дик прибегает к еще более вольным обобщениям – и предполагает, что на кольцах Сатурна живет около 8 триллионов живых существ. На одних только кольцах! В итоге этой неуемной экстраполяции Дик оценил численность населения Солнечной системы примерно в 22 триллиона, не считая Солнца, на котором, по его мнению, может обитать в 31 раз больше живых существ. Останавливаться на достигнутом Дик не пожелал. Он оценил, что во всей Вселенной насчитывается свыше 2 миллиардов планет, каждая из которых тоже обитаема, и плотность ее населения примерно такая же, как и на его родном острове в 1830-е годы. Конечно, теперь-то мы понимаем, что такая оценка прискорбно занижена, однако надо отдать Дику должное: в его времена никто не знал подлинных размеров и масштабов Вселенной.

Мотивы, которые вдохновили Дика на эти оценки (само собой, это были крайние проявления плюралистического мировоззрения), стоит принимать во внимание и сегодня, поскольку они свойственны многим серьезным ученым. В те годы не было никакой возможности добыть неопровержимое доказательство, что другие планеты обитаемы или, наоборот, необитаемы, и многим было проще принять как данность, что жизнь где-то есть. Даже самые лучшие телескопы того времени едва ли позволили бы всерьез подтвердить или опровергнуть наличие признаков жизни на других планетах. Нечего было и мечтать получить изображения с необходимым разрешением и своими глазами пронаблюдать суету внеземных существ.

А поскольку никаких свидетельств о существовании или невозможности жизни на других планетах, кроме Земли, у человечества не было, изобилие жизни на всех небесных телах казалось естественным следствием существования планет как таковых: жизнь виделась словно дополнительный слой вещества на планете, помимо камня и почвы. Если жизни на других планетах нет, надо найти основательную причину, почему так вышло. С подобной логикой трудно спорить. Ведь все, что выделяет Землю из массы других планет, должно нас смущать, если мы совершенно согласны с Коперником, а научное сообщество было с ним согласно. Проще было заселить весь космос, чем признать, что Земля уникальна.

Однако время шло, телескопы стали несоизмеримо мощнее, а наши представления о свойствах жизни как таковой необратимо поменялись, поскольку мы поняли, что живые организмы – не неизменная данность. Это продукт постоянного сложного процесса эволюции и естественного отбора. И по мере развития этого направления научной мысли в какой-то момент планеты перестали по умолчанию означать жизнь. Живые организмы не возникают ниоткуда. Теперь мы понимаем, что жизнь могла появиться в определенных местах, а могла и не появиться. Самые радикальные идеи о множественности обитаемых миров мало-помалу исчезли, и сегодня все согласны, что место им на свалке истории. Исследования Солнечной системы похоронили всякую надежду на наличие сложных форм жизни на Луне, Венере и прочих соседних небесных телах. И хотя теперь мы понимаем, что во Вселенной неисчислимое множество других планет, нам также известно, что не на всех из них могут жить существа вроде нас – тамошние условия этого не позволяют.

В результате мы застряли в очень интересной интеллектуальной точке, поскольку Вселенная очень велика, с этим не поспоришь. В пределах наблюдаемой области – на расстоянии, куда успел добраться свет за 13,8 миллионов лет с момента Большого Взрыва – насчитываются несколько сотен миллиардов галактик и – теоретически – более миллиарда триллионов звезд[171]. При этом в каждый момент до нас доходит не одномоментный срез, а разномоментный слепок Вселенной – комбинация бесчисленных моментов, далекий свет которых дошел до нас с разного расстояния именно сейчас. Задайтесь вопросом, сколько звезд существовало во Вселенной за последние 13,8 миллиарда лет – и у вас не просто затрещит голова от попыток разобраться в концепциях пространства и времени в релятивистском космосе, но еще и придется отрастить очень длинные руки, чтобы показывать в воздухе, какое большое число в результате получается.

Этот эмпирический факт имеет непосредственное отношение к нашему основному вопросу о нашем месте в мироздании – простому и древнему вопросу о том, есть во Вселенной еще кто-нибудь или нет. Если мы понимаем, что Вселенная очень велика, ответ на него будет совсем не такой, как в случае, если бы Вселенная была малюсенькая и подходящих мест в ней было мало, и этот ответ мы уже слышали и даже, возможно, сформулировали самостоятельно. Поскольку Вселенная очень велика и наполнена миллиардом триллионов звезд, наверняка где-то да найдется кто-то похожий на нас.

На первый взгляд утверждение вполне логичное. Однако, даже если видимая Вселенная неимоверно огромна, обязательно ли из этого следует, что где-то в ней должна быть жизнь? Вопрос о том, одиноки ли мы во Вселенной, тоже многослоен. В частности, когда мы его задаем, то, подобно нашим предкам, сторонникам идеи множественности обитаемых планет, обычно имеем в виду, есть ли во Вселенной существа вроде нас – мыслящие, рефлексирующие существа, создавшие технологию и философию, существа со своими верованиями и теориями, со своим искусством, поэзией и, конечно, наукой. Как и во многих других случаях, когда какие-то явления нашего мира представляются нам очевидными, имеет смысл на миг взглянуть на все со стороны и задуматься о подробностях. Главный вопрос – можем ли мы подвергнуть все следствия из того, что Вселенная так велика, строгому математическому анализу. Можем ли мы сформулировать достоверный научный ответ, который позволит нам избавиться от весьма понятных и естественных для человека фантазий сторонников идеи множественности миров, сбросить старые добрые розовые очки?

Оказывается, можем. И формулировка подобного ответа лежит в неожиданной области – ее дает нам теория вероятности.

 

* * *

 

Когда читаешь биографические сведения о Томасе Байесе[172], невольно замечаешь одно забавное обстоятельство: многие из них начинаются с утверждения, что родился он, вероятно , в 1701 году. В сущности, исторические данные о его жизни и даже о его математическом наследии полны неопределенностей, поскольку документов сохранилось относительно мало, а сам ученый, похоже, не особенно стремился опубликовать все свои научные труды (если учесть, чем он, собственно, прославился, становится понятно, какой это восхитительный парадокс). Достоверно нам известно немногое: Байес был сыном английского пресвитерианского священника и изучал математику и богословие в Эдинбургском университете, а в конце 1720 года был рукоположен в сан.

Примерно тогда же Байес опубликовал свой богословский труд, однако на самом деле в это время его обуревали научные интересы. Ньютонова теория дифференциального исчисления, которую тогда чаще называли «методом производных», еще не стала общепринятой. В сущности, метод производных позволяет описывать скорость изменения любой математической функции, от дуги, по которой летит пушечное ядро, до изгиба поверхности, по мере изменения параметров этой функции, и опирается он на деление на бесконечно малые части. Словом «производные» Ньютон обозначал само понятие течения, переменчивости.

Помимо богословских работ, за всю жизнь Байес официально опубликовал лишь одну научную работу, и это была попытка поддержать теорию Ньютона при помощи более строгих доказательств математических свойств производных. Казалось бы, это не слишком увлекательно, однако подобной работы было достаточно, чтобы обеспечить Байесу желанное для многих место в Королевском научном обществе и вдохновить его на продолжение научных изысканий.

В дальнейшем Байеса заинтересовала теория вероятности – отрасль математики, возникшая лишь за сто лет до этого. Интерес был достаточно рискованный, не в последнюю очередь потому, что теория вероятности занималась вопросами, которые могли смутить человека, обладавшего твердой верой в высшую силу. Ученые начали понимать, что во Вселенной есть место неопределенности в буквальном смысле слова, что события могут происходить совершенно случайно, без цели и умысла. Это открытие имело далеко идущие следствия – оно знаменовало сдвиг в наших представлениях об устройстве мироздания.

Однако лишь в 1761 году, когда после смерти Байеса его друг Ричард Прайс[173], философ и проповедник, разобрал его архив, было обнаружено, что Байес существенно продвинулся на пути к решению одной из самых наболевших проблем, занимавших центральное место в теме математических «случайностей». Именно Прайс собрал воедино наследие Байеса и спустя два года после его смерти добился, чтобы Королевское общество опубликовало его труды. В результате мы помним Байеса в основном за то, что он решил задачу, которая в то время называлась «обратной вероятностью». В наши дни этот термин используется редко, вместо него чаще употребляется словосочетание «апостериорная вероятность». В последующие десятки и сотни лет многие ученые, в том числе, например, Пьер-Симон Лаплас, независимо открыли и развили подобные понятия, и теперь на них строится почти вся современная наука. Однако имя Байеса стоит особняком и увековечено в названии «Теоремы Байеса»[174], в которой отражена суть его последней и величайшей работы по теории вероятностей.

Формулировка теоремы очень проста. Она позволяет математически вычислить вероятность, что та или иная модель или гипотеза верна, при наличии набора наблюдений. А главное – она сводится к тому, как найти точку зрения, позволяющую адекватно оценить свою уверенность в точности теории или прогноза.

Суть этого фундаментального метода можно пояснить при помощи небольшой аллегории, которую придумал и опубликовал в виде примечания[175] к посмертной публикации труда Томаса Байеса его друг Прайс. Перескажу ее своими словами. Жил-был математически одаренный, но, к сожалению, крайне наивный цыпленок. Вылупившись из яйца, он в первый день своей жизни с удивлением обнаружил, что Солнце пересекает небосклон и скрывается из виду. Цыпленок не знает, увидит ли он когда-нибудь снова этот сверкающий диск. Поскольку он обладает аналитическим складом ума (что для цыпленка просто поразительно), то формулирует простую гипотезу: вероятность того, что Солнце появится снова, равна вероятности того, что этого не произойдет, то есть шансы распределяются как 1 к 1 или 50 на 50.

Разумеется, проходит несколько часов, и Солнце восходит. Снова пересекает небосклон и снова исчезает. Цыпленок решает пересмотреть свои ожидания (или уверенность в своих прогнозах). Он наблюдал уже два восхода, однако по-прежнему остается вероятность, что это не повторится, поэтому шансы на третий восход составляют уже 2 к 1 (66,7 %). Со следующим восходом цыпленок снова пересматривает свой прогноз – теперь шансы, что назавтра Солнце вернется, уже 3 к 1 (75 %). С каждым днем цыпленок уверяется в неизбежности восхода все сильнее и сильнее – и шансы на восход все ближе и ближе к 100 %. К сотому утру подросший петушок уверен, что Солнце взойдет, уже на 99 % – и ко всеобщей досаде решает, что можно больше не просыпаться ни свет ни заря, чтобы прокукарекать перед рассветом.

Анализ, который проделал юный петушок, – очень простой пример, однако именно такова суть байесовского подхода к данным и теории. Результаты экспериментов, выводы из новых наблюдений и данных влияют на уверенность в гипотезе, помогают оценить вероятность, что она точна. Однако ученым не всегда было ясно, что имеет смысл оценивать неопределенность численно. Более того, об экспериментах и наблюдениях вообще не было принято думать с этой точки зрения, не принято было делать мир таким местом, где царят вероятности и «уверенность» в том, что правда, а что нет. На то, чтобы подобный подход прижился, потребовалось много времени. Даже такой выдающийся ученый, как Гершель (тот самый, который всего несколько десятков лет спустя размышлял над существованием жизни на других планетах), определенно его не применял. Поэтому мы в огромном долгу перед Байесом и всеми, кто в XVIII веке пытался разобраться, как сделать из неопределенности вероятность по примеру нашего петушка.

Как сам Байес пытался решить эту задачу, видно на примере, который сам он приводил, чтобы сделать свои математические формулы нагляднее. Он предлагал представить себе бильярдный стол (годится любой, но давайте представим себе бильярдный ради исторической точности).

 

 

Так вот, представьте себе, что вы небрежно бросаете на бильярдный стол красный шар, который катится себе случайным образом и может остановиться в любом месте. Итак, красный шар остановился в каком-то месте, вы его не трогаете, несколько раз прокатываете по столу в том же направлении белый шар и записываете, как часто он останавливается дальше красного шара. Затем Байес, опираясь на то, где останавливались шары на воображаемом столе, предложил вывести математически обоснованный ответ на следующую простую задачку: если вы знаете, что произошло с теми шарами, которые вы уже прокатили по столу, можно ли предсказать, с какой вероятностью следующий белый шар остановится до или после красного (каковы шансы на тот или иной результат)? Байес показал, что можно. Главное – чем больше прокатишь шаров, тем сильнее будет уверенность в результате следующего броска, в точности как у петушка и Солнца.

Мысленный эксперимент с бильярдными шарами очень прост, однако многое говорит о том, насколько фундаментальным был вопрос вероятностей для математики XVIII века. До того времени никто не разобрался, как проделать необходимые выкладки, а концепции, которые легли в основу работы с неопределенностью, были всем в новинку и даже пугали. Байес двигался к формулировке теоремы, которая впоследствии получила его имя – теоремы, при помощи которой можно было вычислить, насколько человек «верит» в гипотезу перед лицом свидетельств, как правдоподобие в чьих-то глазах или уверенность в чем-то связаны с тем, что то или иное утверждение верно.

Чтобы вам легче было понять смысл теоремы и разобраться, как можно применить ее к нашему вопросу о жизни во Вселенной, приведу чуть более красочный и сложный пример, чем восходы и бильярдные шары. Представьте себе, что у меня есть любопытная гипотеза, что 20 % популяции котов на планете составляют чеширские коты[176]. Само собой, чтобы проверить свою гипотезу, я должен пойти и найти какое-то количество котов, выявить среди них чеширских и не-чеширских и посчитать, сколько их. Эта задача не то чтобы разительно отличается от поиска признаков инопланетной жизни – обитаемых и необитаемых планет.

 

 

Разумеется, посчитать котов – дело непростое, легко сказать, да трудно сделать. Я мечусь впотьмах, мне не на что опереться, никакой предварительной информации у меня нет. Прежде всего, если я не готов поймать и рассортировать огромное количество котов, распределение результатов у меня неизбежно будет случайным. Если я схвачу и запихну в мешок десять первых попавшихся котов на улице и выясню, что два из них – чеширские, то никак не смогу с уверенностью сказать, что это подтверждает мою гипотезу о 20 % чеширских котов на планете, поскольку выборка будет случайной и из небольшого количества котов, а следовательно, погрешность у моего эксперимента будет очень велика.

Значит, нужно выстроить несколько более хитроумную теорию о количестве чеширских котов и учесть кое-какие ожидания о распространенности (или вариациях) случайно выбранных групп котов. В сущности, нужно, чтобы погрешность можно было предсказать, чтобы я мог заранее представить себе, как должны будут выглядеть мои измерения, если моя гипотеза верна. Мало того что случайная выборка чревата осложнениями, есть еще и вопрос систематической погрешности, вызванной изначальными условиями. Может быть, чеширские коты, в принципе толстые и неповоротливые, легче ловятся, и поэтому я их больше насчитаю. Может быть, моя гипотеза относительно чеширских котов в принципе ошибочна (а такое совсем не исключено, если учесть, что чеширские коты чуть что становятся невидимыми). Однако я вполне мог убедить себя, что она верна, если по воле судьбы в моей случайной выборке оказалось нужное число улыбающихся котов, которых я принял за чеширских.

Так что вероятность того, что моя гипотеза чеширских котов верна, сама по себе равна математической комбинации каких-то других вероятностей, с ней связанных. Прежде всего это вероятность получить конкретный результат измерений с учетом этой гипотезы. Звучит немного странно, однако это означает, что если модель или гипотеза верна, вы вправе ожидать, что подсчет котов принесет определенные результаты. Например, я мог бы определить вполне конкретную вероятность того, что в моей случайной выборке из 10 пойманных котов я насчитаю 1, 2, 3 или любое другое число чеширских.

Далее следует так называемая апостериорная вероятность – и именно ее мы и хотим узнать, когда гоняемся за котами или пытаемся найти ответ на вопрос о жизни во Вселенной. Апостериорная вероятность – обратная сторона вышесказанного, причем интуитивно более понятная. Это вероятность того, что гипотеза верна, в свете свидетельств или измерений. Иначе говоря, эта вероятность говорит нам, каковы шансы, что моя теория о котах верна – или что во Вселенной есть жизнь помимо нас, при том, что мы наблюдаем только жизнь здесь, на Земле. А еще эта та самая мера уверенности, о которой мы говорили в связи с рассветами и бильярдными шарами.

Наконец, при рассмотрении моего примера с котами надо учитывать еще и такой фактор, как сама по себе наша гипотеза, и это называется априорной вероятностью . В данном случае это вероятность, что любой кот окажется чеширским, и мы считаем, что она равна 20 % или 0,2. Мы, конечно, не знаем, точна ли цифра 20 %, это то самое число, которое мы хотим подтвердить, – примерно как вероятность, что на каждой отдельно взятой планете может зародиться жизнь. Интересно, что когда мы приписываем ситуации эту вероятность, то имплицитно исходим из предположения, что сама идея – существование чеширских котов – верна. А такого рода предположения опасны, поскольку мы можем случайно придать слишком много веса безумным гипотезам. Так что лучше всего – если, конечно, мы не страдаем чрезмерной самоуверенностью – оценить побольше возможных «априори» и держать кулаки за то, что данные, которыми мы располагаем, позволят распределить гипотезы-победительницы и гипотезы-аутсайдеры по относительной вероятности.

Формулировка теоремы Байеса предполагает также, что данные, которые мы получаем, должны быть точными, что не будет никаких ложноположительных и ложноотрицательных результатов. Поэтому я в ходе своего исследования кошек предполагаю, что если я беру кота и определяю, что он чеширский, так и есть. Это очень важная оговорка. Например, в мире медицины ложноположительных и ложноотрицательных результатов очень много. В таких случаях формулу Байеса приходится немного подправить, чтобы учесть вероятность неверного диагноза и ошибок при анализах. Если вы пытаетесь оценить вероятность той или иной болезни или даже эпидемической угрозы, главное – точность данных и «априори», на которые вы опираетесь.

Итак, теорема Байеса позволяет нам оценить отношения между тем, что мы можем наблюдать и измерять, и нашими гипотезами или математическими моделями. В принципе, она должна позволять нам приписывать абсолютную вероятность – уверенность, – что наша гипотеза представляет собой точное описание природного феномена. Но тут возникают кое-какие досадные осложнения, и иногда результаты подобных вычислений сильно нас огорчают. Не исключено, что мы не знаем, что считать «априори» и вообще верна наша гипотеза хотя бы приблизительно. И измерения бывают несовершенными из-за случайной выборки или непредвиденных погрешностей – и в моем примере так и есть, поскольку чеширских котов в природе не существует. Поэтому вероятность (то есть мера уверенности), которую мы получаем, оказывается очень маленькой и не помогает нам принять решение.

К счастью, теорема Байеса куда мощнее. Она позволяет обойти эти очевидные препятствия при помощи красивого приема, который ученые часто применяют в повседневной работе – и когда гоняются за котами, и когда оценивают структуру мироздания. Дело в том, что абсолютные значения вероятностей нас обычно не очень интересуют. Нас интересует, какая модель или гипотеза «лучше», то есть вероятнее, прочих. Тогда мы для начала предполагаем, что все гипотезы могут оказаться верными с одинаковой вероятностью. На самом деле главное – разобраться, какая гипотеза лучше всего соответствует нашим данным, какая победит. Конечно, может оказаться, что все они ошибочны, но нам просто хочется узнать, какая из них ошибочна меньше прочих. Для этого нам нужно перевернуть формулу Байеса. В конце концов мы оценим вероятность или уверенность, что наши измерения могут объясняться той или иной гипотезой (по сравнению с остальными). Этот простой прием, как выясняется, – необычайно мощный научный инструмент.

Чтобы применить его к любопытному случаю с чеширскими котами, я могу протестировать разные методы выявления чеширских котов – например, взвешивание или проверка, умеют ли они улыбаться. Если 20 % котов и в самом деле чеширские, то результаты любых методов, и точных, и не очень, дадут примерно одни и те же результаты с разными относительными вероятностями. Подход Байеса позволяет мне сочетать их все и таким образом измерить общую уверенность в своей гипотезе по сравнению с альтернативными вариантами.

А вдруг никакие методы выявления не дадут похожих результатов, и общая уверенность у меня окажется низкой? В таком случае мне придется задуматься о том, что либо неверны какие-то подробности моей изначальной гипотезы, либо чеширских котов не бывает.

В некотором смысле теорема Байеса – довольно простая математическая концепция, однако просто поразительно, как далеко может завести ее применение. Для многих ученых ее действенность в определении контуров реальности служит доказательством, что байесовский метод предельно близок к тому, «как устроена природа» – похоже, она позволяет точно предсказать вероятностный результат самых разных явлений, которые, в сущности, определяются не законами, а случайностью. Все дело в том, что даже если природа знает, какие законы действуют в ситуации, когда мы применяем этот метод, мы можем лишь догадываться об этом.

Чаще всего это не имеет особого значения. Если наши догадки – наша научная модель – достаточно точна, то теорема Байеса, словно по волшебству, сгладит все неровности, или по крайней мере даст нам понять, насколько мы можем быть уверены в полученных результатах. Правда, у некоторых ученых такой метод делать выводы об устройстве Вселенной по-прежнему вызывает раздражение, ведь получается, что не бывает по-настоящему ошибочных теорий, просто одни хуже, а другие лучше.

Прекрасно помню, как на старших курсах наблюдал жаркие споры маститых ученых, которые чуть ли не в драку лезли, пытаясь разобраться, можем ли мы позволить себе подобную мягкотелость[177]. Если байесовский анализ дает нам лишь вероятность, что та или иная теория хорошо совпадает с наблюдениями, нельзя же полностью доверять этому методу, когда требуется точное знание! Такие же дискуссии велись и по поводу обратной аргументации: ведь это куда более честный и реалистический подход к структурированию наших исследований мира природы, поскольку он полон неопределенностей и незавершенных историй. Однако, как и при решении многих других задач в человеческой жизни, можно сказать, что если что-то работает без сбоев и дает приемлемое, пусть и не совершенное, решение какой-то задачи, именно оно и становится решением де-факто, а в таких случаях, конечно, нет ничего лучше теоремы Байеса.

 

* * *

 

В наши дни байесовский метод вездесущ, он внедрен в нашу технологию и мышление. Он окружает нас повсюду, даже там, где не ожидаешь. Например, он заложен практически в любое программное обеспечение для обработки фотографий. Распознавание лиц? Да, оно основано на байесовской вероятности, именно она обеспечивает, чтобы в фокус попали драгоценные мгновения детских игр. Обидный штраф, который вы получили за то, что пытались проскочить на красный? Скажите спасибо Томасу Байесу: номер вашей машины распознали на размытом фото при помощи байесовских приемов. Автокоррекция текста, которая подсказывает вам безумно смешные варианты, когда вы набираете сообщение на телефоне? Да, и здесь тоже применяется теорема Байеса – статистический анализ использования слов генерирует вероятности того, что вы собираетесь напечатать или имели в виду. Биржевые роботы, торгующие акциями и определяющие курсы валют, почти всегда делают это на основе байесовских методов определения вероятностей и уверенности в результатах. В нашу эпоху Больших Массивов Данных, когда компании собирают информацию обо всех мельчайших особенностях поведения потребителей, все те же инструменты статистической оценки и прогноза обеспечивают им подсказку, какую марку мыла мы предпочитаем – или какую марку мыла нас уговорят полюбить.

 

* * *

 

Без мощного влияния наследия Байеса в науке мы не смогли бы понять, что говорит нам о вероятности существования жизни во Вселенной тот простой факт, что существуем мы сами. Да, именно теорема Байеса помогает нам расшифровать генетический код и оценить результат анализа на онкомаркеры, чтобы понять, с какой вероятностью мы можем заболеть раком. Она позволяет нам лавировать среди петабайтов данных и найти там эфемерные признаки новых элементарных частиц и новых законов физики. Но еще она помогает нам найти ответ на животрепещущий вопрос, какие выводы можно сделать из нашего существования о вероятности зарождения жизни в Галактике, которая состоит из миллиардов других солнечных систем. Итак, теперь, когда мы думаем над нашим вопросом подобно Томасу Байесу, давайте посмотрим, что будет, если мы попробуем сформулировать математический ответ на вопрос о жизни во Вселенной.

 

* * *

 

В 2012 году два ученых из Принстонского университета, Дэвид Спигел и Эдвин Тернер[178], применили теорему Байеса к более тщательно сформулированному варианту вопроса «Одни ли мы во Вселенной?». Начали они с того, что решили выяснить, каковы самые надежные свидетельства существования жизни у нас на Земле. На какие признаки мы будем опираться? Для этого им пришлось отбросить все неоднозначные посторонние сведения и добраться до сути, которая, как выяснилось, сводится к двум простым обстоятельствам, в которых не приходится сомневаться. Во-первых, какая-то жизнь появилась на Земле очень рано[179], в течение первых сотен миллионов лет после формирования планеты в общих чертах. Во-вторых, спустя еще несколько миллиардов лет на Земле появилось мыслящее существо, умеющее задавать вопросы, и обнаружило этот факт. Вот, собственно, и все, что мы знаем о жизни во Вселенной, если отделить зерна от плевел. Отрезвляет, не правда ли?

Затем Спигел и Тернер применили к этим сведениям байесовскую формулу и спросили, что говорят нам эти факты о вероятности, что где-нибудь еще во Вселенной возникла жизнь (этот процесс называют абиогенезом ).

Иначе говоря, если на Земле жизнь стартовала с места в карьер, а несколько миллиардов лет спустя эволюция породила нас, следует ли из этого, что жизнь вероятна еще где-нибудь? Как и во всех случаях, когда мы применяем байесовский анализ, налицо фундаментальное противоречие между тем весом (уверенностью), который мы придаем известным фактам, и тем весом, который мы приписывали своим априорным предположениям.

Какие же предположения мы делаем в этом случае? Спигел и Тернер обнаружили, что если просто записать эту формулу, с неизбежностью придется сделать предположение о базовой вероятности появления зачаточной жизни на планете за какой-то период времени. Иначе говоря, мы делаем предположение о том, сколько раз в среднем абиогенез мог произойти за период в миллиард лет, и это наша априорная вероятность.

Здесь начинаются сложности. Без подобающего байесовского анализа у нас возникает склонность предположить, что жизнь, вероятно, зарождается по всей Вселенной довольно легко, иначе она не появилась бы так быстро на поверхности юной, еще не остывшей планеты Земля. Но тогда мы ставим все с ног на голову. Это ведь то же самое, что приписать какое-то значение тому, сколько раз в среднем зарождается жизнь на планете за миллиард лет, а мы ведь не знаем, сколько!

Спигел и Тернер назвали это «априорным незнанием», что очень точно описывает наше положение. Вместо настоящего априорного знания мы получаем его противоположность. Когда это учитываешь, становится слегка не по себе, поскольку математически из этого следует, что раннее появление жизни на Земле почти ничего не говорит нам о шансах появления жизни еще где-нибудь. Нам снова ставит палки в колеса склонность грубо преувеличивать собственное значение, инстинктивно искать везде свое отражение.

Спигел и Тернер изучили целый ряд математических моделей «априорного незнания» и сумели показать, что наши прогнозы касательно внеземной жизни почти целиком представляют собой функцию того, что мы первоначально предполагаем. Предположим, что частота абиогенеза на любой подходящей планете (неизвестная) постоянна во времени. Байесовский анализ учитывает факт нашего существования, однако показывает, что варианты возникновения жизни в нашей Галактике по-прежнему неопределенны. Может оказаться, что жизнь процветает повсюду. А может оказаться, что она зарождается только один раз в 10 миллиардов лет, а то и в 100 миллиардов. Иначе говоря, может оказаться, что мы – первый случай зарождения жизни во Вселенной. Стоило чуть-чуть изменить исходные предпосылки – и вся конструкция перекосилась.

Выходит, одного примера возникновения жизни на Земле и в самом деле недостаточно, чтобы сделать какие бы то ни было выводы: мы точь-в-точь как цыпленок, наблюдающий свой первый рассвет. Да, на основании того, что здесь произошло, можно сказать, что жизнь способна быстро возникать на планетах земного типа, однако «априорное незнание» таково, что мы не можем исключить возможность, что все совсем наоборот.

У этого анализа есть и еще один, не такой очевидный аспект: речь идет о разнице между людьми и микробами. Вернемся к двум изначальным предпосылкам, двум фактам относительно жизни на Земле. Нам кое-что известно о том, сколько времени прошло между возникновением на Земле жизни как таковой и появлением нашего вида: около 3,5 миллиардов лет. Как это влияет на численные оценки?

Тут придется немного пофилософствовать, поскольку мы можем задаться вопросом, влияет ли вероятность нашего нынешнего присутствия и способности наблюдать Вселенную и задавать вопросы на выводы как таковые. Иначе говоря, как изменится предполагаемая вероятность возникновения жизни на любой планете, если жизни, как на Земле, требуется примерно 3,5 миллиарда лет, чтобы эволюционировать от микробов до сложных организмов, способных вычислить эту вероятность?

Взгляните на это вот с какой точки зрения. Можно сказать, что планете нужно примерно 3,5 миллиарда лет биологической эволюции от биогенеза до возникновения «разумной» жизни. Если бы это было так, то планета возраста Земли, где первые организмы появились бы не так быстро, еще не успела бы произвести существа вроде нас. Поэтому лишь естественно, что мы очутились на планете, где абиогенез произошел очень рано, поскольку на планете с более «замедленным развитием» нас просто еще не было бы и мы не могли бы сделать это наблюдение!

Итак, следует вывод, что и вторая предпосылка ничего не говорит нам о том, может ли жизнь пробудиться на любой случайной планете, по той простой причине, что на Земле абиогенез произошел именно тогда, когда произошел, а других вариантов не было, иначе у нас не было бы времени возникнуть и задуматься над этим фактом. Если мы осторожно пройдем по мысленному минному полю байесовского метода, то придем к неутешительному выводу. История жизни на Земле позволяет нам сделать относительно мало заключений о статистике жизни во Вселенной. Вполне возможно, что жизнь обычно быстро возникает на юных каменистых планетах с разнообразным химическим составом. Тогда положение дел на Земле было бы совершенно стандартным и ничем не примечательным. Однако при этом оно не обязательно норма. Не исключено, что возникновение жизни – это все же явление очень редкое. Но без дальнейшей информации мы все равно не сможем ничего сказать.

Главное, что требуется от этой информации, в сущности, просто, но на практике стоит в ряду самых насущных научных задач нашего времени. Если бы мы сумели доказать, что происхождение хотя бы какой-то формы жизни абсолютно независимо от нашего, то «априорное невежество» заметно уменьшилось бы. Байесовский анализ даже говорит нам, на сколько именно. Мы бы точно знали, что абиогенез на планете возникает не раз в 10 или 100 миллиардов лет – минимум сократился бы примерно до 1 миллиарда лет для каждой отдельно взятой планеты. Тут уже есть чему радоваться. Нам даже не обязательно обнаруживать жизнь на какой-нибудь экзопланете. Если бы на Земле обнаружилась форма жизни, абиогенез которой произошел совершенно независимо, это значительно расширило бы наши представления о вероятности зарождения жизни со временем в масштабах Вселенной.

Сгодилась бы даже независимая жизнь на другой планете нашей Солнечной системы. Любое подобное открытие существенно повысило бы как вероятность того, что жизнь есть еще где-то во Вселенной, так и нашу уверенность при оценке этой вероятности. Очевидно, что прогресса в поисках своего места в мироздании в самом научном и строгом смысле мы сможем достичь лишь в том случае, если отправимся на охоту.

 

* * *

 

Среди важнейших результатов, которые принесли полеты на Луну в рамках программы «Аполлон» в конце шестидесятых – начале семидесятых, – то, что мы научились по-новому ценить нашу благородную и столь смиренную сине-зеленую переливчатую планету, висящую в безбрежной черноте космоса. Однако в окрестностях Луны побывали лишь 24 человека, и лишь 12 из них ступали на ее пыльную поверхность. Всего 12 человек, всего 12 из примерно 110 миллиардов современных с биологической точки зрения людей, живших за все время существования нашего вида. Сравните.

Однако мы предприняли множество выдающихся разведывательных экспедиций in absentia . Мы разослали по самым разным направлениям поразительное количество роботов – чудес инженерной мысли. Всего с зари космической эры в конце 1950 годов мы отправили на Луну более 70 космических аппаратов. Предпринято более 40 попыток навестить и изучить нашу сестру Венеру, о которой часто забывают, 40 миссий на Марс, две – на Меркурий и почти 40 – для наблюдений и исследований Солнца, зачастую с безопасного расстояния – с земной орбиты. Мы отправили зонды на Юпитер и Сатурн, облетели Уран и Нептун, побывали на астероидах, сделали кратер в ядре кометы и собрали межпланетную пыль, микроскопические частицы, родившиеся и здесь, и в межзвездном пространстве. Сейчас в пути находится космический зонд, цель которого – Плутон[180] и другие транснептуновые небесные тела на отдаленных окраинах Солнечной системы. А зонды «Пионер» и «Вояджер» летят и вовсе к звездам – и только сейчас вышли в межзвездное пространство, а до этого у них сорок лет ушло на то, чтобы выйти за пределы Солнечной системы. У этих аппаратов впереди десятки тысяч лет одиноких странствий[181].

В последние полвека на орбиту были выведены и аппараты, которые наблюдают со стороны нашу собственную планету, и мы вполне успешно заселили вакуум вокруг Земли множеством функционирующих спутников и замусорили облаками обломков искусственного происхождения. Сейчас, когда я пишу эти строки, вокруг Земли вращается целых три тысячи спутников, а также десятки тысяч обломков крупнее сантиметра и десятки миллионов более мелких частиц.

В какой-то степени наше стремление исследовать и даже оккупировать пространство вызвано поисками внеземной жизни. Именно это мы постоянно имели виду, пусть и не в первую очередь, когда изучали плотную атмосферу Венеры, наблюдали, как стихает пыльная буря на Марсе, рассматривали обледенелые горы на поверхности Европы, спутника Юпитера[182]. Даже криогенные озера метана и смутно знакомые углеводородные горы и долины на далеком Титане заставляли нас всерьез задуматься, не живут ли в этих низкотемпературных условиях совершенно незнакомые нам формы жизни – об этом я упоминал в предыдущей главе. Однако на самой заре практических исследований Солнечной системы, еще в конце пятидесятых, мы не представляли себе, что, собственно, искать – и в определенной степени до сих пор не представляем.

За последние десятилетия изменилось лишь то, что мы стали открыто признавать, что наши исследования во многом затеваются ради поисков внеземной жизни. Теперь это часто становится главным обоснованием при поисках финансирования и поддержки для запуска новых космических аппаратов. Такой подход позволил нам отточить свои методы исследований. Мы охотимся на разную дичь – и на крупную, и на мелкую, и на микроскопическую, – и поэтому научились создавать весьма хитроумные инструменты, позволяющие и выслеживать редкие молекулы, и составлять карты целых миров.

Очевидно, что мы не знаем, ради чего следует просеивать марсианский песок или что нужно высматривать на поверхности Европы или Энцелада. Когда речь заходит о фундаментальных истинах биологии, мы очень сильно зависим от того, что уже знаем о живых организмах здесь, на Земле, и это влияет и на наши представления о «жизни» как таковой, и на то, какими способами мы ее ищем. В предыдущей главе я упоминал о «Древе жизни» – разветвленной классификации живых организмов, – и об основных ветвях этого древа – доменах бактерий, архей и эукариотов, а может быть, еще и вирусов. В общем и целом все согласны, что у всех этих доменов общий предок. И в самом деле, мы привыкли говорить о «последнем универсальном общем предке» («last universal common ancestor», LUCA[183]): это какой-то один вид (разумно предположить, что даже один организм, всем пращурам пращур), от которого миллиарды лет назад разошлись все ветви живых организмов.

Ученые провели сложный статистический анализ (да-да, байесовский) всевозможных сценариев того, как могли получиться важнейшие составляющие генетического материала, общие для всех организмов. Результаты не оставляют ни малейших сомнений в том, что гипотеза о последнем универсальном общем предке верна и что вся жизнь в том виде, в каком мы ее знаем, восходит к одному виду, а не к более сложному ансамблю предков. Однако каким образом от этого первопредка впоследствии развились три, а может быть, и четыре столь разных домена, пока неясно. Ученые согласны, что бактерии и археи появились раньше эукариотов. Это логично, поскольку, как мы уже говорили, крупные клетки эукариотов включают себя следы более ранних организмов с простыми клетками. Абсорбированные симбионты превратились в органеллы, в частности, в митохондрии – структуры, играющие главную роль в метаболизме эукариотов, к чему мы еще вернемся.

Ученые много и тщательно исследуют, какими свойствами должен был обладать последний универсальный общий предок – от требований к его генетическому молекулярному арсеналу до его физиологии. Однако тут все очень запутано. Например, ученые, исследующие генетическое разнообразие жизни, до сих пор до конца не уверены, что если крутить стрелки биомолекулярных часов все дальше и дальше в прошлое, все ветви древа жизни и в самом деле аккуратно сойдутся в одной точке, к одному ясно определимому виду. Скорее всего, имели место всевозможные инцестуальные метания в пределах небольшого генофонда, которые при этом не противоречат статистическим выводам. При таком развитии событий гены передавались «горизонтально» от особи к особи, от линии к линии, и отдельные истории сплетались и перепутывались в симбиотических или паразитических союзах.

Как бы то ни было, если мы углубимся еще дальше в прошлое, то наткнемся на явление, которое, как считают современные биологи, скорее всего, было переходным этапом от более ранней формы жизни – до видообразования. Это стадия еще до последнего универсального общего предка: как мы теперь считаем, это был самый настоящий вид одноклеточных с ДНК и всем, что полагается. Типичная гипотеза, родившаяся в результате попыток представить себе стадию до последнего универсального общего предка – это идея «мира РНК»[184], которую выдвинул в шестидесятые годы Карл Вёзе. РНК – это «третья» главная молекулярная структура в современной жизни наряду с ДНК и белками. Во многих отношениях РНК представляет собой что-то вроде ДНК, только короткой, из одной цепочки и с несколько иным составом. Однако на самом деле это совсем другая молекула. Она играет главную роль в передаче информации от ДНК к белкам: цепочки РНК записывают код с ДНК, а затем их «читают» молекулярные механизмы под названием рибосомы, которые, словно швейные машинки, сшивают новые белки на основе информации от РНК.

Гипотетический мир РНК был своего рода фабрикой по производству пробных моделей форм жизни на основе ДНК, арсенал всевозможных взаимодействующих структур на заре клеточной жизни. Такого рода сложные молекулярные экосистемы имели место во времена гораздо ближе к точке зарождения жизни, однако и они были продуктом эволюции из чего-то еще. А это «что-то еще», возможно, возникло из первых липидов и клеточных мембран и первых самовоспроизводящихся молекул, созданных из аминокислотного сырья. Об этом мы пока ничего не знаем.

Итак, на пути к истокам жизни мы наблюдаем, как картина стремительно усложняется. Никаких ископаемых останков, относящихся к периоду 3,5–4 миллиарда лет назад, не сохранилось, хотя одна группа геологов утверждает, будто обнаружила ископаемые клетки[185] в австралийских скальных породах возрастом в 3,4 миллиарда лет. В нашем распоряжении лишь химические осадки и минеральные структуры, оставшиеся от колоний одноклеточных организмов или чего-то, что им предшествовало. В результате нам приходится экстраполировать молекулярные эквиваленты ископаемых останков – например, белковые структуры, закодированные в современных ДНК. Каждая из этих структур – это словно микроскопическое напластование, скопированное в несчетных квадрильонах организмов на протяжении истории жизни на Земле. В результате возникает неприятная проблема: нужно ответить на вопросы, сколько независимых линий жизни могло возникнуть на Земле и сколько случаев абиогенеза в принципе могло иметь место и на нашей планете, и в других уголках Солнечной системы. История генетических ископаемых не предусматривает точной хронологии, которая позволяла бы сопоставлять перемены в генетике с событиями во внешнем мире, и мы, очевидно, не очень-то уверены, что можно было бы считать настоящим научным определением зарождения жизни. Задолго до появления последнего универсального общего предка нам все равно приходится задаваться вопросом, в какой момент можно считать сложную молекулярную структуру «живой». Вопрос этот древний, как сама наука, и лаконичного ответа на него мы до сих пор не сформулировали, поскольку характеристик у жизни множество – от метаболизма до размножения и наследования, от гомеостазиса (регуляции внутренней среды) до способности приспосабливаться к внешней среде. Однако в биологическом подлеске шныряют кое-какие подсказки.

Например, об ответе на этот вопрос нам многое говорит удивительный случай гигантских вирусов[186]. Вирусы долго было принято считать «не совсем живыми» – это упрощенные наборы ДНК и РНК, которые получают молекулярный инструментарий для размножения исключительно от организмов-хозяев и, таким образом, полностью от них зависят. Однако природу не так-то легко уложить в рамки классификации. В начале девяностых годов ХХ века исследователи, изучавшие амеб, которые живут в воде кондиционеров и систем охлаждения воздуха, наткнулись на организм, который инфицировал этих крошечных существ. Поначалу его приняли за разновидность бактерий, но затем, в начале двухтысячных, рассмотрели под электронным микроскопом, и оказалось, что это вирус, просто исполинских размеров.

«Мимивирус» имеет в поперечнике около 750 нанометров – настоящий великан среди вирусов. Он не просто гораздо крупнее подавляющего большинства известных вирусов, но еще и несет в себе весьма примечательную ДНК. Эта ДНК содержит почти 1,2 миллиона «буковок»-нуклеотидов, и ее гены кодируют более чем 900 видов белковых молекул. Казалось бы, не так уж много, – в человеческой ДНК закодировано вплоть до 25 000 белковых молекул, – однако стоит учесть, что минимальный генетический код, который мы видели у обычного вируса, состоит всего-то из четырех генов. А столько генетической информации, сколько у мимивируса, нет даже в ДНК некоторых бактерий. Мимивирус – настоящий монстр. Со времени открытия первых гигантских вирусов было обнаружено еще несколько видов (если этот термин тут уместен), в том числе и вирус, получивший довольно громкое название «мегавирус»[187], ДНК которого вмещает примерно на 140 генов больше, чем ДНК мимивируса. Это наводит на мысль, что гигантские вирусы – отнюдь не аномалия, а просто еще один узор в роскошном убранстве жизни.

Но живые ли они? Заслуживают ли они своего домена на древе жизни? Исследователи, изучающие сложные белковые коды, которые несут в себе гигантские вирусы, обнаружили несколько поразительных молекулярных особенностей, которые помогают ответить на эти вопросы. Хотя эти вирусы не могут воспроизводиться без организма-хозяина, как и их более мелкие родственники, и точно так же пользуются хозяйскими ДНК, они несут гены древних белковых структур, которые присутствуют и у клеточных организмов – бактерий, архей и эукариотов. Вдобавок они содержат ферменты, участвующие в преобразовании кода ДНК в белки, – те самые энзимы, которые мы раньше встречали только в живых клетках.

Такого мы от вирусов не ожидали. Эти гигантские вирусы – словно безработные механики, таскающие при себе старые наборы инструментов. Хотя вирусы способны перенимать гены у других организмов, крайне маловероятно, чтобы гигантские вирусы заполучили все эти полезные гены по одному. Напрашивается примечательный вывод: эти организмы, возможно, представляют собой «де-эволюционирующие», редуцированные версии[188] чего-то другого, некогда более сложного. Они почти совсем – но не совсем – способны самовоспроизводиться. А когда-то, вероятно, были способны. Где-то на эволюционном пути они обнаружили, что им гораздо лучше живется в роли заразных паразитов, а может быть, просто не удалось вести самодостаточное существование. Некоторые ученые, исследующие эти незаурядные вирусы, полагают, что они, возможно, произошли от совершенно иной ветви жизни, которая либо предшествовала последнему универсальному общему предку, либо сосуществовала с ним у основания остальных ветвей.

 

* * *

 

Время покажет, к чему нас приведут эти исследования, однако в связи с байесовской интерпретацией вероятности возникновения жизни возникают некоторые интересные вопросы. Имеем ли мы право считать, например, первопредка гигантских вирусов подлинно независимой версией жизни? Судя по всему, биохимия у него полностью такая же, как и у всех нас, и он, возможно, зародился в болотистом «мире РНК», а может быть, возник из каких-то еще более ранних химических соединений. Однако если он возник не одномоментно с нашим последним универсальным общим предком, а с разницей в несколько десятков или сотен миллионов лет, можно ли считать это случаем независимого зарождения жизни?

А возможно, подобная «де-эволюция» говорит нам о чем-то другом. Не исключено, что это свидетельство того, что когда на планете зарождается и развивается жизнь, у отдельных доменов с обособленными биомолекулярными стратегиями остается относительно мало времени на самоутверждение, иначе они потерпят поражение в конкурентной борьбе за сырье и энергию. Если это так, следовательно, жизнь на планете устроена по принципу «обслуживания в порядке очереди». А значит, едва ли природа проводит эксперименты с «новыми» типами жизни. У них просто нет шансов выдержать конкуренцию за ресурсы и место под солнцем.

Это подводит нас к очень важному вопросу. Действительно ли известная нам фундаментальная биохимия жизни уникальна в масштабах планеты? А вдруг возможна принципиально независимая разновидность жизни с принципиально иной биохимией, и она сосуществует с нами и по сей день? Иными словами, если она сумела избежать прямой конкуренции со всеми известными организмами, возможно, она просто скрывается от невооруженного взгляда.

Многие ученые, а особенно физик Пол Дэвис[189], тщательно изучили идею о том, как такая жизнь могла бы либо полностью ускользнуть от прямого наблюдения, либо каким-то образом спрятаться и существовать среди всего прочего. Не исключено, что «теневая жизнь» опирается на совершенно иную химическую конституцию и именно благодаря этой конституции скрывается и от химических, и от физических методов наблюдений. Это всего лишь гипотеза, причем непроработанная, поскольку фундаментальная биохимия известной нам жизни на Земле прекрасно справляется со своей задачей. Поиски альтернативного молекулярного языка, при помощи которого природа способна создавать организмы, – серьезное испытание для нашего воображения, а может быть, и для самой природы. Вести их прямо и непосредственно будет очень трудно. Поскольку нам не встречалось ни одного живого существа, которое бы ходило, ползало, летало или плавало и при этом было бы основано на принципиально иной биохимии, естественно обратить внимание на микрокосм. Однако все не так просто. Даже сейчас львиная доля наших знаний о нормальной микроскопической жизни почерпнута из изучения генетики популяций, а не отдельных особей – и зачастую даже не отдельных видов, а этакого генетического бульона из множества видов и семейств. Исследовать население, например, пруда или ямки под камнем – дело в самом лучшем случае кропотливое и занудное. А если ищешь теневые организмы, не зная наперед, помогут ли в этом известные биохимические анализы, быстрого прогресса ожидать не приходится.

Можно, например, прибегнуть к хитрости и искать незнакомые организмы, которые выживают в условиях, где все «известные» формы жизни неизбежно погибнут. Пусть токсичная среда оставит нам лишь все необычное. Беда в том, что привычная жизнь прекрасно научилась адаптироваться и выживать на грани возможного и цепляется за жизнь зубами и когтями (конечно, в переносном смысле). Именно это ее свойство и стало причиной сенсации в конце 2010 года, вызвавшей оживленные споры в научных кругах.

Все началось с исследования среды поистине кошмарной – даже по меркам самых кошмарных уголков нашей планеты. Речь идет об озере Моно, которое находится у восточной оконечности Йосемитского национального парка в Калифорнии, у самой границы с Невадой. Моно – полностью окруженное сушей озеро, наполнившееся водой примерно 760 000 лет назад. Замкнутость системы озера в сочетании с особым составом вулканических минералов на его дне привела к тому, что вода в нем перенасыщена солями и содержит много щелочи. Деятельность человека лишь усугубила ситуацию: в сороковые годы ХХ века воду из множества источников, питавших озеро, отвели в сторону, чтобы утолять жажду обитателей растущего Лос-Анджелеса.

Поскольку пресной воды в озеро стало попадать гораздо меньше, оно стремительно испарялось и становилось все меньше и солонее – и теперь его соленость вдвое больше, чем у океанской воды в среднем. Несмотря на это, озеро представляет собой необычайно продуктивную экосистему, где в изобилии водятся рачки-артемии, щелочные мухи, бактерии и колонии птиц, которые всем этим питаются. Жизнь здесь изобильна и разнообразна, что заставляет забыть о том, насколько ядовита местная вода. А между тем в воде из горных источников, которые питают озеро, очень много мышьяка, который сильно мешает нормальной биохимии. Мышьяк – один из самых коварных элементов в таблице Менделеева, если вообще можно говорить о коварстве химических элементов. А все дело в том, что атомы мышьяка ведут себя (опять олицетворение!) похоже на атомы фосфора, а фосфор играет в биохимии важнейшую роль. Атом мышьяка значительно больше, однако внешняя оболочка электронов, благодаря которым он и участвует в химических реакциях, у него такая же, как и у фосфора. В результате, если мы усваиваем мышьяк в виде молекул арсената[190] (мышьяка с кислородом), эти молекулы временно обманывают организм и притворяются фосфатом, что приводит к катастрофе.

Наш организм пытается встроить арсенат в разные жизненно важные места – от молекул, передающих энергию[191], вплоть до самой своей основы – ДНК, где значение фосфатов в нормальной ситуации очень велико. И хотя наша биохимия обманывается и путает арсенат с фосфатом, функционирует мышьяк совсем иначе, и в конце концов чужеродные молекулы нарушают работу клетки и убивают хозяина. То, почему мышьяк так похож на фосфор с химической точки зрения, до сих пор отчасти загадка – и это наводит некоторых ученых на мысль, что некоторые организмы от мышьяка не умирают, а эволюционируют так, чтобы работать не на фосфоре, а на мышьяке. Жизнь на основе мышьяка могла бы развиться в особых экосистемах – в частности, в вязком иле на дне озера Моно. Представляется, что это вполне разумная гипотеза теневой жизни, по крайней мере, на бумаге.

Однако в ее фундаментальных предпосылках есть серьезные противоречия. Необычайно тонкие механизмы органической химии, обеспечивающие «нормальную» жизнь на Земле, основаны на вполне конкретной физике вполне определенных атомов и молекул. Если заменить один атом другим, другого размера и массы, это приведет к радикальному изменению энергии связей между атомами и молекулами и энергетики химических реакций в целом. Из соображений одной лишь физики представляется невероятным, чтобы мышьяк мог заменить фосфор и при этом не пришлось бы существенно переписывать биомолекулярный код жизни.

Однако лучше один раз увидеть, чем сто раз теоретизировать, поэтому в конце 2010 года группа исследователей, получивших грант НАСА, опубликовала результаты подробного изучения микроорганизмов, обитающих в насыщенных мышьяком илистых осадках на дне озера Моно. Ученые придумали эксперимент, позволяющий выманить на поверхность любые организмы, которые сопротивлялись токсическому воздействию мышьяка или даже встраивали его в свою биохимию. Для этого нужно было выращивать культуры бактерий и архей в растворах, содержащих все меньше и меньше фосфора и все больше и больше мышьяка. И вот что интересно: один вид бактерий[192], входящий в семейство под названием Halomonadaceae – состоящее из больших любителей соли – судя по всему, прекрасно себя чувствовал даже там, где фосфора почти не оставалось. Ученые задались вопросом, не устроен ли этот микроб принципиально иначе, нет ли у него «теневой стороны». Вдруг это и есть жизнь на основе мышьяка?

Дальнейшие события были ярчайшим примером неоправданной научной дерзости – СМИ заявили, будто это открытие переворачивает представления о жизни на Земле и других планетах, поползли слухи и досужие домыслы. Мне очень повезло: я успел прочитать пресс-релиз НАСА еще до того, как новость получила широкую огласку. На первый взгляд это было просто поразительно. Ученые утверждали, что получили надежные доказательства, что этот вид бактерий мало того что невосприимчив к воздействию ядовитого мышьяка, но и инкорпорирует его в свою ДНК, что не мешает ей нормально функционировать! «Как будто мы с вами превратились в нормально функционирующих киборгов, посидев в комнате, где было полным-полно микросхем и никакой еды», – сказал я тогда[193].

Однако едва научный отчет увидел свет, как микробиологи стали находить в анализе ошибки. К тому же некоторые заявления в СМИ не подтверждались данными отчета. Правда, повторить и исследовать результаты было далеко не просто – этот вид бактерий ранее не был известен, а для воспроизведения результатов требовалось существенное количество анализов и экспериментов. Это был не самый приятный момент в истории науки. На пути прогресса встали личные амбиции, а журналисты, попытавшись представить все определенно и недвусмысленно, лишь подлили масла в огонь массовой истерии и споров.

Затем страсти улеглись, и ученые из других лабораторий смогли независимо изучить данные эксперимента. Пожалуй, справедливо будет сказать, что на сегодня подавляющее большинство ученых полагают, что эти бактерии на удивление устойчивы к мышьяку, однако назвать это жизнью на основе мышьяка нельзя. Просто бактерии научились находить отличные стратегии выживания даже при полном погружении в ядовитую среду. Да, они даже сумели инкорпорировать мышьяк в несколько процессов, где он функционально заменяет фосфор, однако в результате эти процессы идут гораздо хуже, чем обычные, на основе фосфора. А доказательств, что мышьяк действует точно так же, как фосфор, в самой ДНК бактерий, и вовсе не нашлось. Более того, если убрать весь фосфор до последней крошки, эти бактерии погибнут, как и все остальные известные нам живые существа.

Вот и исследование, проведенное в 2012 году, показало, что белки у этих бактерий, отвечающие за извлечение фосфоросодержащих молекул из окружающей среды, предпочитают эти молекулы в 4000 раз сильнее[194], чем такие же молекулы, в которых вместо фосфора содержится мышьяк. Иначе говоря – и в этом есть некоторый парадокс – все дело в том, что этот организм мастерски умеет находить фосфор, даже когда его окружает целый океан мышьяка. Подобная разборчивость позволяет бактерии выживать даже там, где другие падут под натиском яда.

Очень жаль. Как было бы чудесно, если бы нам удалось найти образчик теневой жизни! Однако, похоже, не удалось. И пусть эта история послужит предостережением, ярким примером того, какие опасности ждут каждого, кто будет искать теневую жизнь, затаившуюся у нас прямо под носом, жизнь, которая совсем иначе устроена и происходит от независимого источника. Однако можно сделать важные выводы даже из того, насколько это трудно. Почему теневую жизнь так сложно разглядеть и почему так легко обмануться?

 

* * *

 

Эта история возвращает нас к фундаментальному вопросу о том, насколько предвзято мы относимся ко Вселенной вокруг нас, и в том числе к собственному месту в ней. Теорема Томаса Байеса говорит нам, что по состоянию на сейчас у нас не хватает необходимой информации, в том числе – есть ли жизнь, независимая от нашей, как здесь, на Земле, так и в других местах в космосе. У нас масса свидетельств, что известные формы жизни прекрасно вписываются в химическую композицию мироздания, мы убедились, что Вселенная производит планеты в изобилии. Но нам еще предстоит связать с этим сам факт своего существования, сделать количественную оценку. Однако я бы делал ставку на то, что мы добьемся лучших результатов, если будем экстраполировать «вниз» – от знаний о богатейшей сокровищнице межзвездных молекул и о процессах формирования молекул. Легко видеть, что свойства жизни на Земле связаны именно с этим набором условий во Вселенной. Пойти в обратном направлении, то есть экстраполировать «вверх» свои знания и предположения о зарождении жизни на Земле и на этой основе предсказать вероятность зарождения жизни в других местах, похоже, не получается. Попытки проделать что-то подобное в прошлом приводили к прямо противоположным выводам – от уникальности рода человеческого до множественности обитаемых миров. А когда мы применили к вопросу о космическом абиогенезе байесовский анализ, то вернулись к исходной точке.

Разумеется, наши выводы о существовании внеземной жизни отчасти основаны на обстоятельствах нашего собственного бытия, однако в этом таится опасность. Чтобы избежать подобной логической западни, нам следует постоянно держать в памяти, что наши представления о Вселенной сами по себе порождены нашим положением и окружением. Не исключено, что шоры на наших любопытных глазах куда больше, чем мы думали, и нужно попытаться снять их.

 

Тут что-то есть!

 

 

Если угодно, представьте себе, что Земля сформировалась вокруг двойной звезды, а не одинарной. В наши дни это уже не удел научной фантастики. Мы точно знаем, что подобные системы существуют – пары звезд, которые вращаются друг вокруг друга по маленьким орбитам, а вокруг них расположены орбиты планет. Одна такая система под названием Kepler-47[195] – в честь обсерватории НАСА, где ее открыли, – пара звезд совершает полный орбитальный цикл каждые семь с половиной земных дня – этакий звездный вальс. А вокруг танцующей пары расположены орбиты как минимум двух планет, которые вращаются по ним медленнее и величественнее.

Разумеется, невозможно точно предсказать, как оценивали бы свои наблюдения небесной механики люди, живущие в подобных условиях. Однако если подключить воображение, приходит на ум сразу несколько вариантов (для удобства давайте предположим, что такая альтернативная Земля вращается примерно так же, как и наша). Во-первых, обитатели такой планеты наблюдали бы, что сверкающие диски светил, пересекая дневной небосвод, примерно за неделю проходят мимо друг друга. Если геометрия слажена идеально, то две звезды затмевают друг друга строго по очереди и в определенное время. А значит, на альтернативной Земле бывают дни, ночи и два вида дней затмения, которые наступают периодически, примерно два раза в неделю.

Каковы были бы наши космологические представления, если бы мы жили в подобной системе? Понятно, что нам пришлось бы принять во внимание целый ряд существенных факторов. Например, когда альтернативная Земля вращается по орбите вокруг двух звезд, время затмений, когда одна звезда закрывает другую, неизбежно сдвигается. Это будет связано с годовым циклом, и если ось альтернативной Земли наклонена, как у нашей, то расписание солнечных затмений будет заметно меняться относительно каждого солнцестояния. Закономерность будет довольно хитрой и, конечно, потребует объяснений.

Но вот что интересно: при всех отличиях альтернативной Земли от нашей нетрудно представить себе, что у ее обитателей тоже поначалу сложится геоцентрическая картина мира, в которой эта планета станет центром мироздания. Звезды будут двигаться относительно друг друга точно так же, как по эпициклу в птолемеевской космологии, а центр эпицикла будет двигаться вокруг этой Земли по другому большому кругу – деференту.

Если немного поколдовать над этой геоцентрической моделью и подправить геометрию, можно привести прогнозы сдвигов солнечных затмений в соответствие с временами года. А главный толчок в сторону гелиоцентрической модели, как и у нас на Земле, дало бы движение других планет в системе, которые метались бы по небу туда-сюда.

Как ни странно, даже такая причудливая система с двумя солнцами даст своим обитателям не больше предпосылок для выводов о своем положении во Вселенной, чем мы получаем от нашей. Им тоже придется дожидаться Коперника, который сместит их родную планету с центральной позиции и расставит все по местам. Но это лишь один пример. А теперь рассмотрим другой сценарий.

 

Рис. 13. Два Солнца альтернативной Земли.

Хотя на самом деле центр системы – звезды (слева), разумная раса вполне могла бы построить модель, которая точно описывала бы наблюдаемые в небе явления и при этом позволяла бы считать, что в центре мироздания находится их планета (справа)./

 

Вполне можно представить себе, что другая Земля – маленькая планета в тесной системе гораздо более крупных планет, где всю внутреннюю орбитальную зону занимают каменные и газовые гиганты. На основе всего того, что мы знаем об экзопланетах, подобная конструкция встречается гораздо чаще[196], чем системы, подобные нашей Солнечной. Теперь предположим, что в этой богатой планетами системе между нашей гипотетической Землей и Солнцем вращается еще восемь планет. Все они крупнее Земли, некоторые размером с Нептун. Подобные системы – это не просто гипотеза. Именно так устроены некоторые недавно открытые системы экзопланет[197]. Может быть, в них есть даже точный эквивалент нашей родной планеты – наверняка мы не знаем, но это отнюдь не исключено.

Согласно этому сценарию внутренние планеты выглядят на ночном небе как яркие небесные тела, которые мечутся туда-сюда и с течением недель и месяцев то появляются, то исчезают. Самые крупные так велики, что фазы-полумесяцы Солнца видны невооруженным глазом, так что для того, чтобы пронаблюдать это явление, не нужен Галилей со своим телескопом.

Наша гипотетическая родня, столкнувшись со всеми этими вариациями, не стала бы считать, что движения планет – это просто «несоответствия». Напротив, обитатели подобной Земли вскоре поняли бы, что все действие сосредоточено вокруг Солнца. Это ничуть не повредило бы их ощущению собственной исключительности. Сначала они были убеждены, что Земля уникальна и исключительна, ведь она, очевидно, занимает в мироздании именно такое место, откуда лучше всего видна великолепная механика внутренних планет, занимающих, очевидно, подчиненное относительно Земли положение. Однако у их цивилизации все равно недоставало бы сведений, чтобы сделать выводы о точном расстоянии до крошечных неподвижных звездочек, которые видны на небе по ночам. Но эти яркие точечки никогда не превращаются в диски наподобие планетных – а значит, даже если это другие планеты, они, наверное, очень далеко. А если это, наоборот, другие Солнца, то так же очевидно, что их планетные системы не разглядеть просто потому, что они опять же очень далеко. В естественнонаучных кругах на подобной планете будут преобладать атомисты и сторонники теории множественности миров, и в их представлении во Вселенной окажется множество систем, богатых планетами. Ведь некоторые истины самоочевидны, не так ли?

Есть и еще один сценарий, который перевернул бы нашу историю космических открытий с ног на голову. Представим себе, что Земля вообще никогда не была настоящей планетой, а небесным телом, которое расположено ниже в иерархии миров. Что если наша родная планета была бы вовсе не планета, а спутник другой планеты[198]? Подобные спутники вполне могут обращаться вокруг газовых гигантов: они бывают так велики, что способны удержать атмосферу, и так велики, что способны вести себя совсем как планеты. В такую категорию попадает Титан – небесное тело из нашей собственной Солнечной системы, а подобные ему крупные спутники могут существовать где угодно. Если материнская планета-гигант вращается вокруг солнцеподобной звезды на том же расстоянии, что и мы от Солнца, подобный спутник будет освещаться и обогреваться примерно так же, как и Земля, и условия у него на поверхности в принципе могут быть такими же. Это сложный сценарий, зато его издавна полюбили писатели-фантасты и кинематографисты: какой интересный гипотетический случай развития цивилизации!

Самая вероятная физическая конфигурация для спутника гигантской планеты – это синхронизация[199] его вращения вокруг своей оси и по орбите. Иначе говоря, спутник всегда будет обращен к матери-планете одной и той же стороной, а время его оборота вокруг своей оси будет равно циклу вращения по орбите. Именно так обстоят дела у нашей Луны, и именно поэтому она на протяжении эпох исправно вызывает приливы. Эти регулярные периоды несильной тяги постоянно истощают первоначальный вращательный импульс и заставляют спутник замедлить вращение, и в конце концов оно приходит в соответствие с орбитальным периодом.

Итак, одно полушарие нашей воображаемой Земли-Луны всегда обращено к планете-гиганту – она застилает чуть ли не 20 % небосвода, примерно как две ладони, если вытянуть руки перед собой. А дальняя сторона Земли-Луны никогда не видит планету, которая скрыта «позади», и всегда обращена в открытый космос. Первые современные исследователи из дальнего полушария были потрясены, когда увидели, как во время их пути на другую сторону родной Земли-Луны из-за горизонта постепенно поднимается зловещий шар материнской планеты!

На той стороне Земли-Луны, которая обращена к газовому гиганту, течение времени отмечается целым рядом удивительных событий. В период полутемной ночи материнская планета сияет в небе, заливая спутник отраженным солнечным светом. А практически идеальное геометрическое согласование орбит и вращения вокруг своей оси (так мне видится мой воображаемый сценарий) приводит к тому, что тень Земли-Луны падает прямо на огромный диск планеты. Это темное пятно видно даже невооруженным глазом и медленно пересекает поверхность газового гиганта. Для разумных обитателей Земли-Луны это важнейшая точка отсчета, поскольку когда эта тень достигает края диска планеты, это знаменует окончание ночи, когда Земля-Луна освещается отраженным светом планеты, и начало нового дня. Из-за горизонта постепенно показывается Солнце. А диск великой матери-планеты, словно по волшебству, передающемуся через пустоту, в тот же миг начинает превращаться в тающий полумесяц, на который наползает тьма, распространяющаяся по поверхности исполинской сферы.

Простое наблюдение за затемнением диска планеты породило на нашей гипотетической Земле-Луне множество математических и геометрических школ на протяжении бесчисленных поколений. Однако природа еще не все сказала. После краткого периода полной иллюминации ближняя сторона спутника входит во вторую разновидность перемежающихся ночей – «настоящую», темную ночь. Она начинается, когда на диск планеты в небесах, по-прежнему неподвижный, наползает тьма, и он превращается в серебристый полумесяц. Солнце прошло по небосводу к огромному диску планеты, а теперь скользнуло за него и полностью затемнилось.

Мир погружается в кромешную тьму, и далекие звезды ярче проступают на черном небе – однако остается темное пятно на месте диска планеты, окруженное призрачным ореолом, тускло мерцающим кольцом солнечного света, там, где атмосфера планеты преломляет и отражает его лучи. Об этом призрачном ореоле написаны и слагаются по сей день тома стихотворений: поэтам безразлично, что говорит наука о его происхождении. Именно во время второй ночи отчетливее всего заметен еще один феномен. Теперь мы видим, что небо пересекает тонкая сверкающая черта, которую раньше затмевал свет Солнца и планеты. Она исходит из черного диска планеты в обе стороны: так выглядят с краю кольца из частичек льда, опоясывающие планету-гигант. Появляются и другие загадочные небесные тела – десятки ярких точек, причем некоторые из них похожи на крошечные диски. Эти бисеринки света разбрызганы по небосводу и окружают тонкую линию колец планеты.

 

Рис. 14. Схематическое изображение гипотетической системы, где «Земля» – спутник планеты-гиганта

Вверху – орбитальная конфигурация (масштаб не соблюден); показано, как гигантская планета вращается вокруг своей звезды, и траектории некоторых ее спутников, в том числе альтернативной Земли. Внизу – схематическое изображение некоторых фаз планеты-гиганта и звезды с точки зрения обитателя ближней стороны «Земли». Слева направо – освещение отраженным светом планеты (освещенная солнечным светом планета неподвижно висит в небе), день (звезда поднимается над горизонтом), ночь (звезда заходит за неподвижную планету-гигант и скрывается из виду). Когда мы проходим разные фазы, становятся видны два других спутника планеты (из десятков) и тонкое кольцо наподобие кольца Сатурна.

 

Много веков назад великие философы и астрономы альтернативной Земли предположили, что эти бисерины – целые миры, такие же луны, как и наша собственная. Более того, ученые даже рассчитали их движение и яркость и давным-давно средствами логики и геометрии определили, что на самом деле материнская планета – самый центр небесных сфер. Самые одаренные астрономы даже обнаружили вполне конкретное соотношение между временем, которое уходит у этих небесных тел на полный оборот вокруг матери-планеты, и расстоянием до нее. Мало того, они еще и поняли, что движение их собственной Земли вокруг матери-планеты подчинено той же закономерности.

Обитателям этого гипотетического мира осталось буквально несколько шагов до установления универсального закона, который связывает действующие на небесные тела силы с так называемой массой – закона всемирного тяготения. Мало-помалу создаются более мощные и точные телескопы, и ученые замечают другие планеты, далекие и доселе остававшиеся незамеченными (вокруг некоторых из них тоже вращаются спутники); тогда обитатели альтернативной Земли быстро делают вывод, что все это совокупно вращается вокруг Солнца. Закон всемирного тяготения, эта универсальная истина, прекрасно объясняет подобную конструкцию. Обитатели Земли-Луны очень дорожат подобным мировоззрением, поскольку его иерархия так красива и элегантна. Солнце – словно добрая бабушка, вокруг него вращаются планеты-матери, а вокруг них – дочери-Луны, и все это управляется одним и тем же набором незыблемых физических законов.

Очевидно, что обитателям такой воображаемой Земли-Луны гораздо проще прийти к гелиоцентрической модели, чем нам с нашими тысячелетиями упорной борьбы за верное понимание устройства Солнечной системы и нашего места в мире. Почему? Потому что, когда нужно разобраться в устройстве Вселенной, все решают обстоятельства. Эти обстоятельства и определяют прежде всего, каковы шансы на возникновение жизни в тех или иных условиях: прямо как загадка про курицу и яйцо, только в масштабах мироздания. Решить эту загадку – следующий шаг к разрешению противоречий между доводами за и против нашей вселенской уникальности и значения.

 

* * *

 

Все эти гипотетические миры, насколько нам известно, пока что представляют собой не более чем мысленные эксперименты, придуманные для наглядности. А теперь вернемся на реальную Землю. В истории науки и наших космологических изысканий есть одна интересная черта: великие озарения зачастую опираются на самые что ни на есть скучные научные мелочи. Это само по себе явно указывает нам на наше место в мироздании.

Многие фундаментальные открытия совершались лишь благодаря изучению крошечных деталей, мельчайших досадных отклонений, которые на первый взгляд казались чисто техническими, не имеющими никакого значения для внешнего мира, и лишь потом становится понятно, что это настоящее чудо. Огромные прорывы случались именно тогда, когда кому-то не давали покоя легкие неточности в движениях планет, то, что скорость света постоянна и это как-то странно, мельчайшие различия между подвидами живых существ и какие-то не вполне обычные ископаемые останки. Чтобы решиться работать над такого рода задачами, нужна очень крепкая нервная система, поэтому они, как правило, издревле становятся уделом неповторимой когорты одержимых и дотошных зануд. Такая кропотливая рутинная работа зачастую доставляют им массу удовольствия – к вящей досаде и отчаянию коллег. Иногда населению в целом приходится потратить довольно много времени на то, чтобы понять, из-за чего, собственно, столько шума. Вот и переворот в мышлении, которым мы обязаны Копернику, можно считать отличным примером того, как скучнейшие мельчайшие подробности ложатся в основу настоящих революций, приводят к самым драматическим последствиям. Последний и главный труд Николая Коперника – великий трактат «De revolutionibus» – настолько перенасыщен техническими астрономическими подробностями, что читать его с интересом могли лишь самые образованные астрономы того времени. По сути дела, чудовищная сложность лишь уберегла трактат от дальнейшей критики со стороны церкви и государства. Как суховато выразился[200] физик и философ ХХ века Томас Кун, когда писал об истории открытий Коперника, «Если бы работа была несколько легче для понимания, она бы встретила отпор еще раньше». Что неудивительно, поскольку Коперник во многом стремился усовершенствовать основы существовавших моделей небесной механики, а не затеять красивый научный спор. В этом отношении он был похож на человека, одержимого подсчетом вагонов в товарных поездах, – с той лишь разницей, что стремился составить более точную таблицу положения планет на ночном небе. А переворот в самой структуре космологических преставлений вполне мог быть всего лишь побочным продуктом подобных стараний, хотя Коперник, конечно, представлял себе, к чему все это приведет. Прости, Николай, мы очень признательны тебе за труды, только как развлекательное чтение они не годятся.

Более чем через полвека Иоганн Кеплер, столь же одержимый математикой, примерно по таким же мотивам не менее восьми лет трудился над расчетом орбит Марса и других планет. Он был полон решимости выявить «часовой механизм» движения планет и разобраться, что его регулирует, но при этом хотел всего-навсего избавиться от досадных противоречий, от того, что у планет меняется яркость и что в рамках существовавших астрономических моделей их положение в небе чуть-чуть отличается от расчетного.

И даже когда Галилей увидел наконец движение спутников вокруг Юпитера, бесчисленные звезды, составлявшие дымку Млечного Пути, светотень лунных пейзажей и полумесяц Венеры, для него все это были всего лишь очень конкретные детали мозаики, мелкие подсказки, позволявшие усовершенствовать недоработанную картину мироздания. Все эти люди потому и были гениальны, что могли делать экстраполяции на основании подобных деталей – гелиоцентрический космос, подлинная форма орбит, природа движения и сил.

Итак, понятно, насколько наше далеко не совершенное представление о Вселенной и своем месте в ней зависело от конкретных обстоятельств на планете Земля и в Солнечной системе, от нашего положения в пространстве и во времени. Разумеется, очень легко взглянуть на историю науки и решить, что теперь мы знаем гораздо больше, поскольку избавились от подобной узколобости. Можно предположить, что несравненная точность наблюдений и измерений, которой мы обязаны современной технологии, возвысила нас над трясиной возни с мелкими деталями природы, без которой в прошлом было не обойтись. Теперь-то мы способны измерять положение небесных тел с точностью до тысячной доли градуса, оценивать скорости и расстояния за миллиарды световых лет от нас. Однако на самом деле мы по-прежнему пленники собственных обстоятельств и не можем избавиться от этих шор при изучении как космоса, так и микрокосма.

Я еще в первой главе задал вопрос о том, что было бы, если история астрономии пошла бы по иному пути и Галилею удалось создать огромные телескопы и открыть жизнь на других планетах. Это была чистая фантазия, однако теперь мы знаем, что наша Галактика и Вселенная в целом полным-полны иных планет. Еще мы знаем, что разнообразие этих планет, конфигураций систем и истории развития придают статистический вес идее о том, что обстоятельства существования нашей планеты необычны. Кроме того, как я пытался показать на примере фантазий о жизни людей на других планетах, это означает, что и наш угол зрения тоже может оказаться необычным.

Первый вопрос, который приходит в голову, состоит в том, помогала или мешала наша уникальная точка зрения развитию научного метода как такового, каковы могут быть наши слепые пятна, что они прячут от нас на данный момент? Второй вопрос еще неприятнее. А вдруг сама конфигурация и история нашей планетной системы, благодаря которым на Земле стала возможной жизнь, тоже наложила серьезные ограничения на то, как мы вырабатываем у себя картину мира? Иначе говоря, задается ли жизнь вроде нашей именно такими вопросами лишь потому, что способна существовать только в таких космических обстоятельствах?

 

* * *

 

Небесные сценарии, которые мы тут сочинили, от двойной звезды до землеподобных лун, с точки зрения физики и астрономии вполне вероятны. Мы не знаем другого – вероятны ли они с точки зрения биологии. Прежде всего, мы не знаем, нет ли у среды на таких воображаемых планетах особых свойств, из-за которых жизни будет затруднительно там возникнуть и развиться. Во-вторых, у нас нет теории, которая могла бы предсказать, какого рода разум мог бы там развиться и как превратности исторических случайностей повлияли бы на его интерпретацию окружающего космоса.

Тем не менее не приходится сомневаться, что будь у нас иные обстоятельства в масштабах планеты, совершенно иначе сложился бы и путь развития естествознания, а история науки была бы радикально другой. Наше мировоззрение – плохо ли это, хорошо ли, – временами попадало в наезженную колею, поскольку некоторые важнейшие принципы тонули в море мелочей, которые мы видим вокруг. Однако такое может быть в любой планетной системе, которая способна достаточно долго поддерживать жизнь. Приведу пример, заставляющий задуматься: вспомним, как Иоганн Кеплер изучал орбиту Марса. Должно быть, вы помните, что Кеплера натолкнуло на изучение небесной траектории Марса именно то обстоятельство, что из крупных планет его орбита сильнее всего отличается от окружности, не считая Меркурия. Однако этот выбор за него отчасти невольно сделали капризы времени и небесной механики, поскольку впоследствии мы обнаружили, что орбита Марса не всегда была такой, как сейчас, и не всегда такой будет. Более того, поскольку вообще орбитальная динамика небесных тел в нашей Солнечной системе танцует на грани хаоса, орбита Марса меняется с течением времени[201] под влиянием гравитационной тяги других планет, особенно Юпитера и Сатурна. Эллиптичность марсианской орбиты меняется довольно существенно, за период примерно 96 000 лет она меняется в два раза. А за более длительные периоды – за миллионы и десятки миллионов лет – она может меняться от почти круглой до в два раза более эллиптической, чем сейчас.

Иначе говоря, если бы люди появились на сто тысяч лет раньше или позже и если бы человечество все равно породило своего Кеплера, который изучал бы таблицы движения планет, составленные каким-нибудь Браге, его задача могла бы стать гораздо труднее или гораздо легче. Если бы на момент, когда Браге делал свои наблюдения, орбита Марса была почти круглой, она не подсказала бы Кеплеру, какова общая закономерность движения планет. А если бы она была более эллиптической, Кеплера, возможно, опередили бы.

Однако, как мы уже выяснили, подобное поведение орбит – изменения формы, наклона и прочих параметров со временем – тесно связано с общей архитектурой Солнечной системы и ее историей. Орбита и ориентация вращения Земли тоже медленно, понемногу меняется. Все эти изменения конфигурации совокупно, судя по всему, связаны с долгосрочными изменениями климата Земли, в том числе с ледниковыми периодами, которые повторяются каждые 100 000 лет. Вероятно – и весьма примечательно! – что в те моменты в истории, когда орбитальные параметры Марса позволяли бы легко измерить эллиптичность его орбиты, температурные условия на Земле были неблагоприятны для биологических видов вроде людей.

Есть и другие колебания физических условий на обитаемой планете, которые способны радикально изменить наше восприятие Вселенной. Если бы наша атмосфера была замутнена водным конденсатом или вязкой дымкой, которую порождает фотохимия органических молекул вроде метана, мы бы никогда не смогли сделать точных наблюдений никаких небесных тел, кроме Солнца и Луны. И вполне возможно, что на Земле бывали периоды, когда на протяжении тысячелетий нам не давала наблюдать за небесами всего-навсего плохая погода – если мы тогда вообще существовали.

А галактическое окружение планетной системы влияет на ее мировоззрение еще сильнее. Мы знаем, что Солнце и его планеты совершают орбитальный цикл вокруг Млечного Пути примерно за 230 миллионов лет. Однако эта орбита – не идеальный круг и даже не эллипс, поскольку сама Галактика представляет собой ландшафт из колеблющихся конгломератов массы и сложных гравитационных полей. Более того, в Галактике нет ничего стабильного, все ее компоненты вращаются и дрейфуют в исполинском трехмерном танце.

В результате наша Солнечная система, как и миллиарды других, неизбежно попадает в участки межзвездного пространства[202], где молекулярный газ и микроскопическая пыль плотнее. Каждый такой участок она проходит за десятки, а то и за сотни тысяч лет. Пусть они встречаются лишь раз в несколько сотен миллионов лет, но если бы цивилизация современных людей возникла именно в такой момент, мы бы не видели ничего, кроме ближайших звезд, и уж точно не имели бы представления о своей Галактике или о космосе за ее пределами.

Однако давайте разберемся, могли бы мы все равно возникнуть в настолько иных обстоятельствах. Вдруг более изменчивые орбиты планетной системы, плохая погода или межзвездные облака как-то мешают возникновению жизни? Подобные явления могут быть очень некстати – они создают неблагоприятные условия на поверхности планеты. Так что есть вероятность, что требования к условиям планеты, способной породить разумную жизнь вроде нашей, предполагают и то, что разум и чувства подобных существ должны получить в свое распоряжение своего рода космическое табло, общедоступное окно во Вселенную. Если вам кажется, что вы где-то это уже слышали, то дело в том, что таков и антропный принцип – наблюдатель увидит именно те, а не иные условия, поскольку именно такие условия необходимы, чтобы наблюдатель вообще существовал. Однако в таком случае и сама идея гораздо уже, и вывод из нее, вероятно, следует более прямолинейный.

Эти вопросы возвращают нас к деликатным отношениям самой жизни и условий на планете – и вечному больному вопросу о том, насколько редка или распространена в космических масштабах жизнь, подобная земной. Биологи обычно разделяют этот вопрос на два и рассматривают отдельно «простую» жизнь, а отдельно – «сложную». Некоторые ученые предпочитают объединять ту и другую под словом «жизнь». Однако «простая» и «сложная», строго говоря, разделяются там, где проходит граница между бактериями и археями с одной стороны и эукариотами с другой – об этих трех доменах жизни на Земле мы уже беседовали. «Сложная» жизнь – это эукариоты, поскольку их клетки «сложнее», крупнее, чем у бактерий и архей, содержат больше структур, и структуры эти сложнее сами по себе. А главное – свои ДНК они держат тщательно и надежно укутанными в маленькие мешочки из мембраны: в ядра клеток. Мы считаем, что подобные сложные формы клеток возникли позднее «простейших» бактерий и архей, а без них по планете не ходили бы существа вроде нас с вами.

То, что организмы бывают простые и сложные, подтверждает гипотезу, которая возникала несколько раз в разных обличьях, и помогает ответить на вопрос о частотности жизни во Вселенной. Эту гипотезу называют «гипотезой уникальной Земли»[203]. Ее с тем же основанием можно назвать «гипотезой уникальности сложной жизни», поскольку она исходит из предположения, что сложноклеточная жизнь, вероятно, в масштабах Вселенной – явление крайне незаурядное. А следовательно, мыслящие и технологически ориентированные существа тоже встречаются очень редко. Предположение о редкости сложноклеточной жизни – идея немаловажная, ее следует обдумать, однако прежде я напомню вам, о чем упоминал еще в первой главе: мне не кажется, что идеи уникальности Земли достаточно обоснованны. И я объясню, почему, дайте только срок.

Основа гипотезы уникальной Земли состоит в том, что для возникновения сложноклеточной, а затем и разумной жизни годится лишь вполне конкретная последовательность событий при формировании планетных систем, самих планет и их свойств. А вот простой жизни, например, микробам, питающиеся скальными породами, возникнуть гораздо проще. Чтобы это обосновать, можно опереться на широчайший диапазон наших познаний об истории Земли и обстоятельствах ее существования. Возьмем, к примеру, воду. Это простая молекула из двух атомов водорода и одного атома кислорода – жизненно необходимый биохимический растворитель и центральный компонент геофизических механизмов на Земле. Однако количество воды на планете и то, достаточно ли ее на поверхности в жидком виде, где сложная жизнь может пользоваться ею в свое удовольствие, зависит от множества вполне конкретных событий и ситуаций. Можно утверждать, что присутствие воды на Земле связано с конфигурацией астероидов, комет и гигантских планет в Солнечной системе, а также с эволюцией орбиты Земли в настоящем и в прошлом. Кроме того, сложная жизнь, скорее всего, лучше развивается при наличии сильного защитного магнитного поля планеты, которое, в свою очередь, связано с тем, как формировалась система Земли и Луны, а может быть, и каким-то образом зависит от приливной тяги Луны. Без относительно большого спутника у Земли были бы более сильные колебания оси, а следовательно, и сильные перемены климата, которые сказались бы на сложной жизни сильнее, чем на стойких микробах. А развитие состава земной атмосферы и океанической химии со временем, несомненно, связано с различными причудами геофизики, причем некоторые из них восходят еще к досолнечным, протопланетным временам, к эпохе жара от радиоизотопов, получившихся в результате взрывов близких сверхновых и замешавшихся в сгущавшуюся массу. И вообще без тектоники материковых плит, которая отчасти зависит от внутреннего жара Земли, химическая и топографическая обстановка на поверхности планеты и взаимообмен между континентами, морским дном и океаном были бы совсем иными. И т. д.

Если наложить все эти факторы на хронологическую шкалу развития биологических видов в последние 4 миллиарда лет, развитие жизни станет похоже на шаткий карточный домик. Стоит изменить одну-единственную мелочь там или здесь – и очень может быть, что непоправимо нарушится цепочка событий[204], которая привела к возникновению сложной жизни и существ, подобных нам (не менее опасный путь, только в ином масштабе, прошли наши непосредственные предки, когда разбрелись по свету из Африки примерно сто тысяч лет назад).

В этом-то и суть аргументации «гипотезы уникальной Земли»: возникновение сложной и разумной жизни здесь, на Земле, сильно зависело от некоторых вышеупомянутых факторов, а возможно, и от всех. Более того, других рабочих гипотез, мягко говоря, мало. Если она верна, значит, жизнь, хоть сколько-нибудь похожая на нас, может обретаться лишь на близнецах Земли. Иначе говоря, даже в космосе, полном планет, сложная жизнь, вероятно, явление крайне необычное.

Предполагаемая редкость условий на нашей планете и ее истории, вероятно, даже не главный довод в пользу гипотезы уникальной Земли. Некоторые ученые на основании исключительно биологических аргументов доказывают, что возникновение сложных организмов маловероятно где бы то ни было, поскольку определенные важнейшие детали молекулярных механизмов могут оказаться на нужных местах в нужное время лишь благодаря весьма специфической цепочке событий. Из этого опять же следует, что сложная жизнь во Вселенной, похоже, встречается очень редко и что для того, чтобы она вообще возникла, нужны совершенно особые обстоятельства.

Главную роль в биологической аргументации играет то, что бактерии и археи не могут легко и просто «усовершенствоваться» и стать более крупными и сложными физическими формами, поскольку у них не хватает производительности, чтобы вырабатывать достаточно энергии. Чем больше у организма генов, тем больше энергии ему требуется, чтобы конвертировать генетическую информацию в белки. Индивидуальные микроорганизмы, ограниченные своими достаточно примитивными методами выработки энергии, не могут позволить себе таскать повсюду обширную библиотеку генетического материала, потому-то они и остаются простыми.

Как я уже писал, эукариотические клетки отличаются от полчищ одноклеточных организмов – и на то есть еще одна причина. В эукариотических клетках содержатся дополнительные структуры, так называемые митохондрии – обернутые в клеточные мембраны упаковки ДНК, РНК и сотен ферментов. Эти упаковки хранятся отдельно от ядра клетки, которое оберегает первичную ДНК организма. Митохондрии сами по себе удивительны. Помимо всего прочего они служат специализированными станциями по производству химической энергии для поддержания эукариотической жизни: именно они обеспечивают реакции окисления, в результате которых получаются жизненно важные молекулы, которые умеют разносить электрическую энергию по клеткам. Именно поэтому мы, собственно, и должны дышать кислородом, и именно поэтому мы, как и остальные эукариоты, можем быть такого огромного размера.

Митохондрии делают возможной такую жизнь, как мы, поскольку многократно повышают производительность нашего метаболизма. Энергия, которую они обеспечивают, позволяет увеличить количество генов, экспрессия которых по силам нашим клеткам, в 200 000 раз по сравнению с одноклеточными организмами. Однако происхождение митохондрий, скорее всего, бактериальное. Мы считаем, что примерно 2 миллиарда лет назад они слились с предшественниками эукариотических клеток и вступили в отношения эндосимбиоза – были полностью поглощены клетками-хозяевами и стали служить для них жизненно важными генераторами энергии.

Пока что все складывается. Однако некоторые ученые, в том числе биохимики Ник Лейн и Билл Мартин[205], отстаивают ту точку зрения, что организм, который слился с митохондриальным предком, вероятно, сам по себе был не более сложным. Эти ученые утверждают, что сложные клетки эукариотов начались с сочетания двух похожих организмов. Согласно Лейну и Мартину, вся история сложной жизни началась с одного-единственного случайного и крайне маловероятного слияния двух клеток.

Мне представляется, на сегодня это самый веский довод в пользу того, что происхождение сложноклеточной жизни на Земле было чистым везением. Он подкрепляет астрофизическую и планетную аргументацию, которая доказывает, что жизнь зародилась в результате весьма специфической цепочки событий, однако сам по себе он еще сильнее. Если и в самом деле для возникновения жизни необходимо столь уникальное стечение обстоятельств, шансы, что планет вроде Земли достаточно много, вероятно, очень малы. Однако пока что митохондриальная гипотеза не нашла окончательного подтверждения.

Бывали, конечно, на Земле и другие поразительные случаи эндосимбиоза (когда один организм мирно существует внутри другого к вящей пользе обоих). Вот, к примеру, хлоропласты – структуры, играющие главную роль в фотосинтезе, – в клетках растений свидетельствуют, что на каком-то этапе произошло похожее слияние. Ученые считают, что эти микроскопические структуры в форме фасолинки когда-то были сине-зелеными одноклеточными водорослями – древними видами микробов, умевшими осуществлять фотосинтез. Однако растения, которые также содержат митохондрии, появились гораздо позже, чем сложноклеточная жизнь. В сущности, все свидетельствует о том, что ничего похожего на «митохондриальное событие» больше не повторялось – оно произошло ровно один раз 2 миллиарда лет назад.

Эта теория достаточно убедительна. Однако на самом деле мы не знаем, что митохондриальный предок слился с другим видом простейших. Если на тот момент уже существовала прото-эукариотическая форма жизни, а может быть, даже какая-то относительно сложная архея, митохондриальное событие, вероятно, стало лишь шагом в эволюции подобного организма, очередным случаем ничем не примечательной разновидности эндосимбиоза, какие бывали и раньше, когда прото-эукариоты захватывали полезных микробов, но не переваривали, а сохраняли в себе. В таком случае митохондриальное событие было бы куда менее примечательным, и, признаться, мне это больше по душе. Линии доказательств, которые основаны на «невероятных событиях», мне претят. Они подозрительно похожи на доводы некоторых ученых ХХ века, например, физика Фреда Хойла, который утверждал, что для зарождения жизни на Земле требовалось «осеменение извне». Хойл предполагал, что земная биохимия началась с организма, который, будучи совершенно естественным, вроде бактерии, был занесен сюда откуда-то из внеземного пространства. Такие гипотезы называются «панспермия»[206] – от греческого словосочетания, которое означает «смесь всяческих семян».

По мысли Хойла и его сторонников, если смешать атомы и молекулы где-то в общем котле на первобытной Земле, шансы, что даже в пределах нескольких миллиардов лет спонтанно сформируются молекулы ДНК или РНК, практически нулевые. Подобным же образом жизнь не могла зародиться здесь сама по себе и наверняка была инициирована зачатком жизни или прото-жизни, который прибыл к нам откуда-то еще. Проблему абиогенеза отдали Вселенной на аутсорсинг.

Сегодня мы полагаем, что способы, которыми создаются молекулярные структуры, как базовые, так и сложные, гораздо проще, чем мы думали, как и способы, которыми из сложных систем может спонтанно возникать порядок. Кроме того, мы полагаем, что существует широкий диапазон неживых, неорганических химических и физических лекал, которые могли подтолкнуть углеродную химию к тому, чтобы стать полномасштабной биохимией на юной Земле. Так что привлекать панспермию в представлении Хойла теперь словно бы и ни к чему. И хотя современные представления всего не объясняют, однако из них очевидно следует, что нужно воздерживаться от предположений, что если какой-то биологический феномен не вполне понятен, он автоматически становится невероятным. Так что, на мой взгляд, предполагать, что сложные клетки с митохондриями имели лишь очень скудные шансы на возникновение из микробного котла, – это (по крайней мере на первый взгляд) все равно что увлекаться идеей той самой панспермии, согласно которой зарождение жизни маловероятно просто потому, что нам так кажется.

Но я и на этом не остановлюсь. Я считаю, что если история науки чему-то нас и учит, то только тому, что подобного рода предположений следует всячески остерегаться. В наших силах отсекать самые экстремальные из подобных идей, и мы обязаны так и поступать. Как я покажу, дело в том, что зачастую они вдохновлены интуитивными предположениями о природе статистики, которые оказываются ошибочными. В сущности, самый серьезный довод против любой версии «уникальной Земли» дает нам относительно простой, однако очень убедительный экскурс в область природы вероятности и нашего восприятия случайности.

 

* * *

 

Преподаватели статистики частенько рассказывают своим студентам на первом занятии одну старую историю, которая неизменно вселяет в новичков благоговейный ужас; на первый взгляд она проста, однако подчеркивает некоторые глубоко укоренившиеся у нас заблуждения, в которые мы впадаем, когда пытаемся поместить информацию в тот или иной контекст. Как и многие хорошие истории, ее можно рассказывать по-разному. Я предпочитаю спортивные аналогии.

Итак, как-то вечером Джо сидит дома один, и вдруг ему звонят. Это его старый друг, с которым Джо не говорил уже лет пять, а то и больше, и он очень рад звонку. Они разговаривают, и друг говорит, что у него есть лишний билет на важный бейсбольный матч тем же вечером. Может быть, Джо составит ему компанию?

Через час Джо уже пробирается к своему месту на стадионе. Там уже собралось пятьдесят тысяч болельщиков. Полный аншлаг, яблоку негде упасть. Когда Джо с другом оказываются на своих местах, кто-то спрашивает, не согласятся ли они поменяться и сесть на места чуть-чуть получше в пяти метрах отсюда, чтобы члены одной семьи могли сесть вместе. Джо тут же соглашается, и они с другом занимают новые места.

Игра начинается, в «доме» – знаменитый бэттер. Усевшись поудобнее, Джо замечает неподалеку разносчика и подзывает его. Джо протягивает руку к лакомствам на подносе, и тут бэттер на поле размахивается и запускает мяч на трибуны. Мяч взлетает высоко-высоко, отскакивает от подноса и попадает прямо в руку Джо. Это настоящая сенсация, и мяч тут же превращается в спортивную реликвию.

Джо качает головой, не веря своему счастью. Если бы старый приятель не позвонил ему, если бы у него не оказалось билета на этот матч, если бы Джо не согласился поменяться с кем-то местами и в эту самую минуту не протянул руку к подносу, он не поймал бы мяч! Джо кажется, что это просто невероятно, и на миг он даже задумывается, не открылся ли у него особый дар – притягивать загадочные совпадения.

Казалось бы, логично. Если с тобой такое случается, поневоле задумаешься. Задашься вопросом, не избрало ли нас мироздание именно ради этого события. В конце концов, каковы шансы, что все события сложатся так удачно?

Беда в том, что когда речь заходит о случайности и шансах, интуиции доверять решительно не стоит. С точки зрения Джо все это кажется крайне невероятной чередой событий. Он один из 50 000 болельщиков на стадионе – и мяч прилетел именно в нужный момент в нужное место. Однако так ли уж стоит доверять точке зрения Джо?

Если хочешь разобраться в глобальном значении этого события – нет, не стоит. Видите ли, мощный, но плохо рассчитанный удар по мячу мог запустить его в кого угодно на набитом до отказа стадионе, и мяч мог попасть в кого угодно, и кто угодно мог его поймать. Это было неизбежно. Если бы мяч не отскочил в руку Джо, он наверняка отскочил бы в руку кому-нибудь другому, или ударил бы кого-то по голове, или выбил бы у него из руки стакан с колой. И каждый из этих людей тогда думал бы то же самое, что сейчас думает Джо. И что в этом такого?

Все до единого возможные сценарии предоставляют обширные возможности изумляться астрономически крошечным шансам на то, что мяч приземлится именно в том или ином месте. Во всех до единого сценариях будет ровно столько же простора для удивления, что события сложились именно так, а не иначе: решение идти на матч было принято в последнюю минуту, именно в этот миг возникло непреодолимое желание поглядеть вверх, на ком-то был счастливый костюм, кто-то именно в эту секунду надкусил хот-дог… Однако все эти события принимают особое значение лишь после свершившегося – и такую информацию мы в целом называем апостериорной, то есть частью анализа post hoc.

Итак, оценить подлинное значение случившегося с Джо не так-то просто, однако очевидно одно: это отнюдь не настолько экстраординарное событие, насколько нам показалось поначалу. Да, было крайне маловероятно, чтобы такое произошло с нашим конкретным Джо, однако с любым из тех, кто очутился на стадионе, это могло произойти с куда большей вероятностью.

 

* * *

 

Какое это имеет отношение к идее, что Земля как пристанище сложной разумной жизни представляет собой редкость? Сама мысль о том, что к нашему появлению на планете могла привести лишь очень специфическая последовательность событий и уникальное стечение обстоятельств, основывается на апостериорных знаниях. И это так, что бы мы ни рассматривали – поразительные шаги молекулярной биологии, которые потребовались, чтобы возникла сложная жизнь, или изумительную последовательность астрофизических событий, которая сформировала Землю в современном виде. Мы с вами стоим и дивимся тому, что вообще возникли – нам кажется, что с точки зрения вероятности это настоящее чудо[207], – и при этом мало чем отличаемся от Джо, который дивится тому, как мало шансов у него было так удачно поймать мяч.

Можно сколь угодно тщательно препарировать всевозможные компоненты истории Земли и ее свойства – от случайности формирования нашей планеты с ее спутником и от уникальности нашей геофизической и экологической истории до всевозможных извивов и коллизий биологической эволюции, – словом, все те свойства, благодаря которым наш уголок Вселенной сделался подходящим для жизни. И мы и в самом деле обнаружим, что каждая деталь очень важна и каждая уникальна во вселенском масштабе, а возникла, вероятно, совершенно случайно. Однако это попросту ничего не говорит нам о том, что само по себе наше существование как сложных разумных живых существ во Вселенной редкость.

Более того, не исключено, что все совсем наоборот. Давайте предположим, что возникновение жизни и эволюция некоторых ее разновидностей в сторону усложнения и появления человекоподобного разума вообще неизбежно везде, где только закрепится жизнь. Примерно как вероятность того, что мяч, с силой запущенный в сторону полной до отказа трибуны, угодит в кого-нибудь из болельщиков. Это не значит, что жизнь всегда может развиться до сложного уровня, однако если диапазон благоприятных возможностей достаточно широк, она не преминет ими воспользоваться.

С такой точки зрения наше присутствие на Земле могло с равной вероятностью стать результатом бесчисленного множества альтернативных историй, а те конкретные характеристики, которые мы обнаруживаем в нашем единичном случае, повторяю, не более чем апостериорные факты. Живые существа, подобные нам (то есть сложноклеточные, сообразительные, наделенные мозгом и речью и склонные к развитию техники), появляются, дай им хотя бы малейший шанс. Мы можем сколько угодно дивиться собственной везучести, это не имеет никакого отношения к действительности. Участник неизбежного события с весьма конкретным, но случайным исходом всегда будет считать, будто он чудо с шансом один на триллион.

Иными словами, любое мыслящее живое существо в любой точке Вселенной всегда будет усматривать в собственных обстоятельствах нечто уникальное – считать, будто они глубоко специфичны и будто, пойди все иначе, шансов на возникновение сложной жизни не осталось бы. Сопротивляться подобной предвзятости, наверное, невозможно – и неважно, редко встречается сложная жизнь или ее везде как грязи. Пока мы не сумеем либо открыть жизнь на какой-то другой планете, или каким-то образом исключить такую возможность полностью, любые апостериорные рассуждения об уникальности наших обстоятельств практически лишены смысла. Чтобы проще было представить себе эту логику, можно задаться вопросом: имеет ли смысл утверждать, что существование предмета, который вы сейчас перед собой видите, крайне маловероятно, или лучше сказать, что у вас, вероятно, недостает знаний, чтобы судить о том, как этот предмет возник? Лично мне выбор ясен.

Если мы становимся сторонниками той или иной теории, то очень дорожим ей, однако давайте проясним: мы говорим не о том, чтобы ответить на вопросы, редко возникает жизнь или нет и действительно ли Земля – уникальное прибежище для нее. Чтобы дать этот ответ, нам нужно больше информации. Здесь мы утверждаем лишь, что, каким бы ни был ответ, нам всегда будет казаться, что мы поймали пресловутый бейсбольный мячик и шансов на это было один на триллион.

Я уже говорил о том, что фундаментальная природа биологического разума еще плохо изучена, и поэтому рано утверждать, что его возникновение – неповторимое событие в череде крайне необычных. Существа вроде легендарных головоногих, возможно, еще докажут нам, что это ошибочное предположение. Подобные же сложности возникают и ниже по цепочке, когда речь идет об условиях на планете, необходимых для возникновения сложноклеточной жизни. А насколько необходимы были именно те биологические и космологические обстоятельства, в которых очутились мы, люди? Мне приятнее предположить, что все не обязательно должно было сложиться так, как на Земле. Однако нам придется подождать, прежде чем мы сможем подтвердить или опровергнуть эту идею.

 

* * *

 

Когда мы думаем о планетах с другим происхождением и другой физико-химической историей, о биологических событиях и эволюционных путях, которые кажутся нам маловероятными, то наталкиваемся на ограниченность собственных знаний. В следующей главе, которая станет последней в этой книге, мы поглядим, где наши поиски упрутся в эту ограниченность. Но прежде предпримем еще одно путешествие, которое позволит нам взглянуть на дальние пределы наших поисков своего места в мироздании – выяснить, как мы можем ответить на вопрос о самой природе реальности, о природе Вселенной в целом, о месте в ней разума. Подобные масштабные философские рассуждения, само собой, также чреваты для неосторожного путника всевозможными опасностями.

Чтобы попробовать разобраться в природе реальности, можно двинуться в двух направлениях. Первое – внутрь, к микроскопическому и молекулярному, а затем еще глубже, в квантовый мир вещества и энергии. Второе – наружу, на огромные масштабы пространства и времени, охватывающие все звезды и галактики, вещество, темное вещество и космическое излучение. Хотя эти направления и противоположны, они, как ни странно, нераздельны. Более того, просто поразительно, сколько всего говорит нам внутренняя Вселенная вещества и энергии о внешней Вселенной и наоборот. Причина проста – самые фундаментальные компоненты реальности берутся из одной и той же шкатулки с сюрпризами. Физика великой архитектуры Вселенной такая же, как и физика атомного и субатомного мира. И нам не придется углубляться в эту невероятную науку, чтобы найти главную подсказку, позволяющую понять, почему конкретные обстоятельства нашего существования фундаментальным образом влияют на то, что мы можем узнать о мироздании, а чего не можем. Оказывается, Вселенная отнюдь не обязана открывать наблюдателю свои тайны.

Одно из величайших космологических открытий[208] за последние двадцать лет состоит в том, что расширение Вселенной – раздувание и рост самой ткани пространства, которое расталкивает галактики друг от друга, – идет с ускорением. Грубо говоря, хотя все вещество во Вселенной обеспечивает достаточно гравитационной тяги, чтобы в конечном итоге замедлить расширение Вселенной, получившее мощный первотолчок в момент Большого Взрыва, сейчас Вселенная повышает темп расширения. Чтобы подтвердить, что она ведет себя именно так, астрономы тщательно изучили то, как тускнеют яркие сверхновые с увеличением расстояния. Оказывается, этот процесс прекрасно соответствует расширению Вселенной с ускорением. Это открытие подтверждено самыми разными астрономическими свидетельствами – например, тем, что звездные скопления и группы галактик с течением времени (в космических масштабах) расширяются, и эфемерным отпечатком вещества на всепроникающем радиационном фоне Вселенной, и об этом я еще расскажу. Главное – то, что примерно 5 миллиардов лет назад Вселенная перестала замедляться и начала ускоряться.

Почему же так произошло? Самый простой ответ – мы еще не знаем, а поскольку мы признаем, что чего-то не знаем, то обозвали причину всеобщего ускорения неожиданно честно – «темной энергией», в честь собственной темноты и невежества. Хороший вариант состоит в том, что это энергия вакуума как такового – зыбучего океана «виртуальных» пар частиц, которые то возникают, то исчезают вследствие фундаментальной природы квантовомеханической неопределенности. Этот океан обладает странными свойствами, например, создает отрицательное давление – испускает отталкивающее гравитационное поле. Расширение Вселенной просто создает место для того, чтобы «плотности энергии вакуума» становилось все больше и больше, и в результате она начинает преобладать в балансе космических энергий и расталкивает пространство еще дальше.

Чем в результате окажется темная энергия, мы пока не знаем, но сегодня она составляет около 70 % общего количества энергии во Вселенной, и, если опустить подробности, можно сказать, что, похоже, она никуда не денется. Как выясняется, это приводит к колоссальным последствиям для того самого периода космического времени, в котором нам с вами выпало жить.

В 2007 году физики Лоуренс Краусс и Роберт Шеррер[209] опубликовали крайне интересное и скандальное исследование на эту тему. Они изучали, как влияет расширение Вселенной на астрономические наблюдения тех или иных ее обитателей, а конкретно – почему Вселенная будущего повернется к космологам, если такие найдутся, совершенно иной стороной.

Для этого они представили себе, как бы выглядела Вселенная в глазах биологического вида, который во всем похож на нас, но живет в галактике в глубинах космоса через 100 миллиардов лет. Если эти существа изготовят устройства вроде телескопов и станут разглядывать в них Вселенную, они обнаружат, что за звездами их галактики… ничего нет. Почему? Потому что темная энергия довела расширение Вселенной до точки, где видимый свет из других галактик растянется до такой степени, что перестанет быть виден. Космос за пределами галактики пропадет из виду.

Существа из будущего, само собой, не обязательно встревожатся, а просто отметят, что Вселенная, содержащая видимый свет, состоит из их «островной Вселенной», их галактики, а больше там ничего нет. Вот, собственно, и все. Однако, спрашивают Краусс и Шеррер, как этот биологический вид разработает точную космологическую теорию, если его данные окажутся настолько ограниченными? Ведь в ничто обратится не только видимый свет далеких галактик, но и другие жизненно важные признаки Вселенной, у которой был момент рождения, и все следы Большого Взрыва.

Еще в 1960-е годы ученые обнаружили всепроникающее фоновое микроволновое излучение. Благодаря этому открытию и удалось доказать идею Большого Взрыва. Микроволновое излучение – это реликты минувшего, когда Вселенная была так горяча, что не пропускала свет: это было примерно через 380 000 лет после Большого Взрыва и примерно 13,8 миллиардов лет назад. Теперь мы регистрируем это фоновое излучение как очень равномерный, однако не абсолютно однородный шум микроволновых фотонов, которые разбегаются по Вселенной во все стороны. Однако через 100 миллиардов лет расширение пространства растворит это реликтовое микроволновое излучения до одной триллионной сегодняшней интенсивности, а фотоны приобретут длину волны в метр и превратятся в радиоволны. А еще позднее наблюдатель изнутри Галактики не увидит и этого, поскольку межзвездный газ станет для электромагнитных волн со все увеличивающейся длиной волны практически непреодолимой преградой.

И это еще не все: в описываемом будущем изменится даже баланс элементов, из которых составлена космическая материя. На сегодня мы видим, что примерно 74 % массы обычного вещества в космосе составляет водород, а 24 % – гелий, и этот состав очень близок к первичным пропорциям водорода и гелия. Вместе с еле заметными следами дейтерия (тяжелого изотопа водорода) баланс этих элементов в основном и позволяет делать выводы относительно состояния юной Вселенной – жаркой и плотной: это, так сказать, отпечатки пальцев Большого Взрыва. Однако пройдет 100 миллиардов лет, и звезды будут посредством термоядерного синтеза преобразовывать в гелий все больше водорода, отчего пропорция сдвинется, и гелия станет целых 60 %. От первоначального соотношения ничего не останется, а следы дейтерия, которые мы находим сегодня, по большей части пропадут – близкий к нам дейтерий в значительной мере уничтожат звезды, а далекий пропадет из виду, поскольку к тому времени мы уже не будем видеть излучения других галактик. Гора в очередной раз родит мышь.

В сущности, история самих звезд находится сейчас на интересном перепутье. Астрономы уже 20 лет знают, что в прошлом звезды в галактиках формировались в гораздо более высоком темпе[210]. В последние годы ученые приложили героические усилия, чтобы при помощи телескопов составить карты и охарактеризовать галактики, существовавшие на разных этапах истории космоса, и по результатам этих наблюдений были проделаны исследования, которые позволили уяснить всевозможные детали с беспрецедентной точностью. Судя по всему, более половины звезд, которые мы наблюдаем сегодня, возникли в период от 11 до 8 миллиардов лет назад, когда разыгралась настоящая вакханалия звездопроизводства. Сегодняшние темпы формирования звезд составляют едва лишь 3 % от того, что было 11 миллиардов лет назад, и довольно быстро снижаются. А следовательно, за остаток жизни Вселенной будет создано лишь 5 % от того числа звезд, которое уже возникло.

Это неожиданно и неприятно. Выходит, мы существуем на пороге долгих космических сумерек. А поскольку подавляющее большинство звезд составляют маленькие красные звезды – и они же живут дольше всех – получается, что Вселенная в целом становится тусклее и краснее, и так будет долго-долго. В наши дни в некоторых галактиках звезды вообще не возникают. Ученые полагают, что и наша Галактика – Млечный Путь – переживает переходный период – сокращает производство новых звезд и планет и создает лишь одну-две звездные системы в год. Это примерно средний показатель сегодняшней производительности галактик.

Почему так получается? Отчасти потому, что сырье для создания новых звезд – газ и пыль, оставшиеся от предыдущих звездных поколений, поначалу собирались в сгустки благодаря гравитации, а теперь снова развеиваются. Энергия звезд и сверхновых, а также та энергия, которую создает вещество, падающее на гигантские черные дыры[211], рассеивает вещество в галактиках. А галактики растут и сливаются несопоставимо более вяло, чем когда-то, а между тем именно эти процессы активизируют и стимулируют конденсацию новых звезд из межзвездного сумрака. Правда, слияния галактик все равно хоть редко, но происходят. Пройдет 4–5 миллиардов лет, и соседняя с нами галактика Андромеда натолкнется на нас – и в результате этого космического «тектонического сдвига», вероятно, будет создана целая плеяда новых звезд. Правда, по вселенским масштабам продлится это недолго, может быть, пару сотен миллионов лет, а затем самые крупные и яркие из новых звезд умрут, и мы вернемся к неизбежному будущему – тусклому и красноватому.

Если сопоставить все эти факты, невольно придешь к выводу, что мы существуем, вероятно, в единственный период в истории мироздания, когда из наблюдений над окружающим миром можно сделать верные заключения о самой природе Вселенной. Еще 10 миллиардов лет назад, когда Вселенной было 3–4 миллиарда лет от роду, нам пришлось бы потрудиться, чтобы зарегистрировать возникновение темной энергии и ее влияние на расширение пространства. Пройдет еще 100 миллиардов лет – и наблюдатели, скорее всего, сделают вывод, что живут в стационарной Вселенной. Рождение и смерть новых звезд и планет будут наблюдаться крайне редко, и не будет никакого легкого способа распознать, что пространство за пределами Галактики расширяется, и никакого легкого способа сделать вывод, что возраст Вселенной конечен.

Все это очень интересно, однако есть и еще один вопрос, пожалуй, самый существенный. А уверены ли мы вообще, что Вселенная, которую мы наблюдаем в данный момент, ничего от нас не утаивает? Что если мы подобны тем самым невезучим обитателям далекого-далекого будущего и наше представление о реальности искажает природа Вселенной как таковая? Не думаю, чтобы у кого-нибудь из нас был готов ответ на этот вопрос, однако он показывает, что на пути к пониманию своего места во Вселенной мы столкнулись с очередным препятствием. Обстоятельства, в которых мы живем – в космическом смысле слова, – влияют на научный прогресс на нашей планете, что мы наблюдали, в частности, на примере того, какую форму имела орбита Марса в те годы, когда жил Кеплер, – и точно так же не исключено, что на наши попытки оценить свое значение в космических масштабах сильно влияет все то, что мы знаем о возрасте и размерах Вселенной. Обитатели воображаемой одинокой галактики в далеком-далеком будущем поняли бы, что их солнце всего лишь одна из нескольких сотен миллиардов таких же звезд – примерно так же, как и мы представляем себе свое положение на Млечном Пути. Однако для них это будет, так сказать, позиция на шахматной доске в целом, положение дел во всем космосе, а это сильно отличается от нашей нынешней картины мира и, прямо скажем, гораздо унизительнее.

Возможно, они поймут, что такой скромной Вселенная была не всегда, если отметят, что со временем все больше и больше водорода превращается в более тяжелые элементы. Если звездная археология и астрофизика будут у них достаточно развиты, обитатели будущего сумеют заключить, что самые старые маленькие красные звезды и звездные остатки и в самом деле насчитывают примерно сотню миллиардов лет. Не знаю, какие космологические модели наши преемники построят для объяснения подобных наблюдений, однако убежден, что с их точки зрения все будет выглядеть логично. Однако их космос окажется очень маленьким, совсем крошечным по сравнению с той Вселенной, которую знаем мы, обладающим весьма скудным запасом звезд, планет и возможностей для зарождения жизни. А по меркам астрофизики он будет еще и необычайно старым.

Какие же выводы о своем месте во Вселенной сделают гипотетические обитатели подобного места? На самом деле они столкнутся примерно с теми же трудностями, что и мы. Не исключено, что и в нашем мировоззрении тоже недостает важнейших сведений о природе вещей, а мы и не подозреваем, что их недостает. Раз мы это понимаем, придется быть готовыми к применению новых стратегий – и обойти подробности нашего положения в космосе, редкость планет, подобных Земле, биологическую игру в кости и трудности апостериорной статистики. Поколебать сложившуюся картину нашей заурядности в космических масштабах пока что очень трудно, однако столь же бесспорно, что некоторые аспекты нашего места в мироздании весьма необычны. Похоже, стоит смириться и взглянуть в лицо неприятной правде.

 

(Не) заурядность

 

 

Все мы обитаем на маленькой планетке, которая вращается вокруг одной звезды средних, так сказать, лет среди примерно 200 миллиардов звезд, входящих в исполинский вихрь вещества, из которого состоит галактика Млечный Путь. По оценкам ученых, наша Галактика – всего лишь одна из нескольких сотен миллионов подобных структур в наблюдаемой Вселенной, которая занимает объем, простирающийся от нас во все стороны более чем на 430 000 000 000 000 000 000 000 (4,3 × 10) км[212].

Эта область разрослась до таких размеров благодаря постоянному расширению пространства, которое началось в момент Большого Взрыва примерно 13,8 миллиардов лет назад. Астрономы подсчитали, что эту зияющую бездну занимает по меньшей мере миллиард триллионов звезд и что за последние миллиарды лет очень много звезд и исчезало, и появлялось.

По мелким человеческим масштабам это просто прорва вещества и ужасно много места. Наш биологический вид возник буквально в последнюю секунду чудовищно долгой истории Вселенной, которую, судя по всему, ждет еще более долгое будущее, с нами или без нас – неизвестно. Каким же может быть наше значение? Задача найти свое место, оценить свою влиятельность при таком положении дел выглядит как монументальная шутка. Похоже, вообразить, будто мы вообще играем хоть какую-то роль, – несусветная глупость.

И все же именно этим мы и занимаемся, несмотря на принцип Коперника, предполагающий, что мы совершенно заурядны, принцип, который руководит нами вот уже несколько веков. Именно он послужил для нас главной вехой на пути к выявлению скрытой структуры космоса и природы реальности. Однако на страницах этой книги мы познакомились с количественными доказательствами того, что оценить нашу значимость не так-то просто, и этих доказательств с каждой главой становилось все больше. Одни открытия и теории показывают, что жизнь вполне может быть явлением заурядным и распространенным, другие – что все совсем наоборот. Мне кажется, уже настало время дать кое-какие ответы, однако мы в здравом уме и, разумеется, не собираемся подводить итог под вопросом о своем месте в мироздании.

Итак, что же нужно сделать, чтобы дойти до сути? Как подступиться к тому, чтобы свести воедино все эти нити открытий, наблюдений и гипотез – от бактерий до Большого Взрыва, – чтобы все-таки прийти к заключению, можно ли нам считать себя чем-то выдающимся или не стоит? А может быть, не все нити следует учитывать – и не исключено, что одни доказательства противоречат другим… Например, может статься, что для зарождения и эволюции жизни архитектура Солнечной системы не так важна, как мы думаем, или она не дает нам разглядеть что-то происходящее в космическом окружении на более глубоком уровне. Мы узнаем о макрокосме и микрокосме все больше и больше – но какие из этого следуют выводы относительно наших стараний разобраться, есть ли еще где-нибудь живые существа? И какие шаги нам теперь следует сделать? Сделайте глубокий вдох: сейчас мы попробуем разобраться, какова фундаментальная природа самой жизни.

 

* * *

 

Эту книгу я начал с рассказа о том, как Антони ван Левенгук заглянул в чуждый нам мир микрокосма. Это достопамятное нисхождение по длинной лестнице убывающих масштабов в полную жизни Вселенную внутри нас дало нам один из первых намеков на то, что составляющие наших организмов, совокупность наших молекулярных структур существуют на одном из концов биологической шкалы размеров. Сомневаюсь, чтобы до той секунды, когда Левенгук так сильно удивился, люди имели возможность даже задуматься об этом – разве что мимоходом и очень поверхностно.

На Земле есть организмы гораздо крупнее и массивнее нас – взгляните хотя бы на китов и деревья. Есть и тесно сплоченные экосистемы, которые вполне можно было бы назвать самыми большими живыми существами на свете, например, опята, чей клонированный коллектив может занимать площадь в два километра в поперечнике. Однако мы гораздо ближе к верхнему пределу размеров (всего в тысячу раз меньше максимума), чем к микроскопическому концу спектра живых существ. От микрокосма нас отделяет огромная физическая брешь. Самая маленькая бактерия, способная к самовоспроизведению, насчитывает в поперечнике всего 0,1 микрона. Самые маленькие вирусы еще в 10 раз меньше. Человеческий организм примерно в 10–100 миллионов раз больше, чем самые простые известные нам формы жизни.

Да и среди теплокровных сухопутных млекопитающих[213] мы относимся скорее к крупным видам, правда, все же не самым большим. На противоположном конце шкалы находятся самые маленькие наши родичи – карликовые белозубки, крошечные комочки меха и плоти, не достигающие и двух граммов веса. Они существуют на грани возможного – тепло, которое источают их тельца, с трудом удается компенсировать непрерывным обжорством. Однако большинство млекопитающих по размеру ближе к белозубкам, чем к нам, – настолько, что средний вес тела млекопитающего составляет 40 граммов. Наши сложноклеточные разумные организмы находятся ближе к верхней границе диапазона – крупнее нас лишь относительно немного видов млекопитающих. Вероятно, дело в эволюционном сдвиге, поскольку хорошая ниша отчасти стимулирует организм становиться больше, чтобы лучше приспосабливаться к переменам обстановки и сопротивляться хищникам.

Итак, мы, бесспорно, существуем почти на верхней границе размеров, на стыке между разнообразием мелких биологических видов и относительно ограниченными вариантами крупных.

А теперь вспомним об устройстве нашей планетной системы. Мы убедились, что она во многих отношениях необычна. Наше Солнце принадлежит не к самой многочисленной разновидности звезд, наши орбиты в данный момент круглее обычных и отстоят друг от друга дальше, среди соседних планет нет супер-Земли. Если бы вы были архитектором планетных систем, то нашу систему сочли бы скорее чем-то необычным, легким отклонением от нормы. Некоторые подобные качества коренятся в том, что наша Солнечная система, в отличие от большинства других систем, избежала полномасштабной динамической перестановки. Это отнюдь не означает, что нам гарантировано безмятежное будущее: мы уже знаем, что пройдет несколько сотен миллионов лет, и в жизни нашей системы вполне может начаться более хаотичный период. А пройдет еще 5 миллиардов лет – и Солнце раздуется в старческих судорогах и довольно резко переиначит свойства своих планет. Сегодня все указывает на то, что мы живем на переломе, на какой-то границе времен, на переходе от периода юности звезд и планет к подкрадывающейся старости. То, что мы существуем именно в такие относительно спокойные времена, в ретроспективе не так уж и удивительно. Таковы и прочие обстоятельства нашего существования: мы живем в умеренных условиях, где не слишком жарко и не слишком холодно, где химическая среда не слишком агрессивная и не слишком инертная, где все не слишком быстро меняется, но и не слишком застаивается.

Кроме того, мы убедились, что астрофизически спокойная область простирается далеко за пределы нашей Галактики. С точки зрения Вселенной в целом мы существуем в период гораздо более мирный, чем бурная и жаркая юность космоса. Создание звезд повсеместно приостанавливается. Другие солнца со своими планетами формируются в темпе, составляющем менее 3 % от того, что было 8–11 миллиардов лет назад. Звезды по всей Вселенной понемногу начинают вымирать. В космологическом масштабе всего лишь 5–6 миллиардов лет назад Вселенная еще замедлялась после Большого Взрыва. Таким образом, мы опять живем в периоде мягкого перехода. Темная энергия, составляющая природу вакуума, ускоряет рост пространства и препятствует развитию относительно крупных космических структур. Но это означает, что жизнь в далеком будущем обречена на унылое одиночество во Вселенной, расшифровать которую будет все сложнее и сложнее.

Если свести все это воедино, становится ясно, что наше представление о внешнем и внутреннем космосе сильно ограниченно. Это очень узкий взгляд. И в самом деле, интуитивное отношение к случайным событиям и научное развитие статистических методов при других обстоятельствах, другом соотношении порядка и беспорядка, пространства и времени были бы иными. А то самое обстоятельство, что мы очень изолированы от всей другой жизни в космосе – в такой степени, что мы до сих пор ни разу не натыкались на нее, ни разу не замечали никаких ее проявлений, – сильнейшим образом влияет на то, какие выводы мы делаем.

Наконец, чтобы сделать полный круг и вернуться к антропной аргументации, о которой мы говорили в самом начале, – даже глубинные свойства Вселенной и те показывают, что мы находимся в тонком равновесии на самой грани. Малейший сдвиг в ту или иную сторону – и вся природа мироздания была бы иной. Стоит чуть-чуть подкорректировать относительную силу гравитации – и либо вообще не смогут возникнуть звезды и, следовательно, негде будет выковывать тяжелые элементы, либо сформируются и тут же исчезнут огромные звезды, не оставив по себе ничего, никаких потомков. Подобным же образом, стоит изменить электромагнитное взаимодействие – и химические связи между атомами станут либо слишком сильными, либо слишком слабыми, чтобы создавать молекулярные структуры в таком ассортименте, который обеспечит всю сложность мироздания.

 

* * *

 

Что же из этого следует? Я бы сказал, что все эти факты подталкивают нас к новому научному представлению о своем месте в космосе, к отходу и от принципа Коперника, и от антропной аргументации, – и я считаю, что не за горами тот день, когда это представление и само превратится в полноправный принцип. Пожалуй, можно назвать его космически-хаотическим принципом – золотой серединой между порядком (по-древнегречески слово «космос» как раз и означает хорошо организованную систему) и хаосом. В сущности, жизнь – а особенно жизнь, подобная земной, – всегда будет находиться на границе, на переломе между зонами, каждую из которых характеризует свой набор показателей: энергия, местоположение, масштаб, время, порядок и беспорядок. Наглядное проявление подобных показателей – стабильность или хаос планетных орбит, либо колебания климата и геофизики на планете. Стоит отойти от таких границ слишком далеко в любую из сторон – и равновесие, обеспечивающее условия для жизни, сменится неблагоприятными условиями. Жизнь, подобная нашей, требует правильной смеси ингредиентов, спокойствия и хаоса, инь и ян[214].

Близость к подобным граням оставляет простор для перемен и вариаций, однако не настолько сильных, чтобы совсем перевернуть систему с ног на голову. Очевидная иллюстрация такого принципа – понятие «Зоны обитаемости»[215] вокруг звезды, где планета оказывается в достаточно мягких условиях, которые описываются набором параметров, колеблющихся в узком диапазоне. Однако для существования жизни зона обитаемости должна быть гораздо динамичнее, она не может быть зафиксирована в пространстве или во времени. Нет – это гибкая, постоянно дрейфующая и колеблющаяся функция множества переменных, примерно как траектории, которые описывают руки и ноги актера.

Если то, что жизнь существует только при таких обстоятельствах, – это универсальный закон, на вопрос о нашем месте в мироздании можно получить несколько интересных ответов. В отличие от строгих идей Коперника, которые подчеркивают нашу заурядность и выводят из этого обилие планет с подобными же условиями во всей Вселенной, идея, что жизнь требует изменчивого, динамичного равновесия набора параметров, значительно сужает круг возможных вариантов. С такой точки зрения вероятность зарождения жизни отличается от вероятности, выводимой из антропного принципа, который в предельном случае предсказывает не более чем единственный случай возникновения жизни во всем пространстве и времени. А новый закон, в сущности, выявляет места, где жизнь может зародиться, и потенциальную частотность ее возникновения. Он определяет фундаментальные свойства среды, необходимые для существования жизни, в пределах виртуального пространства из множества пляшущих параметров – то есть составляет карту плодородных зон.

Подобный закон жизни не обязательно предполагает, что живые существа – это какая-то особая составляющая реальности. Возможно, биология и вовсе самое сложное физическое явление во Вселенной – и не только в нашей, но и в любой другой Вселенной, где жизнь в принципе возможна. Однако это, вероятно, явление именно что незаурядное – особенно сложная природная структура, которая возникает при сочетании определенных обстоятельств на грани порядка и хаоса.

 

* * *

 

Несколько человек, изучающих биологическую Вселенную, предложили принять подобный динамический подход к концептуализации жизни как феномена, который балансирует на грани беспорядка или на краю порядка. Вспоминается один мой давний разговор с ведущим астробиологом и физиком Майклом Сторри-Ломбарди[216], когда он сформулировал идею, что жизнь – это нечто, возникающее на грани, где бы эта грань ни появилась. Он имел в виду, что жизнь – это совокупность явлений на грани порядка и хаоса.

Можно представить себе, что на такой грани возникает что-то вроде разности потенциалов, градиента потенциала, благодаря которому может возникнуть ток. Только этот биологический градиент многомерен, это пересечение доступной энергии, порядка-хаоса и времени.

К подобным выводам пришли и другие ученые. Физик Стюарт Кауфманн[217] из Университета штата Вермонт, изучающий природу сложности как таковую, предположил, что сложно устроенные биологические системы могут возникать спонтанно в результате совокупного действия многих простых правил и законов. Все вместе эти простые правила и особенности поведения атомов, молекул и термодинамических систем способны производить колоссальную сложность и хаос, однако из этой мешанины будут возникать неожиданные структуры и «самоорганизовываться» в нечто, по сути дела, принципиально новое. Одновременно мы начинаем выявлять качества тех мест во Вселенной, где возникают чрезвычайные обстоятельства, границы между состояниями вещества, пространства и времени – от галактик до газа, звезд и планет. Просто поразительно, как это космическое путешествие приводит в точности к одной и той же интерпретации – что эти грани и стыки и есть места, где возникает жизнь. А подобное осмысление места жизни в великой схеме мироздания прямо приводит к разрешению противоречия между убедительными, однако не нашедшими объяснения аргументами: тем, что жизнь должна встречаться в изобилии, и тем, что она, тем не менее, возникает очень редко.

 

* * *

 

В этой книге я показал, что целый ряд наблюдений – и в химии, и в биологии, и в физике планет – показывают нам, что механика жизни представляет собой ничуть не удивительное логическое продолжение всего, что мы знаем о Вселенной. Химический состав и природа космоса порождают необходимый строительный материал, из которого строится жизнь на Земле. И основные глубинные процессы, на которых жизнь работает – переплетенные, взаимосвязанные метаболические процессы, ход которых обеспечивают в пространстве и времени одноклеточные организмы, базируются на том же химическом фундаменте.

В этом смысле жизнь на Земле не представляет собой ничего особенного. Сырья для нее полно везде – от межзвездного пространства до протопланетных систем, оно хранится даже во вселенских ископаемых – веществе метеоритов и комет, которого так много в нашей Солнечной системе. Более того, все, что мы знаем о формировании планет, показывает, что существуют механизмы, вполне способные обеспечить условия для зарождения жизни на юной каменистой планете. И снова оказывается, что нет никакого очевидного барьера между ничем не примечательным содержимым и состоянием Вселенной и молекулярными и термодинамическими составляющими жизни на планете вроде Земли. В довершение всего мы теперь уверены, что в нашей Галактике великое множество каменистых планет – по нынешним оценкам десятки миллиардов, – и условия на многих из них, похоже, приближаются к диапазону, подходящему для возникновения жизни. В сущности, все указывает на то, что набор условий на нашей планете никак нельзя назвать уникальным – Коперник бы нами гордился.

Отметим, что если жизнь встречается редко, очень странно, почему Вселенная при этом так старательно расставляет нужные декорации. Ей это вовсе не обязательно делать. Даже антропная аргументация требует лишь того, чтобы жизнь была возможна, а не того, чтобы она идеально вписывалась в мироздание. Однако если жизнь в любой форме столь необычна, как-то противоестественно, что Вселенная обеспечивает такие замечательные условия для нее. Если налицо подобный нереализованный потенциал, это значит, что и в самом деле существует что-то «особое», что обеспечивает переход от абиотической химии к биотической, что-то такое, что бывает только в местах, тождественных нашей Земле, – а я уже показал, что на данный момент подобная гипотеза обладает малым статистическим весом.

Однако, хотите или нет, некоторые наблюдения, касающиеся нашего места во Вселенной, противоречат друг другу. Исследования галактик говорят нам, что наше Солнце – звезда не самой распространенной разновидности. Открытие экзопланет говорит нам, что наша планетная система – не самый распространенный вариант организации орбит и расстояний между ними. В Солнечной системе нет даже представителей самых распространенных видов планет, и она, похоже, убереглась от радикальных перестановок, через которые проходит большинство систем. Это не означает, что в отдаленной перспективе ее не ждет орбитальный хаос – бич всех планетных систем, однако она менее большинства известных систем склонна к разрушительным переменам.

Кроме того, мы живем в один из нечастых периодов истории Вселенной, когда наши глаза и телескопы имеют возможность делать осмысленные наблюдения над природой окружающего мира. Если бы мы жили в далеком прошлом или будущем, то упустили бы жизненно важную информацию. На более локальном уровне мы живем в условиях, которые не скрывают от нас природу Вселенной, однако и не особенно облегчают задачу ее изучения. Живи мы в другом месте, нам было бы гораздо проще интерпретировать картину структуры мироздания и свойства фундаментальных законов, например, законов механики и тяготения.

При желании на нашей собственной планете можно найти свидетельства того, что наше существование как сложноклеточных разумных организмов весьма маловероятно, и им мы обязаны совпадению множества явлений. Причем многие из этих совпадений кажутся чисто случайными – это результат массового вымирания или резкой перемены условий, которые были вызваны самыми разными силами, в том числе и внеземными, как например, гигантский астероид – убийца динозавров. В число этих факторов входит и слияние двух примитивных живых существ (случай с митохондриями), которое стало новым, крайне маловероятным и крайне необходимым шагом на пути к созданию сложной жизни.

Так что же – заурядны мы или нет? Наши мощные инструменты математической вероятности и объективно доказанная предвзятость при ретроспективной оценке событий указывают, бесспорно, что ни то, ни другое нельзя утверждать наверняка. Однако сегодня мы как никогда близки к ответу – мы на грани того, чтобы все наконец узнать.

 

* * *

 

Вывод, который делаю я сам для себя[218], позволяет увязать все, о чем мы с вами беседовали. Вспомните, что я говорил о жизни как о феномене, возникающем на грани, о том, что жизнь зарождается на пляшущих стыках между разными наборами переменных, описывающих физические условия. Теперь давайте применим это правило к противоречию между заурядностью и уникальностью. К какому варианту мы склонимся?

Вот к какому: наше место во Вселенной – особое, но не значительное, уникальное, но не неповторимое. Принцип Коперника одновременно и верен, и неверен, и пора это признать.

Взгляните на все факты, которыми мы теперь располагаем – от химии космоса до динамики формирования планет, – на то, как эволюционируют бок о бок биология и геофизика у нас на Земле. Думаю, не приходится сомневаться, что во Вселенной предостаточно мест, где возможно создание среды для зарождения жизни, основанной на тех же принципах и состоящей из тех же кирпичиков. Благодаря этой множественности конкретно наша, человеческая биология, ее эволюционная история и ее связи с условиями в масштабах планеты и Солнечной системы вполне могут быть уникальными, если исследовать их при помощи очень точных циркуля и линейки. Однако из этого не следует, что жизнь – и даже сложная жизнь – не может достичь такого же состояния другими путями. Возможно, мы особые и уникальные, однако нас окружает Вселенная таких же сложных, таких же особых и уникальных живых существ, которые просто описывают иную траекторию. Наша уникальность уравновешивается тем, что в пышной панораме жизни мы не представляем собой ничего исключительного, мы просто один из вариантов манифестации одного и того же явления.

При всем при том любой апостериорный анализ того или иного явления – в противовес интуиции – требует, чтобы изначальная предпосылка была такова, что это явление – самый распространенный вариант исхода событий. Бейсбольный мяч, который угодил в руку Джо, все равно должен был в кого-то да попасть. Это ясно. Поэтому вполне может быть, что появление жизни, подобной земной, не зависело от тонкостей наших космических обстоятельств – то есть вся необычность Солнечной системы в данном случае всего-навсего ложный след.

Но есть и другая крайность – может быть, что определенные качества нашей окружающей среды играют в возникновении жизни определяющую роль, что именно они обеспечили тонкую настройку, обеспечивающую наше существование. Однако, как я показал, свидетельства в пользу этой точки зрения могут натолкнуть на ошибочные выводы. Поэтому лично я склоняюсь в сторону нашей особости и даже, возможно, уникальности, но не значимости. Космические условия приводят к существованию огромного количества планет, среда на которых скорее напоминает земную, чем непохожа на нее. Они могут быть и больше, и меньше Земли по размерам, однако обладают тем же потенциалом. Мы уже знаем, что в нашей Галактике десятки миллиардов подобных каменистых планет. Ни одна из них наверняка не повторяет в точности нашу Землю ни в прошлом, ни в настоящем, ни в будущем – такого просто не может быть из-за хаоса и случайности. Однако мне кажется, что это разнообразие – не препятствие к возникновению жизни. Если среда на планете не так уж сильно отличается от земной, и простая, и сложная жизнь, возможно, найдут способ зародиться.

Идея в том, что есть много способов создать основную механику живых организмов из одного и того же строительного материала. В сущности, я имею в виду, что разделение жизни на Земле на огромные домены бактерий, архей и эукариотов – это всего лишь один вариант, один исход событий. Однако некоторые ученые ратуют за так называемую конвергентную эволюцию[219] – считают, что существует лишь ограниченное количество применимых биологических моделей и что эволюция всегда дрейфует в их сторону. Подобная аргументация позволяет объяснить, как получилось, что и позвоночные, например, люди, и головоногие, например, кальмар, обладают похожими «глазами-линзами», хотя наши эволюционные пути разошлись давным-давно.

Принцип конвергентной эволюции применялся еще и для того, чтобы доказать, что существует лишь ограниченное количество «применимых» вариантов поведения белков – ограниченный набор различных молекулярных структур, способных выполнять одни и те же функции. Ограниченность инструментария белков показывает, что для существования жизни в каком бы то ни было уголке Вселенной должны появиться одни и те же молекулы. Не исключено, что подобное биохимическое единообразие снижает количество возможных биохимических механизмов и биологических моделей зарождения жизни повсеместно во Вселенной. Однако я не убежден, что это можно считать доказанным, по тем же причинам, которые так сильно затрудняют ретроспективную оценку случайных событий: если считать Землю за образец, мы рискуем впасть в пагубное заблуждение.

Мне кажется, что точка зрения, которую я сейчас объясняю, – это самое оптимистичное толкование накопленных на сегодня данных. Оно допускает и изобилие жизни во Вселенной, и нашу особость. Оно не противоречит всему, что говорят нам на данный момент статистические оценки. И есть у него еще одно волшебное качество – его можно проверить, оно подводит нас, пожалуй, к самому интересному варианту: собравшись с силами, мы сумеем выйти за рамки собственных обстоятельств и, помимо особости, обрести еще и значимость. Ведь несмотря на то, что гипотеза, которую я представил, стала конечным результатом тщательной оценки колоссального массива доступных нам данных, задача еще отнюдь не решена. Открытия и гипотезы, о которых вы прочитали на этих страницах, выводят нас на неизведанную территорию. Эти рубежи – декорации для тех историй, которые я оставил напоследок: одни – о научном риске, другие – о фантастических предположениях, которыми тем не менее хочется поделиться, третьи – о вопросах, которые мы должны себе задать.

 

* * *

 

18 августа 1977 года американский астроном Джерри Эйман сидел за кухонным столом и листал бесконечные страницы компьютерной распечатки. С этих страниц на него изливался зашифрованный поток циферок и пробелов, расположенных ровными колонками. Тщательно прочесав эту чащобу информации, Эйман вдруг заметил на одной странице весьма необычную комбинацию. Вместо цифр от 0 до 9 компьютер выдал колонку символов 6EQUJ5. Эйман схватил красную ручку, обвел эти символы, а слева, на полях, написал: «Ого!» («Wow!»).

Этот клочок бумаги с плоховато пропечатанными символами и эмоциональной пометкой на полях, по мнению некоторых ученых, – сигнал из космических глубин, который больше всех зарегистрированных на сегодня похож на искусственный и преднамеренный, на сигнал, который отправили разумные существа.

Эта распечатка была сделана за несколько дней до этого, 15 августа 1977 года, и на ней показаны результаты анализа радиосигналов, зарегистрированных телескопом «Большое ухо»[220], стоящим в пустоши возле города Делавэр в штате Огайо. «Большое ухо» – это прямоугольная структура площадью более трех футбольных полей, замощенная металлическими панелями, а по бокам оканчивающаяся двумя конструкциями наподобие оград. В то время телескоп и в самом деле был настроен на прием весьма специфических сигналов.

По мере вращения Земли «Большое ухо» сканировало проплывающие над ним небеса и улавливало радиосигналы в пятидесяти разных диапазонах частот. В их число входили и те, которые перекрывались с особой природной частотой – той самой, с которой излучают атомы водорода, когда их протон и электрон меняют квантовые состояния спина. На первый взгляд это довольно скучно, однако ученые придают этой частоте – так называемой радиолинии нейтрального водорода на частоте 1400 мегагерц или на волне 21 см – огромное значение. Она соответствует излучению межзвездного и межгалактического водородного газа, а если зарегистрировать ее из космоса, показывает содержание влаги в нашей атмосфере и даже соленость океанов. А кроме того, в общегалактическом радиошуме она находится на довольно-таки тихом участке – как раз в том месте, где хочется прислушаться к каким-нибудь интересным явлениям. Именно поэтому радиолинию нейтрального водорода нередко называют «космическим водопоем» электромагнитного спектра.

Итак, это особая частота, по природе своей вездесущая – и к тому же, как правило, она не «мигает» и вообще ведет себя на редкость смирно и постоянно – просто гудит себе по всему мирозданию. Именно поэтому телескоп «Большое ухо» и слушал ее – поскольку в августе 1977 года Джерри Эйман и его коллеги как раз искали инопланетные сигналы в рамках программы SETI («Search for Extraterrestrial Intelligence», «Поиски внеземного разума»).

 

Рис. 15. Сигнал «Ого!»

Сильный узкополосный космический радиосигнал. Повторно зарегистрировать его не удалось (изображение печатается с разрешения Дж. Эймана, обсерватории «Большое ухо» и Североамериканской астрофизической обсерватории (NAAPO)).

 

Последовательность 6EQUJ5 на распечатке данных с «Большого уха» отмечала внезапный радиовсплеск. Как правило, слабым сигналам естественного шума соответствовали лишь пробелы или цифры 1, 2 или 3. Но если сигналы оказывались достаточно сильными, компьютеру приходилось переходить на буквы, а буква U означала радиосигнал примерно в 30 раз сильнее фонового космического излучения. Этот всплеск был зарегистрирован в течение того времени, когда внимание «Большого уха» было нацелено на вполне конкретный участок неба – на протяжении 72 секунд. Кроме того, он появился почти точно на частоте нейтрального водорода – то есть у «космического водопоя». А потом исчез. И больше ни разу не был зарегистрирован.

О сигнале «Ого-го» написано очень много. Сам Джерри Эйман[221] тщательно исследовал множество вариантов, когда этот всплеск объяснялся бы вполне прозаическими причинами, однако ни один из них не подтвердился. Крайне маловероятно, чтобы сигнал был вызван какими-то факторами на Земле или даже на ее орбите, будь то пролетающий спутник или какой-то космический аппарат. Но если этот сигнал дошел до нас из космоса, мы попросту не знаем, что это было и откуда прилетело, поскольку «Большое ухо» не могло сколько-нибудь точно указать место, откуда сигнал исходил.

С семидесятых годов астрономы узнали очень много нового о так называемой «быстропеременной Вселенной» и о природных явлениях наподобие гамма-всплесков, пульсарных глитчей, черных дыр, изрыгающих свет, и других событиях, которые наблюдаются всего один раз. Однако точного соответствия того, что зарегистрировал телескоп «Большое ухо», никто так и не нашел, поэтому тайна остается тайной.

Эта поразительная история, кроме всего прочего, показывает, с какими трудностями постоянно сталкиваются все проекты в рамках SETI: фрагментарную, мимолетную информацию невозможно ни подтвердить, ни истолковать. Более того, наши попытки непосредственно зарегистрировать сигналы, преднамеренно отправленные внеземными цивилизациями, на сегодняшний день ни к чему не привели.

Отсутствие бесспорных доказательств существования внеземного разума оставляет безграничный простор для спекуляций, и самые утонченные из них опираются на так называемый парадокс Ферми[222], названный в честь великого итальянского физика Энрико Ферми. Все началось в 1950 году, когда Ферми за дружеским обедом с коллегами заметил, что Галактика очень стара, звезд в ней предостаточно, так что если бы жизнь была явлением распространенным, в каждом уголке Вселенной кишели бы развитые цивилизации. Вопрос – и парадокс – в том, почему мы их не наблюдаем.

На первый взгляд это очень дельный вопрос, и для ответа на него написаны целые тома. А между тем разрешить этот парадокс мы не можем все по той же причине – у нас мало информации. Можно придумать тысячи причин, почему никто не явился на наш космический порог с добрососедским визитом: то ли межзвездные путешествия – это очень трудно, то ли разумная жизнь склонна к самоуничтожению, то ли жизнь вообще встречается очень редко, то ли инопланетный разум настолько чужд нашему, что мы не в состоянии распознать его сигналы, то ли он предпочитает помалкивать, то ли инопланетяне уже здесь, просто мы этого не понимаем. Шутить по этому поводу можно сколько угодно, ни в чем себе не отказывайте.

Если бы у нас было хоть одно достоверное свидетельство, мы сразу вышли бы из тупика. А пока что поиск внеземного разума – занятие трудное, рискованное и чреватое осложнениями. Однако я искренне считаю, что дело того стоит. В отсутствие знаний остается только одно – стараться их раздобыть. И это самое главное. На страницах этой книги мы не раз и не два сталкивались с необходимостью определить, каким будет следующий шаг, какой тест однозначно покажет, есть ли жизнь вне Земли. Проекты SETI – это одна крайность: их участники сделали поиски внеземного разума смыслом своего существования. Однако есть и другие варианты.

Например, появление науки об экзопланетах породило новую исследовательскую стратегию поисков жизни. Эта стратегия ищет не структурированные сигналы и не феномены искусственного происхождения, а скорее признаки тех самых взаимосвязанных биогеохимических механизмов, которые имели место у нас на Земле в последние 4 миллиарда лет. Жизнь изменяет химию окружающей среды, нарушает ее равновесие. Например, стоит взглянуть на Землю издалека при помощи нужных инструментов – и заметишь присутствие в атмосфере и кислорода, и метана. Это необычная комбинация. Кислород легко вступает в химические реакции, со временем он должен прореагировать с минералами на поверхности каменистой планеты, поэтому в атмосфере его станет меньше. Еще лучше кислород взаимодействует с метаном – получается углекислый газ и вода. Если в атмосфере удастся зарегистрировать оба газа, это подскажет, что есть что-то такое, что постоянно пополняет их запасы, а один из лучших источников обоих веществ – это сама жизнь. Есть и другие молекулы, которые подобным же образом показывают, что на планете есть жизнь, и их можно обнаружить при изучении спектра света, который поглощается или испускается теми или иными составляющими среды на этой планете. Например, некоторые газы – закись азота или соединения серы – могут участвовать в метаболических процессах в масштабах планеты. Есть и другие физические явления, которые свидетельствуют о некоторых интересных вещах, происходящих на локальном уровне на землеподобной планете. Отблеск океанской глади, количество и текстура облаков из водяного пара, даже красноречивые цвета фотосинтетических пигментов – все это явные свидетельства того, что происходит на поверхности планеты. Возьмем, к примеру, растения на суше. Хлорофилл в их листьях (содержащийся в хлоропластах, которые, вероятно, когда-то были эндосимбиотическими сине-зелеными водорослями) поглощает многие частоты видимого света, однако отражает зеленые длины волн, поэтому растения кажутся глазу зелеными. Однако растения еще и сильно отражают и передают свет, близкий к инфракрасному, отчего инфракрасное излучение отражается от него в целых десять раз лучше, чем видимый свет[223]. На это мы опираемся, когда изучаем Землю со спутников и измеряем, сколько у нас растительности и сколько ее мы теряем. Похоже, что этот оптический трюк растения проделывают, задействуя как клеточные структуры, так и фотосинтетические пигменты. Может быть, перед нами феномен, характерный исключительно для Земли, однако не исключено, что это свойственно любой биосфере, которая питается излучением звезды.

Подобные явления позволяют надеяться, что по мере того как мы научимся все лучше и лучше улавливать свет от далеких планет и вычленять составляющие их атмосфер, опираясь на фоновый свет звезды, нам удастся замечать и эти признаки существования жизни. Изобильная жизнь оставляет грязные отпечатки пальцев. Найти их трудно по той же причине, по которой трудно обнаружить сами планеты: звезды светят ярко, а планеты тускло.

Тем не менее астрономические технологии в ближайшем будущем предоставят нам возможность рассмотреть хотя бы несколько планетных систем, которые находятся относительно недалеко от нас, и наши телескопы смогут собрать от них достаточно света. А это подводит нас к следующему вопросу на шестьдесят четыре квадрильона долларов – к вопросу, который я задал в самом начале этой долгой истории. Когда мы узнаем, какова на самом деле склонность Вселенной к абиогенезу, когда измерим, насколько изобильна в ней жизнь, станет ли это лакмусовой бумажкой, новым подходом к глубочайшим, фундаментальным законам физики и к естественным постоянным – а следовательно, к оценке значения жизни? Обратите внимание, что это более тонкий метод, чем антропный подход или принцип тонкой настройки, согласно которому для того, чтобы появилась жизнь, подобная нашей, космос должен просто отвечать определенным критериям. При таких формулировках ответ, собственно, сводится к паре противоположностей: или жизнь есть, или ее нет. Не исключено, что на самом деле ответ состоит скорее в некоем «показателе надежности», как говорят инженеры, в скользящей шкале, мере плодовитости мироздания.

Вероятно, эта плодовитость станет недостающим звеном между физикой и биологией, однако мы пока плохо понимаем, что такое жизнь как таковая, и поэтому не знаем, какие именно критерии обеспечивают богатство жизни во Вселенной. Однако, возможно, есть способ это выяснить. Отчасти задача состоит в том, чтобы отделить наши местные обстоятельства от глубинных параметров, которые правят Вселенной. Например, на то, будет жизнь распространенной или нет, очевидно, влияет такое простое обстоятельство, как возраст Вселенной. Ясно, что жизнь в том виде, в какой мы ее знаем, не могла появиться до того, как первые звезды выработали первые тяжелые элементы. Более того, наверняка потребовалось несколько поколений звезд, прежде чем тяжелых элементов набралось достаточно, чтобы сформировать каменистые планеты. Можно также представить себе, что в далеком будущем тусклых изолированных галактик, состоящих из звезд с небольшой массой, условия будут не такими подходящими для зарождения жизни. Геофизические процессы на стареющих каменистых планетах будут затихать, и химические реакции на поверхности замедлятся.

Наверняка есть и другие качества, которые позволяют рассчитать вероятность зарождения жизни в зависимости от возраста Вселенной. Это очень похоже на параметры тонкой настройки в антропной картине мира – такими качествами могут стать, например, сила гравитации, шансы на формирование атомов и молекул и глубинные физические законы, которые определяют эти качества. Подобные факторы в конечном итоге позволяют определить темпы формирования звезд и планет и их дальнейшую эволюцию, а также точные характеристики сред, благоприятных для биохимических реакций. В конечном итоге эти черты должны быть тесно связаны и с происхождением жизни, и с ее дальнейшим развитием и процветанием. Если бы мы могли написать рецепт подобных условий, у нас, пожалуй, был бы ответ. В результате мы бы выяснили, какие космические параметры определяют изобилие жизни в каждый момент истории Вселенной. Но существует ли точный рецепт как таковой?

Я уже предполагал вслед за многими учеными, что жизнь зарождается скорее в переломных обстоятельствах, она возникает в результате сложного и в принципе не подлежащего точным расчетам танца нелинейных взаимодействий, основанных на простых законах, и все это соответствует принципу космического хаоса. Эти простые законы – физическая основа мироздания: я говорю и о молекулярных связях, и о глубинных симметриях субатомных частиц, и о физических измерениях нашей реальности. Однако даже оценить их соотношение в рецепте практически невозможно. Дело в том, что сложные взаимодействия этих относительно простых законов сами по себе представляют собой нелинейную функцию этих же законов! Иначе говоря, то, как влияет каждое из этих качеств по отдельности, скорее всего, невозможно расшифровать – это все равно что пытаться вывести законы термодинамики исключительно из наблюдений над погодой и климатом на Земле. Имманентно присущая системе чувствительность к первоначальным условиям способна затемнять причины и эффекты, которые приводят к конечному результату.

Наверное, вы догадываетесь, к чему я веду. Формулировка проблемы нам что-то очень напоминает – и не что-нибудь, а теорию хаоса. Это похоже на те трудности, с которыми мы сталкивались, когда пытались разобраться в динамике планетных орбит и в том, стабильна или нет в долгосрочной перспективе Солнечная система. Должно быть, вы помните, что планетные системы также управляются простыми законами, однако сложные нелинейные взаимодействия приводят к обширному диапазону возможных вариантов прошлого и будущего, к целому пучку путей и траекторий. Чтобы понять, что будет, если слегка изменить законы, придется проследить бесчисленное множество маршрутов, каждый из которых будет разветвляться на перепутьях, где происходили ничтожные на первый взгляд события, и разбегаться в разные стороны к непредсказуемым исходам.

Чтобы понять, с какой частотой мироздание порождает жизнь, нам придется проделать похожий эксперимент. Нужно будет симулировать условия, вызванные целым рядом свойств космоса, и посмотреть, насколько хорошо и насколько часто они генерируют сложные феномены, из которых и возникает жизнь, то есть сколько насчитывается возможных траекторий. А еще нам придется применить байесовские методы, чтобы взвесить все возможности и честно признаться в собственном невежестве во всем, что касается глубинной физики реальности.

Нетрудно убедиться, что это теоретическая и вычислительная задача неподъемной сложности. Параллельно придется ответить и на другой вопрос, очень неприятный и, кажется, не имеющий ответа: нужно понять человеческий разум. В недалеком прошлом ученые утверждали, что в принципе возможно создать симулятор человеческого сознания, самый что ни на есть настоящий искусственный интеллект, – надо лишь разработать достаточно сложную компьютерную программу, которая могла бы цифровыми средствами имитировать работу каждого из десятков миллиардов наших нейронов. Однако некоторые исследователи, в том числе английский ученый Роджер Пенроуз[224], отстаивали ту точку зрения, что важнейшую роль в функционировании разума и сознания играют глубокие связи с квантовым миром и уловить их при помощи цифрового кода невозможно. Не исключено, что единственный способ симулировать разум – это и в самом деле создать его, построить структуру с такой же беспорядочной химией и биологией, как наш организм. Только такая имитация могла бы обладать вычислительной мощностью и природной хитростью, которые необходимы, чтобы соответствовать всему, что создала эволюция за миллионы и миллиарды лет.

Возможно, если мы займемся созданием жизни в более широком смысле слова, дело пойдет легче. Мы уже сделали кое-какие мелкие шаги в сторону конструирования искусственных микроскопических организмов – собирали их из отдельных деталей и ДНК, созданных в лабораторных условиях. Однако очевидно, что если речь идет об исходном наборе законов, мы все равно не способны менять фундаментальную физику подобных биосимуляторов, играть с глубинной структурой мироздания, и это существенное препятствие для нас. Так неужели феномен жизни во Вселенной – это явление, которое нам в конечном итоге придется просто принять как данность и изучать безо всякой надежды на аналог «теории всего» в физике?

Надеюсь, все-таки нет. Думаю, у нас лучше получилось бы симулировать траектории развития жизни при разных наборах космических параметров, чем предлагают некоторые вышеописанные проекты и программы. Я отношусь к этому с оптимизмом отчасти потому, что наше технологическое мастерство развивается поразительными темпами и отнюдь не снижает их. Мы обнаружили неслыханные способы обращаться с веществом на атомном и субатомном уровне. Экспериментальная физика позволяет нам копаться в квантовой механике с ее имманентными странностями, опираться на ее законы, чтобы создавать самые неожиданные вещи – это и рудиментарные квантовые компьютеры, и оптоволоконные симуляторы горизонта событий черной дыры – гравитационного рубежа, из-за которого не может вырваться даже свет. Очень может быть, что даже не в самом отдаленном будущем нам повезет и мы получим набор инструментов и приемов, благодаря которому то, что сегодня невозможно, окажется в сфере возможного.

В нашем арсенале есть и еще одна потенциальная тактика. Мы могли бы отправиться в космос и начать искать там случаи жизни. Вселенная – самая главная лаборатория. А еще у нее есть особое, очень полезное качество: она так велика, что разные удаленные области пространства вполне можно считать изолированными системами, которые не сообщались друг с другом с тех пор, когда еще не было ни атомов, ни вещества.

В сущности, любая крупная область космоса – своего рода чашка Петри, уникальная и независимая. Космологи и астрономы вовсю пользуются этим обстоятельством, когда анализируют свойства звезд и галактик по мере развития по космической шкале времени. Объекты в центре любой достаточно большой части Вселенной никогда не подвергались прямому воздействию объектов, находящихся в центре других отдельных больших частей, никогда не имели к ним никакого отношения. Каждый из них – словно уникальный остров, развившийся по своей собственной траектории, однако управляемый теми же универсальными физическими законами, что и все остальные острова. Как ни парадоксально, это всего лишь расширение принципа Коперника: во Вселенной нет никаких особых областей, однако они вполне могут слегка отличаться друг от друга.

В ту же игру можно сыграть и при поиске жизни. Однако наша Солнечная система, вероятно, несколько маловата и поэтому обеспечила нам лишь одну чашку Петри. Ее планеты склонны к кросс-контаминации, к обмену химическими веществами и организмами, когда астероидные удары расшвыривают планетный материал по межпланентному пространству. Гораздо лучше было бы искать жизнь во Вселенной, перебирая одну звезду за другой, однако, как мы видели, передача материала по межзвездному пространству тоже приводит к контаминации. Еще лучше было бы подразделить крупную галактику вроде Млечного Пути на зоны таким образом, чтобы каждая из них представляла собой потенциально неповторимую выборку из того множества траекторий, которыми может развиться жизнь. А можно пойти еще дальше – рассмотреть и межгалактическое пространство, считать независимыми экспериментальными инкубаторами целые галактики. Если мы сможем идентифицировать и численно выразить природу любой жизни, которая обнаружится в этих местах, то сумеем свести воедино гигантскую карту траекторий, а потом посмотреть, какими универсальными вселенскими законами управляется это буйство.

Но вот что забавно: мы уже знаем, что подобный подход оправдывает себя в науке, и этому мы обязаны непосредственно Антони ван Левенгуку, сидевшему в своей комнате в Дельфте в 1674 году. Когда Левенгук увидел микроскопические организмы, кишащие в каждой капельке воды, во всех естественных отверстиях и выделениях людей и животных, то невольно заложил план исследования всех укромных мест, где может таиться жизнь. А сегодняшние ученые уже относятся к процедуре контролируемой выборки микроскопической жизни как к данности. Например, чтобы выявить новые виды живых существ, обитающие в суровых условиях подземных водохранилищ или глубоко под антарктическими льдами[225], ученые трудятся не покладая рук, чтобы собрать неконтаминированные пробы. Древние экосистемы зачастую содержат организмы, которые развивались без постороннего вмешательства в течение тысяч, а иногда и миллионов лет, отрезанные от остального мира. Если рассмотреть эти уединенные микрокосмы, можно узнать очень много о развивающихся в них невероятных биологических стратегиях, а главное – исследовать, какие глубинные биологические принципы стоят за всем этим.

Проделать то же самое в космосе – мягко говоря, чудовищно самонадеянная и оптимистическая идея. Однако может статься, что в результате мы обретем знания, которые оправдают все. Еще в главе 1 я коротко рассказал о гипотезе множественной Вселенной, очень перспективном способе объяснить «совпадение» космической тонкой настройки и зарождения жизни. Мы сможем проверить эту гипотезу, а жизнь станет лакмусовой бумажкой. Представьте себе, что мы будем в состоянии определить значения и форму физических постоянных и законов, которые определяют существование и распространенность жизни во Вселенной. Заручившись подобной информацией, мы, в принципе, могли бы предсказать, насколько распространена во множественной Вселенной жизнь, подобная нашей. Иначе говоря, мы бы вычислили, каково наше значение во всей совокупности всех возможных реальностей[226].

 

* * *

 

Все это весьма честолюбивые мечты. Для их реализации нам придется очень сильно потрудиться. Я бы сказал, что первое, что нам в этом помешает, – это комплекс Коперника. Думается, мы все равно едва ли занимаем во Вселенной центральное место, как с астрофизической, так и с метафизической точки зрения. Однако это не исключает возможности, что траектория развития жизни, по которой мы добрались до своего нынешнего состояния, отличается некоторыми неповторимыми особенностями. Нам нужно примириться с такой степенью собственной уникальности, поскольку она влияет на наше мировоззрение и на научные стратегии изучения Вселенной. Вполне можно путешествовать по звездам и галактикам, не покидая уютной Земли – через телескопы, – а можно поставить перед собой и более смелую цель. Мне не кажется, что эта цель – чистая фантазия. Не исключено, что нам предстоит сделать самый важный выбор за всю историю своего биологического вида – и этот выбор сводится к ответу на два вопроса.

 

* * *

 

Сможем ли мы когда-нибудь выйти за пределы космических обстоятельств нашего существования?

И хотим ли мы и дальше оставаться уникальными, но незначительными?

Правила, по которым нужно давать ответы на эти два вопроса, несколько нечестные. Если жизнь всегда и без исключений обитает на границе между хаосом и порядком, получается, что выживание зависит от исключительной сообразительности. С похожими задачами сталкиваются опытные серфингисты, когда им нужно не упасть на скользкой изменчивой поверхности огромной волны – в трубе пространства и времени, которая кончится лишь затем, чтобы смениться следующей.

Однако отбросим метафизику. Мы знаем, где находимся, знаем, что нам нужно, чтобы выжить (хотя со стороны кажется, что не всегда). Мы возникли на некоей планете примерно 4 миллиарда лет назад и были тогда просто микробами, так что такого блестящего будущего ничто не предвещало. И не просто обрели разум, способный осознать этот факт, но и сумели оценить происхождение и состав Вселенной вокруг нас. И обнаружили, что в ней десятки миллиардов других планет, а в нашей Солнечной системе содержатся колоссальные ресурсы. И вот мы и оказались на очередном перепутье, но теперь нам нужно сделать другой выбор. Задача, стоящая перед нами, – это последний отрезок пути к пониманию своего места и значения в мироздании, и нам придется пройти по нему к самым глубинным основам нашего существования, разобраться с тем, какое отношение имеют к нам механизмы эволюции и естественного отбора. Откуда бы ни брало начало современное человечество с его впечатляющими мозгами и социальными структурами, как бы ни сокращалась наша популяция в иные моменты истории, не приходится сомневаться, что сегодня мы – главная действующая сила на этой планете. Нас, людей, ее населяющих, миллиарды, и даже те оставшиеся площади, где мы не живем, в основном изменены нашими стараниями – мы берем там ресурсы или подчиняем себе окружающую среду. Каковы бы ни были наши сложные отношения с микроскопическими властителями мира, которые помогают нам управлять средой обитания и нашей собственной биохимией, среди прочих организмов мы уже заняли выдающееся место.

Мы сумели дотянуться далеко за пределы нашей планеты. Последние 40 лет космические аппараты «Пионер-10» и «Пионер-11» удаляются от нас в межзвездное пространство. Сейчас они находятся (соответственно) примерно в 16 и 13 миллиардах километров от нас. Зонды «Вояджер-1» и «Вояджер-2», запущенные всего на несколько лет позднее – в 1977 году – углубились еще дальше во Вселенную. «Вояджер-1» находится сейчас более чем в 17 миллиардах километров от нас – это более чем в 100 раз дальше, чем от Земли до Солнца. И он по-прежнему шлет нам сигналы. Слабый шепот радиотелеметрии говорит нам, что зонд добрался туда, где давление излучения от Солнца уже не ощущается и кругом расстилается галактическое пространство. Возможно, космическое путешествие лишь началось, однако зачатки его появились уже давным-давно, еще когда первые гоминиды пробирались по африканской саванне. Перефразируя Карла Сагана[227], можно сказать, что мы всегда были странниками. Возможно, наше подлинное значение в мироздании и коренится в этом стремлении к расширению – и именно эта важнейшая черта и прописана в наших генах в результате естественного отбора. Мы именно таковы. Отчасти поэтому мы уникальны. И именно поэтому мы при желании можем добиться значимости. Не исключено, что исполинские барьеры межзвездного пространства и времени и неукротимые космические силы так и не позволят нам покинуть пределы Солнечной системы во плоти, какими бы головокружительными фантазиями мы ни увлекались, – очень уж хрупка наша телесная оболочка. Но давайте предположим, что мы сумели заметить признаки жизни на другой планете возле другой звезды где-нибудь по соседству в нашей Галактике. Даже если эти признаки – не более чем зарегистрированные в световом спектре химические вещества, которые свидетельствуют о метаболических процессах, свойственных живым существам вроде микробов, остается вероятность, что там могут жить и более сложные организмы. Может быть, там кто-то есть – совершенно чуждый и при этом находящийся в пределах досягаемости.

Открытие подобной биологической сигнатуры стало бы для нас переломным моментом, временем решений. Не исключено, что мы не посчитали бы целесообразным организовывать экспедицию к другому миру, ведь она продлилась бы тысячи лет, а то и десятки тысяч. Однако, возможно, мы решили бы создать своего представителя. Неважно, что бы это был за посланник – сложнейший робот или всего лишь носитель какого-то простого сообщения: его прибытие на другую планету стало бы для нас единственной возможностью придать значение тому обстоятельству, что мы когда-то существовали на неповторимой планете, которую мы называли просто Землей.

 

Благодарности

 

 

В детстве я жил в английской деревне, в тихом захолустье, где было полным-полно флоры и фауны, почвы, воды и воздуха, а иногда витали странные запахи. Когда я рос и превращался из робкого мальчонки в несколько менее кроткого подростка, в числе моих тайных страстей (все-таки я был занудой-отличником) были попытки наладить связь с космосом, добиться единения с бесконечностью, обрести свое место в колоссальной конструкции мироздания. Возможно, все это стоит в одном ряду с обычными подростковыми мечтами об обретении невиданных суперспособностей, о своем загадочном и никому до времени не ведомом прошлом. То ли я был странненький, то ли подобные устремления есть у многих детей – этого я не знаю. Однако вечерами я часто под разными предлогами выскальзывал из-за семейного стола и выходил на улицу, как раз когда небо темнело и показывались первые звезды. Разыскивал тихое местечко подальше от дома. Летом я обычно уходил куда-нибудь в поля шелестящей пшеницы, где стоило сесть или лечь, и тебя уже никто ниоткуда не разглядит. И там я раскрывал глаза как можно шире и выискивал тот самый угол зрения, под которым казалось, будто вселенская ночь окутывает меня, обволакивает, наполняет голову бесконечной пустотой и являет свои несказанные тайны.

Я садился или ложился на колкую стерню, и до меня постепенно доходило, что хотя мерцающая пелена звезд над головой и переполняет меня ощущением собственной незначительности, но от непосредственного окружения было все равно никуда не деться, а реальность почему-то наталкивала меня на мысль, что я – очень важная часть всего этого хитросплетения. В прохладном и влажном вечернем воздухе витали ароматы камней, земли и растений. И хотя все кругом затихало, повсюду шуршали бесчисленные мелкие существа – кто-то устраивается на ночь, кто-то охотится на обитателей дерна и верхних слоев почвы. То и дело издали доносилось мычание одинокой заблудившейся коровы с соседней фермы или уханье такой же одинокой совы.

Все это очень успокаивало – и при этом заставляло остро ощутить волнение от единения с нетронутой природой, и почему-то Вселенная над головой представлялась не столько надменной и безразличной, сколько рабыней ночной земной рутины. Разумеется, я знал, что все мои ощущения, все мысли о вселенском порядке вещей – отчасти иллюзия. Но очень уж они были яркие. Не может же быть такого, чтобы и сам я, и кто-нибудь еще Где-то Там были просто острой приправой, которой посыпана сложная Вселенная: наверняка мы что-нибудь да значим!

А может быть, и нет. Об этом я тоже заставлял себя задуматься. Может быть, мы просто результат трагического несчастного случая и обречены мечтать о важной роли, когда на самом деле не играем вообще никакой.

Я не забыл об этих детских переживаниях и постоянно возвращался к этому вопросу. Как отделить сильнейшие впечатления, которые обеспечивает нам окружающий мир, от страстного желания узнать, каково наше место в мироздании? Главы этой книги и есть попытка хотя бы издалека подойти к решению этой задачи, вооружившись всеми мыслями и открытиями человечества и всем тем, что знаю я сам.

Во время работы над книгой мне пришлось беседовать с самыми разными людьми. Это были и мои коллеги, другие ученые, которым хотелось разобраться в бесконечных подробностях природных механизмов, а потом взять эти подробности и найти им место на просторах космоса. А иногда, а может быть, и чаще всего, мне приходилось разговаривать просто с теми, кто спрашивал меня, чем я занимаюсь. Это были и друзья, и знакомые, и совершенно чужие люди, например, попутчики в поездах и самолетах, да и вообще я находил собеседников в самых неожиданных местах: на футбольном матче, во время прогулки по проселочной дороге, на полпути к вершине горы в Норвегии или в благоуханном сырном отделе людного супермаркета.

Именно эти разговоры оказывались самыми интересными и вдохновляли меня сильнее всего. Ни от кого, ни от одной живой души я не услышал: «Наше место во Вселенной меня не интересует». Совсем наоборот: похоже, все мы отчаянно стремимся узнать истину, а в особенности – истину рациональную, предмет научных изысканий, к которой стремятся и ученые, когда углубляются в неведомое и обнаруживают все новые и новые факты, неподвластные нашему пониманию.

Мне хочется поблагодарить очень многих людей именно за то, что они отдавали себе в этом отчет с самого начала. Это Дейрдра Маллен, мой чудесный литературный агент, из «Mullane Literary Associates», и Аманда Мун, не менее чудесный редактор из «Scientific American/Farrar, Straus and Giroux». Их неустанная поддержка и усердный труд заметно облегчили мне процесс работы над книгой. Кроме того, огромное спасибо несравненным издателям Грегори Вазовицу и Стивену Вайлю, а также команде редакторов – Кристоферу Ричардсу, Даниэлю Герстлу и Лэрду Галлахеру. Особо следует поблагодарить Анни Готтлиб, чей острый корректорский глаз пришел мне на выручку.

Много-много лет назад мой друг и коллега Майкл Сторри-Ломбарди заронил в мою впечатлительную голову зерна множества идей. И за это я ему безмерно благодарен. Еще я признателен за возможность познакомиться и пообщаться со многими великими учеными, которые на протяжении лет, зачастую сами о том не подозревая, помогали мне писать эту книгу. В их перечень, далеко не полный, входят Фриц Перелс, Арлин Гроттс, Фернандо Камило, Джин МакДональд, Джефф Марси, Дэйв Спигел, Кристен Мену, Бен Оппенхеймер, Дэниел Савин, Джош Уинн, Линда Сол, Энтони Дель Джинио, Дентон Эбел. Кроме того, я все это время черпал вдохновение в трудах многих восхитительных писателей, кинематографистов и популяризаторов науки: это Ли Биллингс, Джордж Массер, Джон Мэтсон, Деннис Овербай, Маркус Чоун, Росс Андерсен, Джейкоб Берковиц, Боб Кралвич, Дэн Клифтон. И дважды за все время работы голова у меня едва не взорвалась из-за потрясающих открытий, о которых я узнавал на конференциях «SciFoo», – а все спасибо их организаторам Тиму О’Райли, Ларри Пейджу и Сергею Брину.

Кроме того, я глубоко благодарен друзьям и родным, в том числе Нельсону Ривере, Грегу Баррету, Хелен и Солу Ланьядо, Уинделлу Уильямсу, Джеффу Склару и самым дорогим для меня людям – Бонни, Лайле, Амелии и Марине.

Философ Сократ как-то заметил: «Жизнь без исследований и проживать не стоит». Правда, считается, что он сказал это, когда его судили за богохульство – и в результате казнили, – однако это все равно отличный афоризм. И поэтому я наконец благодарю тебя, читатель, за то, что не пожалел времени на изучение множества чудесных феноменов, благодаря которым во Вселенной стала возможна жизнь.

 

Об авторе

 

 

Калеб Шарф – директор Центра астробиологии Колумбийского универститета в Нью-Йорке. Помимо научных работ, он пишет научно-популярные статьи в «The New Yorker», «New Scientist», «Science», «Scientific American», «Nautilus», «Aeon» и «Nature», а также работает консультантом на телеканалах «Discovery» и «National Geographic Television», в телерадиокомпании ВВС и в газете «The New York Times». Он читает вводные лекции в Американском музее естественной истории, Художественном музее Рубина и «Клубе тайных любителей науки» при «Белл-хаус» в Бруклине. Кроме того, Шарф – автор книги «Gravity’s Engines». Он живет в Нью-Йорке с женой и двумя дочерьми.

 


[1]

О Левенгуке написано огромное количество литературы и существует множество электронных ресурсов. Его часто называют «Отцом микробиологии». Хотя Левенгук был ученым-любителем в том смысле, что не получил никакого официального образования, он состоял в Королевском научном обществе Англии. Всего он написал в Общество и другие научные учреждения более пятисот писем, где рассказывал о своих наблюдениях, в том числе – первых наблюдениях клеток крови и спермы. Интересная историческая подробность: в 1676 году он был душеприказчиком великого живописца Яна Вермеера. Левенгук умер в 1723 году, достигнув девяноста лет. Ему посвящен прекрасный веб-сайт: www.vanleeuwenhoek.com.

 

[2] У книги есть и подзаголовок: «Некоторые физиологические описания крошечных телец, сделанные при помощи увеличительных стекол, а также их наблюдения и исследования» (вот так вот!). Труд был опубликован в 1665 году (первое издание – London: J. Martyn and J. Allestry) и содержал великое множество рисунков и рассуждений: «О жале пчелы», «О перьях павлина», «О лапках мух и других насекомых», «О голове мухи», «О зубах улитки», «О бороде дикого козла», «О бриллиантах в кремне», «О растительности на листьях, пораженных паршой», «О неизвестном насекомом, напоминающем краба». См. также короткую статью P. Fara, «A Microscopic Reality Tale», Nature 459 (2009): 642–44.

 

[3] Английский ученый-энциклопедист (1635–1703) и выдающийся изобретатель. Происходил из относительно бедной семьи. Занимал должность «попечителя научных опытов» в недавно основанном Королевском научном обществе, а кроме того, много трудился на ниве микроскопии и подошел очень близко к тому, чтобы вывести основные составляющие ньютонова закона всемирного тяготения. Считается, что именно Гук ввел в научный обиход термин «клетка», поскольку он первым применил его при описании похожих на коробочки растительных клеток, которые рассматривал под микроскопом.

 

[4] До Левенгука уже создавались микроскопы с несколькими линзами, позволявшие рассматривать предметы под большим увеличением. Самая простая система представляла собой две линзы с разными фокусными расстояниями, встроенные в разные концы трубки.

 

[5] Приемы Левенгука изучены не полностью. Однако, похоже, он сумел усилить оптическую мощность микроскопов при помощи крошечных сферических линз, избежав необходимости тщательно полировать их. Капельки воды, в которых содержались рассматриваемые образцы, вероятно, также представляли собой своего рода сложный оптический механизм, где вода играла роль линзы.

 

[6] Оценки историков разнятся: по некоторым источникам, микроскопов было более пятисот, однако, возможно, речь идет о количестве линз, а не собственно микроскопов. Левенгук работал над ними примерно полвека, так что эти числа, возможно, не слишком преувеличены.

 

[7] Судя по записям Левенгука, эта вода, скорее всего, была взята из небольшого озерца Беркельсе Мер в окрестностях Дельфта.

 

[8] Левенгук писал: «И, разглядев воду, как указано выше, я взял небольшое ее количество в стеклянный сосуд; рассмотрев же воду на следующий день, я обнаружил плававшие в ней различные частички почвы, какие-то зеленые волокна, закрученные спиралью наподобие змей, очень ровно и упорядоченно, словно медные или оловянные змеевики, при помощи которых винокуры охлаждают свои напитки, когда перегоняют их. По толщине каждое из этих волокон было сравнимо с волоском с человеческой головы».

 

[9] Образчики зубного камня попали под микроскоп в 1683 году, и в них, судя по всему, обитали палочковидные бактерии – представители рода бацилл.

 

[10] Микроскопический мир очень заинтересовал ученых, а наблюдения за размножением крошечных организмов опровергли преобладавшее в то время представление о «самозарождении». Однако это открытие, судя по всему, вызвало гораздо меньше споров, чем наблюдения над макроскопической картиной мира.

 

[11] Наиболее известны достижения Луи Пастера, который, кроме всего прочего, окончательно опроверг идею самозарождения и предположил, что бактерии не только портят пищу, но и вызывают болезни у людей. От этого можно уберечься, если прогревать («пастеризовать») пищу. Роберт Кох доказал, что бактериями вызывается и сибирская язва.

 

[12] Оригинальные сочинения Аристарха до нас не дошли. Однако Архимед в «Псаммите» («Исчисление песчинок» – трактат, в котором он пытается подсчитать, сколько песчинок поместится во Вселенную) дается отсылка к гелиоцентрической идее Аристарха: «… Аристарх Самосский выпустил в свет книгу о некоторых гипотезах, из которых следует, что мир гораздо больше, чем понимают обычно. Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается по окружности круга… между Солнцем и неподвижными звездами, а сфера звезд… так велика, что круг, по которому… обращается Земля, так же относится к расстоянию до неподвижных звезд, как центр сферы к ее поверхности». (Пер. И. Веселовского).

 

[13] В зависимости от версии аристотелевой модели число этих сфер равнялось или 47, или 55. Aristotle, Metaphysics, 1073b1–1074a13, в кн. The Basic Works of Aristotle / ed. Richard McKeon. New York: Random House, 1941; The Modern Library, 2001, 882–83.

 

[14] Истории, рассказанные в этой главе, во многом почерпнуты из обстоятельного и достойного труда Thomas S. Kuhn. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge/London: Harvard University Press, 1957; rev. ed., 1983, особенно в той части, которая касается более глубоких тенденций, связывающих эту «космологию» с религиозным и научным мировоззрением на протяжении веков.

 

[15] Перевод «Альмагеста» Птолемея на современный английский см. «Ptolemy’s Almagest», trahslated and annotated by G. J. Toomer. Princeton: Princeton University Press, 1998. Название пришло из арабского языка, а там, в свою очередь, произошло от древнегреческого слова, означающего «величайший». Трактат известен также под латинским названием «Syntaxis mathematica».

 

[16] Как мы увидим, в частности, проблема состояла в том, что планеты не оказывались в нужном месте в нужное время, а модель Птолемея предполагала, что все движение по эпициклам и деферентам происходит с постоянной скоростью.

 

[17] См., например, André Goddu . Copernicus and the Aristotelian Tradition: Education, Reading, and Philosophy in Copernicus’s Path to Heliocentrism. Leiden, Netherlands: Brill, 2010. Об истории вопроса и различных точках зрения на него прекрасно рассказано в книге Owen Gingerich . The Book Nobody Read: Chasing the Revolutions of Nicolaus Copernicus. New York: Walker & Company, 2004.

 

[18] Читатель, возможно, спросит, не противоречит ли это первому утверждению. Однако Коперник не собирался создавать замкнутую систему аксиом, перед нами скорее черновой перечень гипотез.

 

[19] И в самом деле, о том, что Коперника стимулировало и что ему мешало, написано очень много. Увлекательная, пусть и спекулятивная теория изложена в Dava Sobel . A More Perfect Heaven: How Copernicus Revolutionized The Cosmos. New York: Walker & Company, 2011.

 

[20] См., например, Ingrid D. Rowland . Giordano Bruno: Philosopher/Heretic. New York: Farrar, Straus and Giroux, 2008.

 

[21] О Браге написано много, и на то есть веские причины: он был весьма колоритным персонажем и располагал средствами, чтобы вести бурную, разгульную жизнь. Датский король Фредерик II снабдил его деньгами на основание обсерватории и отвел для этого островок Вен в проливе Эресунн поблизости от Копенгагена. Обсерватория получила название Ураниборг, а впоследствии для устойчивости к ней были пристроены и подземные помещения. Телескопов у Браге не было, однако Ураниборг была оснащена устройствами, которые позволяли при помощи зрения измерять точное положение небесных тел и угловые соотношения между ними.

 

[22] Свои наблюдения – как мы теперь понимаем, это была сверхновая, – Браге описал в трактате «De Nova et Nullius Aevi Memoria Prius Visa Stella» («О новой, никогда прежде на протяжении веков не виданной звезде») (Copenhagen, 1573). Вместе с наблюдениями комет появление сверхновой позволило Браге оспорить аристотелево представление о неизменном мироздании.

 

[23] Прекрасная книга о развитии западной астрономии и космологии – Arthur Koestler . The Sleepwalkers: A History of Man’s Changing Vision of the Universe. London: Hutchinson, 1959; repr. Arkana / Penguin, 1989. В ней Кеплер описан, в сущности, как научный герой своего времени. По некоторым источникам именно Браге подсказал Кеплеру, что следует заняться Марсом, поскольку это была сложная задача, которая позволяла отделаться от назойливого ассистента и к тому же не дала бы Кеплеру найти доводы в пользу системы Коперника. Однако Кеплер, судя по всему, знал, что делает. В его письме, написанном в 1605 году, мы читаем: «Признаюсь, что когда Тихо умер, я тут же воспользовался отсутствием наследников или недостаточным их вниманием и заполучил его наблюдения в свое распоряжение – а можно сказать, что и узурпировал их».

 

[24] Как ясно из названия, подобные кривые – это буквально результат рассечения конуса плоскостью. В зависимости от их взаимного положения, коническое сечение можно описать параболой, гиперболой, эллипсом или окружностью.

 

[25] Итальянский ученый применял две линзы для создания телескопов, которые позволяли увидеть неперевернутые изображения далеких объектов. Их оптические характеристики были далеки от совершенства, однако лучший телескоп Галилея позволял добиться тридцатикратного увеличения и улавливал больше света, чем невооруженный глаз. Галилей, как и Браге, наблюдал сверхновую (Кеплер тоже ее видел), а поскольку не увидел никакого параллакса, решил, что это звезда и что небеса не незыблемы. Наблюдения над тремя, а затем и над четырьмя спутниками Юпитера натолкнули Галилея на мысль, что это подтверждает точку зрения Коперника: не все небесные тела вращаются вокруг Земли.

 

[26] Горячим сторонником этой идеи был Пьер-Симон Лаплас. В своем «Опыте философии теории вероятностей» (1814) он писал: «Нынешнее состояние Вселенной можно считать результатом ее прошлого и причиной ее будущего. Разум, который в определенный момент будет обладать всеми знаниями обо всех силах, которые приводят природу в движение, и о положении всех предметов, из которых природа состоит, – если к тому же этот разум будет достаточно мощен, чтобы подвергнуть все эти данные анализу, – сможет в одной-единственной формуле выразить движения как величайших тел во Вселенной, так и самого крошечного атома; ведь для подобного разума не останется никаких неопределенностей, и перед глазами у него будет не только прошлое, но и будущее».

 

[27] Его представления о жизни во Вселенной изложены в труде «Cosmotheoros», опубликованном посмертно, в 1698 году.

 

[28] Так называемая «небулярная гипотеза» формирования Солнечной системы из облака вращающегося по орбите и сгущающегося материала, пожалуй, была впервые выдвинута в 1734 году Эммануилом Сведенборгом (да-да, теологом), а затем проработана Иммануилом Кантом (да-да, философом) в 1755 году, и описана Лапласом в 1796 году. Ранние версии теории были крайне неубедительны, поскольку не могли объяснить, почему 99 процентов углового момента импульса системы приходится на планеты. И лишь в начале 1970 годов советский физик Виктор Сафронов предложил убедительное решение и этой проблемы, и некоторых других, и в результате модель снова была принята научным сообществом.

 

[29] По современной номенклатуре Церера (950 км в диаметре) считается карликовой планетой, а Веста (ок. 560 км) – астероидом или малой планетой.

 

[30] Его присутствие выдала ярко-желтая «линия» спектра солнечного света, которую впервые увидели в 1868 году. К 1895 году гелий был выделен из земных минералов.

 

[31] Строго говоря, это был современный космологический принцип. Идеи, которые легли в его основу, восходят к Ньютону. В 1920-е годы и Александр Фридман, и – независимо – Жорж Леметр (первый, кто предположил, что Вселенная расширяется) решили уравнения общей теории относительности, чтобы определить динамику Вселенной, которая была одновременно и гомогенна, и изотропна. Позднее то же самое проделали Говард Робертсон и Артур Уокер, и в результате возникла так называемая метрика Фридмана – Леметра – Робертсона – Уокера – в сущности, матрица, описывающая отношения пространственно-временных координат во Вселенной.

 

[32] Герман Бонди (1919–2005), английский физик австрийского происхождения, в 1948 году вместе с Томасом Голдом и Фредом Хойлом работал над теорией стационарной Вселенной и сделал целый ряд важных открытий в астрофизике и теории относительности. Принцип Коперника описан в его книге Hermann Bondi, Cosmology (Cambridge: Cambridge University Press, 1952). Я имел удовольствие слушать его лекцию в Кембридже, когда был студентом-магистрантом. Лекция была чудесная.

 

[33] Отношение электрической и гравитационной сил между электроном и протоном равно примерно 2 ´1039, но возраст Вселенной составляет примерно 4,4 ´1017 с, а атомная единица времени – 2,4 ´10–17 с, так что возраст Вселенной в этих единицах примерно равен 1,8 ´1034, что в 100000 раз меньше, чем отношение сил 2 ´1039 . – Прим. науч. ред.

 

[34] Поль Дирак (1902–1984). Английский физик, выдвинувший первую состоятельную теорию релятивистской квантовой механики (за что и получил Нобелевскую премию в 1933 году совместно с Эрвином Шредингером). В 1937 году предложил «гипотезу больших чисел», указав на разнообразные «совпадения» в отношениях размеров Вселенной к размерам элементарных частиц, а также в отношениях сил различных масштабов.

 

[35] Вначале Вселенная была раскалена, но по мере расширения она остывает. За 20 минут она остывает настолько, что становится возможным нуклеосинтез, и производятся ядра – дейтерий, гелий и немного лития. Примерно за 380 000 лет после Большого Взрыва она остывает уже настолько, что формируются атомы, в которых электроны комбинируются с протонами и этими простыми ядрами. Это происходит потому, что космологические фотоны уже не обладают энергией, достаточной, чтобы высвобождать электроны. И в результате эти фотоны носятся туда и сюда, но не взаимодействуют с веществом. С течением времени расширяющаяся Вселенная растягивает длину волны первичных фотонов (то есть остужает их). Сейчас, 13,8 миллиардов лет спустя, они уже остыли до микроволновых температур и распространяются во всех направлениях, создавая море излучения – космический фон.

 

[36] См., например, Brandon Carter . Large Number Coincidences and the Anthropic Principle in Cosmology. Confrontation of Cosmological Theories with Observational Data; Proceedings of the Symposium. Krakow, Poland, September 10–12, 1973, IAU Symposium No. 63, ed. M. S. Longair. Dordrecht, Netherlands, and Boston: D. Reidel Publishing Company, 1974, 291–98.

 

[37] Я не имею в виду, что об антропном принципе написано много ерунды, таких работ лишь единицы. По сути дела, это прекрасный пример «смещения отбора», а отметать идеи без достаточных оснований глупо. Очень хороший обзор (в виде критики книги физика Виктора Стенгера) можно найти в статье Luke Barnes. The Fine-Tuning of the Universe for Intelligent Life. 2011. http://arxiv.org /abs/1112.4647.

 

[38] Bernard Carr, Martin Rees . The Anthropic Principle and the Structure of the Physical World. Nature 278 (1979): 605–12.

 

[39] Рекомендую очень славную книгу Martin Rees . Just Six Numbers: The Deep Forces That Shape The Universe. New York: Basic Books, 2000.

 

[40] О том, какие физические законы способны породить конструкцию вроде множественной Вселенной, написано очень много. Среди возможных объяснений – космическая инфляция (экспоненциальное расширение Вселенной на очень ранних стадиях ее жизни, вызванное фазовым переходом), при которой возникает огромное множество «карманных Вселенных», по большей части изолированных друг от друга. Другой вариант – М-теория, обобщение теории струн, которая утверждает, что всякая Вселенная представляет собой многомерную «брану», или мембрану. Кроме того, большие перспективы открывает «многомировая» интерпретация квантовой механики, согласно которой параллельные Вселенные создаются при каждом субатомном событии. Популярный обзор можно найти в Brian Greene . The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos. New York: Alfred A. Knopf, 2011.

 

[41] Уже после того, как я это написал, я понял, что подобные идеи уже обсуждались, например, о них говорил и писал физик Ли Смолин.

 

[42] Примечательно, что это соображение неоднократно высказывал великий американский палеонтолог и эволюционный биолог Стивен Джей Гулд. Это интересная точка зрения. К тому же мне интересно, что бы мы подумали, если бы обнаружили в космосе места, идеально подходящие для жизни в том виде, в каком мы ее понимаем, и при этом бесплодные.

 

[43] Хотя Хойл выдвинул эту идею еще в 1953 году, статья, где он предложил свои подсчеты выработки углерода в звездах, вышла в 1954 году (Fred Hoyle . On Nuclear Reactions Occurring in Very Hot Stars. I. The Synthesis of Elements from Carbon to Nickel. Astrophysical Journal Supplement 1 (1954): 121–46).

 

[44] В последующие годы возникли некоторые разногласия по поводу того, действительно ли Хойл руководствовался антропным принципом или всего лишь пытался разобраться, как звезды могут вырабатывать углерод. См., например, Helge Kragh . An Anthropic Myth: Fred Hoyle’s Carbon-12 Resonance Level. «Archive for History of Exact Sciences» 64 (2010): 721–51. Кроме всего прочего, Хельге Краг пишет и о том, как физик Ли Смолин опроверг «углеродный» довод в пользу антропного принципа – примерно так же, как я критиковал антропный принцип, когда излагал альтернативную историю про Галилея.

 

[45] На это указывали несколько ученых, в том числе физик Стивен Вайнберг. Кроме того, изучение разных энергетических уровней, через которые может вырабатываться углерод-12, показывает, что сдвиги величиной до 60 кэВ, возможно, почти не влияют на количество вырабатываемого углерода. См. статью Mario Livio et al. The Anthropic Significance of the Existence of an Excited State of C-12. Nature 340 (1989): 281–84.

 

[46] Если говорить, что жизнь «избранная», это возвращает к идеям витализма, представлению о некоей «искре жизни», которая отличает живое от неживого. Научное сообщество раз и навсегда отказалось от подобных идей, однако они все равно нет-нет да и возникают.

 

[47] Пустыня Атакама тянется почти на 1000 километров на юг от границы Чили и Перу до северно-восточной оконечности Анд. Некоторые ее участки считаются самыми сухими точками земного шара (даже в большей степени, чем некоторые регионы Антарктиды). И в самом деле, на высоте примерно в три километра здесь есть участок, где сухость и химический состав почвы сравнивают с марсианской поверхностью.

 

[48] Ла-Серена – город с населением в несколько сотен тысяч человек (если считать ближайшие пригороды). Процветающий курорт благодаря морскому побережью и пляжам. Кроме того, здесь находится администрация крупнейших астрономических обсерваторий, расположенных в глубине континента и принадлежащих как американским, так и европейским исследователям.

 

[49] Река Эльки берет начало в Андах и впадает в Тихий океан. Поскольку в этих краях очень сухо, чилийцы построили плотину Пукларо примерно в 60 километрах вглубь материка, чтобы создать запасы речной воды на случай засухи и сдерживать наводнения при штормах, которые пусть редко, но случаются. Долина – главный чилийский производитель писко, виноградного бренди.

 

[50] Обсерватория входит в Национальную обсерваторию оптической астрономии под эгидой Национального научного фонда США. Основана она была в начале 1960-х годов, в ней постоянно работают и чилийские, и американские ученые.

 

[51] Чувствительная электроника, в том числе цифровые камеры, которые, как правило, применяются для регистрации фотонов и конструирования изображения, лучше работают при охлаждении. А пальцы астрономов – наоборот.

 

[52] Кормят в Серро-Тололо на славу, но еще прекраснее вид из столовой. Жаль, что нельзя каждый раз, садясь за стол, любоваться, как за окном пролетают андские кондоры.

 

[53] Диаметр Солнца обычно приводится по фотосфере – внешней поверхности, испускающей видимый свет.

 

[54] Эта область простирается от орбиты Нептуна (это примерно в 30 раз больше, чем расстояние от Солнца до Земли, то есть составляет 30 астрономических единиц – а. е.), и еще почти на столько же (примерно до 50 а. е.). В отличие от пояса астероидов, который пролегает ближе к Солнцу, почти все тела в поясе Койпера богаты замерзшими летучими соединениями вроде воды, метана и аммиака. Все, что находится в поясе Койпера и дальше, называют транснептуновыми объектами. Пояс получил название в честь американского астронома нидерландского происхождения Джерарда Койпера (1905–1973), однако уже со времени открытия Плутона в 1930 году многие астрономы выдвигали предположения о существовании этого региона и о том, какие тела в нем содержатся.

 

[55] Энергия излучения на единицу площади убывает пропорционально квадрату расстояния от источника излучения – это простой геометрический эффект: свет распространяется, словно поверхность расширяющейся сферы.

 

[56] Иногда его называют облаком Эпика-Оорта. Это внешняя область Солнечной системы названа в честь голландского астронома Яна Оорта (1900–1992), который, помимо всего прочего, еще в 1932 году обнаружил свидетельства существования на Млечном Пути невидимого компонента вещества – в наши дни его называют темным веществом. Оорт предположил, что долгопериодические кометы должны зарождаться в областях, сильно удаленных от Солнца, однако они все равно удерживаются гравитацией в пределах Солнечной системы, и именно эти области и назвали облаком Оорта. Из соображений динамики у облака Оорта должна быть внутренняя зона, больше похожая на диск, и внешняя, скорее напоминающая сферу.

 

[57] Считается, что это название пустил в обращение в одном из своих рубайят Омар Хайям – персидский астроном, поэт и математик, живший в XII веке.

 

[58] Это называется эффект Пойнтинга – Робертсона. Явление это достаточно сложное, неуловимое и противоречит интуиции, поскольку механизм зависит от выбранной точки отсчета. Приведу аналогию. Представьте себе, что вы стоите под вертикальным дождем. Если вы пойдете или побежите, дождь для вас перестанет быть вертикальным – он будет сильнее мочить вам грудь и живот, чем спину. Примерно так же воздействует солнечный свет на объект, который вращается вокруг Солнца, и этот эффект называется аберрацией: кажется, будто излучение движется скорее в направлении этого объекта, чем радиально мимо него. Свет несет импульс, и поэтому объект (крупинка зодиакальной пыли) немного теряет в импульсе, направленном вперед, по орбите; его перетаскивает на более низкую орбиту. Однако на самом деле все еще сложнее. Объект еще и абсорбирует излучение, нагревается и начинает сам испускать свет. То, как впитывается и рассеивается свет, играет важную роль для крошечных крупиц пыли и зависит от состава и размера пылинки. Если вы так любите науку, что не боитесь никаких трудностей, прочтите превосходную, однако сугубо научную статью, где изложены все подробности: J. A. Burns et al. Radiation Forces on Small Particles in the Solar System, Icarus 40 (1979): 1–48.

 

[59] См., например, D. E. Brownlee, D. A. Tomandl, and E. Olszewski. Interplanetary Dust; A New Source of Extraterrestrial Material for Laboratory Studies. Proceedings of the Eighth Lunar Science Conference, Houston, Texas, March 14–18, 1977, Vol. 1. New York: Pergamon Press, 1977, 149–160.

 

[60] См., например, D. Nesvorný et al. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors. The Astrophysical Journal 743 (44): 129–44.

 

[61] В этом участвовали и другие обсерватории, см., например, D. Jewitt et al. Hubble Space Telescope Observations of Main-Belt Comet (596) Scheila. The Astrophysical Journal Letters 733 (2011): L4–L8 и J. Kim et al. Multiband Optical Observation of the P/2010 A2 Dust Tail. The Astrophysical Journal Letters 746 (2012): L11–L15.

 

[62] Когда энергия конвертируется в субатомные частицы, они производятся парами – одна частица вещества, другая – антивещества, – которые при встрече аннигилируют и превращаются в электромагнитную энергию. Однако мы, судя по всему, живем во Вселенной, где вещества гораздо больше, чем антивещества. Похоже, это результат легчайшей асимметрии вещества и антивещества в очень ранний момент, когда возраст Вселенной составлял всего миллионную долю секунды, и поэтому, когда Вселенная стала остывать, в ней оказалось неравное количество частиц и античастиц. На каждый миллиард античастиц приходилось миллиард + 1 частиц. Почему? Хороший вопрос. Этого мы еще не знаем, хотя эксперименты в области физики частиц на больших коллайдерах, судя по всему, уже позволяют приблизиться к ответу.

 

[63] Это не так уж далеко от истины. Недавние исследования околозвездной пыли показывают, что отчасти она очень твердая и состоит из силикатов (например, из силиката магния), а от звезд ее отталкивает и раздувает во все стороны давление излучения.

 

[64] Пример см. в статье J. J. Hester et al. The Cradle of the Solar System // Science 304 (2004): 1116–17.

 

[65] Структура этих областей и правда сильно напоминает яйцо. В сущности, это диски плотного газа и пыли вокруг юных звезд и есть протопланетные диски, или их предшественники.

 

[66] Изучение конгломератов из протопланетной и межпланетной пыли и частиц показывает, что они довольно непрочны – в чем-то похожи на комья пыли, которые мы иногда выгребаем из-под диванов.

 

[67] Водяной лед при температуре выше 150–170 градусов выше абсолютного нуля очень быстро сублимируется (испаряется), поэтому граница вечных снегов появляется на таком расстоянии от центра системы, где объекты остывают ниже таких температур.

 

[68] Об этом нам говорят наблюдения, позволяющие исследовать излучение протопланетного или околозвездного диска и проанализировать отдельные черты спектров этого излучения, которые свидетельствуют о присутствии известных нам атомов и молекул.

 

[69] В числе стадий, которые проходит звезда от протозвездной системы до звезды, вырабатывающей водород (так называемой звезды, только что попавшей на главную последовательность (zero-age main sequence star, ZAMS), есть стадия звезды типа Тау Тельца (по названию звезды-архетипа). Эти объекты под воздействием гравитации медленно сжимаются и разогреваются, и склонны к спорадическим выбросам излучения, а в конце концов в них налаживается стабильный термоядерный синтез.

 

[70] См., например, D. A. Clarke . Astronomy: A Truly Embryonic Star // Nature 492 (2012): 52–53.

 

[71] Рассказывают (и это очень похоже на правду), что поскольку дело было именно в 1969 году, том самом, когда человечество сделало важнейший шаг – осуществило высадку на Луну, – эти события вызвали сильнейший научный и общественный интерес, а это, возможно, и поспособствовало тому, что после падения обоих метеоритов было быстро собрано много обломков.

 

[72] См., например, Bouvier, M. Wadhwa . The Age of the Solar System Redefined by the Oldest Pb-Pb Age of a Meteoritic Inclusion // Nature Geoscience 3 (2010): 637–41.

 

[73] Превосходная научно-популярная работа о том, что нам говорят изотопы в метеоритах, и о многом другом – Jacob Berkowitz . The Stardust Revolution: The New Story of Our Origin in the Stars. New York: Prometheus Books, 2012).

 

[74] Подробный рассказ об этом событии и о том, как оно повлияло на новорожденную Солнечную систему, см. в статье N. Dauphas and M. Chaussidon . A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk // Annual Review of Earth and Planetary Sciences 39 (2011): 351–86. См. также Y. Lin et al. Short-Lived Chlorine – 36 in a Ca – and Al-Rich Inclusion from the Ningqiang Carbonaceous Chondrite // Proceedings of the National Academies of Sciences of the United States [PNAS] 102 (2005): 1306–11.

 

[75] Отличный (сугубо научный) обзор обстоятельств рождения Солнца – статья F. Adams. The Birth Environment of the Solar System // Annual Review of Astronomy and Astrophysics 48 (2010): 47–85.

 

[76] Мы еще не пришли к окончательному выводу, действительно ли это место рождения Солнца. В этой системе и правда есть очень близкие «аналоги» Солнца (звезды похожего строения и состава), однако (см. ниже) движение и орбиты тамошних объектов, возможно, говорят об обратном.

 

[77] См., например, B. Pichardo et al. The Sun Was Not Born in M67 // The Astronomical Journal 143 (2012): 73–83.

 

[78] Да, под сильным давлением водород ведет себя как металл. В недрах Юпитера находится примерно пятьдесят масс Земли в виде металлического водорода.

 

[79] Я пишу именно «похож на земной», а не «землеподобный», поскольку, как вы вскоре убедитесь, недолюбливаю последний термин, хотя он довольно распространенный, и даже удобный. Но в данном случае упор как раз на «похож», поскольку, хотя на поверхности планеты вроде Марса, возможно, иногда бывает вода в жидком состоянии, однако климат на Марсе, скорее всего, всегда был больше схож с мерзкой ледяной пустыней, чем с чем-то тропическим.

 

[80] По-научному это называется диссипация атмосферы планет или планетный ветер, когда скорость атома или молекулы равна скорости, позволяющей преодолеть гравитационную тягу планеты на такой высоте. Есть и другие механизмы потери атмосферы, в том числе солнечный ветер, высокоэнергичные частицы которого буквально вышибают молекулы и атомы атмосферы в космос.

 

[81] Одна из теорий «Земли-снежка» основывается на исследованиях скальных пород возрастом примерно 650 миллионов лет.

 

[82] Какие именно, вопрос спорный. В целом ученые согласны, что умирающая звезда поглотит Меркурий и Венеру, однако сохранится ли Земля, неясно. Я решил быть оптимистом. Менее оптимистичный взгляд представлен в статье is K. Rybicki, C. Denis. On The Final Destiny of the Earth and the Solar System // Icarus 151 (2001): 130–37.

 

[83] Естественно, вы можете прочитать их сами. Прекрасный путеводитель по сказкам – Robert Irwin’s The Arabian Nights: A Companion. New York: Viking Adult, 1994; rev. ed., London: Tauris Parke Paperbacks, 2004.

 

[84] Примечательно, что и «Нарния» (в особенности «Лев, колдунья и платяной шкаф»), и «Звездные войны» – яркие примеры сюжета о чудесных спасителях. Цикл Клайва Льюиса, безусловно, христианская аллегория, а сага Джорджа Лукаса – более космополитический вариант, причудливая смесь волшебных сказок с притчами духовных наставников. И там, и там действие происходит «в другом месте», где земные законы практически неприменимы.

 

[85] О поисках экзопланет написано много прекрасных книг. Перечислю некоторые из них: Alan Boss. The Crowded Universe: The Search for Living Planets. New York: Basic Books, 2009; Ray Jayawardhana . Strange New Worlds: The Search for Alien Planets and Life beyond Our Solar System. Princeton: Princeton University Press, 2011; Lee Billings . Five Billion Years of Solitude. New York: Current/Penguin, 2013.

 

[86] Это явление названо в честь австрийского физика XIX века Кристиана Допплера и сводится к изменению частоты волны при относительном движении. Наглядный пример, который всегда приводят, – то, как повышается звук сирены на полицейской машине или карете «скорой помощи», когда машина едет в вашу сторону и, в сущности, сжимает звуковые волны, и как он понижается, когда машина удаляется и волны растягиваются. «Красное смещение» звезд и галактик, которые удаляются от нас, – это то же самое, только применительно к электромагнитному излучению или свету, однако поскольку свет и сам движется со скоростью, гм, света, это требует некоторых корректировок, при которых искажается еще и время, и существуют соответствующие уравнения релятивистского эффекта Допплера.

 

[87] Это так называемый транзитный метод: планеты проходят перед своими звездами и чуть-чуть блокируют свет. Транзитный метод – это основной способ обнаружения других планет, он применяется на космических телескопах «Кеплер» и COROT. Тщательный анализ отклонений в ритме проходов может выявить также и присутствие в системе других планет, которые не заслоняют звезду, однако оказывают гравитационное воздействие на те, которые мы наблюдаем.

 

[88] Присутствие планет может приводить к странным, чудесным и очень сложным отклонениям в том, как виден свет от звезды, находящейся на заднем плане. Однако темп, в котором с нашей точки зрения звезды с планетами выстраиваются в линию с более далекими звездами (у которых, возможно, тоже есть планеты), чтобы получалась линза, очень низок. Поэтому исследования при помощи гравитационных линз требуют терпения и тщательного отслеживания великого множества звезд. Но все равно этот способ позволяет обнаруживать планеты с огромной чувствительностью и на самых разных орбитальных расстояниях от звезд и помогает собрать статистику по численности планет.

 

[89] Среди имен, которые иногда забывают (хотя многие из этих исследователей обрели заслуженную славу, особенно Мишель Майор, Дидье Келос, Джефф Марси и Р. Пол Батлер), – канадцы Гордон Уокер и Брюс Кэмпбелл, которые стали первопроходцами в области современной методики поиска планет на основании эффекта Допплера.

 

[90] Это правило определяет расстояние между орбитами планет и названо в честь немецких астрономов Иоганна Тициуса (1729–1796) и Иоганна Боде (1747–1826); последнему мы обязаны продвижением этой гипотезы. На Нептун это «правило» не распространяется: разница между расчетной и реальной величиной большой полуоси его орбиты составляет 30 %. Тем не менее правило Тициуса-Боде иногда применяется для некоторых экзопланетных систем как удобное «правило буравчика», поскольку планеты имеют склонность располагаться по орбитам регулярно, по логарифму радиуса (расстояния до звезды); это объясняется общей природой формирования планет. Однако я не убежден, что нам следует придерживаться этого правила и дальше, поскольку полным физическим пониманием этих процессов мы пока не обладаем.

 

[91] Здесь проводятся исследования под эгидой Национального центра Астрономии и Ионосферы США (NAIC). Обсерватория построена в начале 1960-х годов и полностью введена в строй в 1963 году. Она сыграла важную роль во многих крупных научных открытиях, в том числе в открытии миллисекундных и двойных пульсаров, а также в построении радарного изображения поверхности Венеры.

 

[92] Об этом открытии рассказано в статье A. Wolszczan, D. Frail. A Planetary System around the Millisecond Pulsar PSR1257+12 // Nature 355 (1992): 145–47.

 

[93] Хотя были заявления и об обнаружении четвертого тела, эти результаты, похоже, под сомнением; см., например, A. Wolszczan. Discovery of Pulsar Planets // New Astronomy Reviews 56 (2012): 2–8.

 

[94] Звезда называется 51 Pegasi, и о ней вышло две главные публикации – первое объявление: M. Mayor, D. Queloz. A Jupiter-Mass Companion to a Solar-Type Star // Nature 378 (1995): 355–59, а затем – подтверждение – M. Mayor, D. Queloz, G. Marcy, P. Butler et al. 51 Pegasi // International Astronomical Union Circular 6251 (1995): 1.

 

[95] Их статья о миграции орбит – P. Goldreich, S. Tremaine . Disk– Satellite Interactions // The Astrophysical Journal 241 (1980): 425–41.

 

[96] Прекрасный Интернет-ресурс, позволяющий изучить экзопланеты во всем их поразительном разнообразии, – постоянно обновляемый онлайн-каталог по адресу http://exoplanet.eu/catalog/, который создал Джин Шнейдер из Парижской обсерватории.

 

[97] См., например, I. A. G. Snellen et al. The Orbital Motion, Absolute Mass and High-Altitude Winds of Exoplanet HD209458b // Nature 465 (2010): 1049–51.

 

[98] Разобраться в устройстве планетных атмосфер очень сложно. О том, что происходит на «горячем юпитере», можно прочитать в статье A. Burrows, J. Budaj, I. Hubeny . Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data // The Astrophysical Journal 678 (2008): 1436–57.

 

[99] Странное возвратное движение впервые зарегистрировано в системе WASP-17b, что описано в статье D. Anderson et al . WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit // The Astrophysical Journal 709 (2010): 159–67.

 

[100] См. D. M. Kipping, D. S. Spiegel . Detection of Visible Light from the Darkest World // Monthly Notices of the Royal Astronomical Society 417 (2011): L88–L92.

 

[101] Например, газовый гигант, который вращается вокруг звезды HD 8606 (190 световых лет от Земли), имеет орбитальный период в 111 земных дней, а эллиптичность орбиты составляет 0,93. Это значит, что ближе всего он подходит к звезде на 0,03 а. е., а самое далекое расстояние – 0,88 а. е., в 30 раз больше. В районе ближайшей к звезде точки температура в атмосфере, по мнению ученых, всего за шесть часов возрастает вдвое.

 

[102] См., например, S. Rappaport et al. Possible Disintegrating Short-Period Super-Mercury Orbiting KIC 12557548 // The Astrophysical Journal 752 (2012): 1.

 

[103] Признаюсь честно: мы еще пока не уверены, что обнаружили в точности такие системы, поскольку интерпретировать данные очень трудно. Тем не менее гипотеза о подобном наборе планет основана на реальных данных, приведенных в статье M. Tuomi . «Evidence for Nine Planets in the HD 10180 System // Astronomy and Astrophysics 543 (2012), no. A52:1–12.

 

[104] См., например, обзор N. Haghighipour . The Formation and Dynamics of Super-Earth Planets // Annual Review of Earth and Planetary Sciences 41 (2013): 469–95.

 

[105] См., например, X. Boni ls et al. The HARPS Search for Southern Extra-Solar Planets. XXXI. The M-dwarf Sample // Astronomy and Astrophysics 549, no. A109 (2013): 1–75.

 

[106] О том, какая у этого утверждения теоретическая основа, хорошо рассказано в статье G. Laughlin, P. Bodenheimer, F. C. Adams . The End of the Main Sequence // The Astrophysical Journal 482 (1997): 420–32.

 

[107] В основном эти свидетельства дают нам исследования гравитационных линз. См. T. Sumi et al. and A. Udalski et al. Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing // Nature 473 (2011): 349–52. (Авторы – участники проектов Microlensing Observations in Astrophysics [MOA] и Optical Gravitational Lensing Experiment [OGLE] collaborations).

 

[108] И даже звездные системы с большей кратностью. Многие известные экзопланеты вращаются вокруг звезды, у которой есть одна или несколько звезд-компаньонок на более далеких орбитах. Например, в системе GJ667 три звезды (А, В, С), и доказано, что вокруг звезды С вращаются экзопланеты. Надежнее всего подтверждено, что существует планета, вращающаяся сразу вокруг двух звезд, в случае Kepler-16, которую иногда называют «системой Татуин» в честь вымышленной планеты из «Звездных войн».

 

[109] См. A. Léger et al. A New Family of Planets? «Ocean-Planets» // Icarus 169 (2004): 499–504.

 

[110] Я участвовал в проектах, в результате которых в 2008–2010 годах появилась серия статей о вариантах климата на планетах. Первая из них – D. S. Spiegel, K. Menou, and C. A. Scharf. Habitable Climates // The Astrophysical Journal 681 (2008): 1609–23.

 

[111] Я опубликовал научно-популярную заметку об этой идее в сетевой версии журнала «Scientific American» за 26 декабря 2012 года: «Should We Expect Other Earth-Like Planets At All?» // http://blogs.scientificamerican.com/life-unbounded/2012/12/26/should-we-expect-other-earth-like-planets-at-all/

 

[112] О том, какие экстраполяции позволяют сделать подобные заявления об общем количестве планет на Млечном пути, доступно рассказано в двух статьях: C. D. Dressing, D. Charbonneau . The Occurrence Rate of Small Planets around Small Stars // The Astrophysical Journal 767 (2013): 95–114, и E. A. Petigura, G. W. Marcy and A. W. Howard . A Plateau in the Planet Population below Twice the Size of Earth // The Astrophysical Journal 770 (2013): 69–89.

 

[113] Об этом я подробнее писал в Интернет-журнале Aeon Magazine от 20 июня 2013 года: C. Scharf, «Are We Alone? // http://aeon.co/magazine/nature-and-cosmos/the-real-meaning-of-the-exoplanet-revolution/.

 

[114] Анри Пуанкаре (1854–1912) был не просто математик, он добивался блестящих результатов практически во всем, за что брался, в том числе в физике и в инженерном деле. Большинство источников отмечают, что он был склонен работать быстро и не очень любил вносить изменения и исправления в уже сделанное.

 

[115] Этот журнал процветает до сих пор, его издает Институт Миттаг-Леффлер (названный в честь супругов Густава и Сигне Миттаг-Леффлер) при Шведской королевской академии наук.

 

[116] Эта знаменитая задача математической физики упоминается в исследовательской литературе сплошь и рядом. Существует множество точных (и очень затейливых) решений для сугубо частных случаев, см., например, Cristopher Moore. Braids in Classical Dynamics // Physical Review Letters 70 (1993): 3675–79, а также чудесные анимационные ролики на сайте http://tuvalu.santafe.edu/~moore/gallery.html.

 

[117] Об истории и хронологии трудов Пуанкаре написана прекрасная лаконичная статья с богатейшим списком источников: Q. Wang . On the Homoclinic Tangles of Henri Poincaré // http://math.arizona.edu/~dwang/history/Kings-problem.pdf.

 

[118] Призовой фонд составлял 2500 крон, а на то, чтобы перепечатать тираж «Acta Mathematica», нужно было 3500 крон. Для сравнения, среднее жалованье члена Шведской академии наук составляло примерно 7000 крон в год.

 

[119] Отличная статья о новейшей истории гравитационной задачи n тел – F. Diacu. The Solution of the n-body Problem // The Mathematical Intelligencer 18 (1995): 6670

 

[120] Если вас интересует богатая и многогранная тема хаоса и нелинейности, рекомендую великолепную книгу: James Gleick. Chaos: Making a New Science. New York: Viking Penguin, 1987; rev. ed., Penguin Books, 2008).

 

[121] См. J. Laskar. A Numerical Experiment on the Chaotic Behaviour of the Solar System // Nature 338 (1989): 237–38.

 

[122] См. G. J. Sussman, J. Wisdom. Chaotic Evolution of the Solar System // Science 257 (1992): 56–62.

 

[123] Это качество характеризуется экспонентой Ляпунова, математической величиной, которая отражает скорость, с которой расходятся друг от друга отличающиеся друг от друга на бесконечно малую величину траектории, например, орбиты, в динамической системе, иначе говоря, с какой скоростью система становится непредсказуемой. Она названа в честь русского ученого Александра Ляпунова (1857–1918).

 

[124] В последнее время ученые исследуют то, как общая теория относительности Эйнштейна влияет на динамику Солнечной системы, что позволяет уточнить простые ньютоновы законы. См., например, G. Laughlin. Planetary Science: The Solar System’s Extended Shelf Life // Nature 459 (2009): 781–82, а также J. Laskar, M. Gastineau. Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth // Nature 459 (2009): 817–19.

 

[125] См. K. Batygin, G. Laughlin. On The Dynamical Stability of the Solar System // The Astrophysical Journal 683 (2008): 1207–16.

 

[126] См., например, G. E. Williams. Geological Constraints on the Precambrian History of Earth’s Rotation and the Moon’s Orbit // Reviews of Geophysics 38 (2000): 37–59.

 

[127] Таких симуляторов очень много, и у каждого свой подход, а иногда и собственная узкая сфера применения, будь то планеты или галактики. В частности, это программы «Mercury», «SWIFT» и «Hermit».

 

[128] Даже лексикон орбитальной динамики – и тот отличается от привычного жаргона физиков. Ученые говорят о резонансах, прецессиях, либрациях, оскулирующих элементах, апсидальном выстраивании, аргументах перицентра, гармониках, секулярных возмущениях – и никогда-никогда не обходится без упоминания о хаосе. Многие подобные выражения восходят еще к XVII–XVIII векам, ко временам Ньютона, Лапласа, Лагранжа и прочих выдающихся математиков. Это тяжелая артиллерия мощных математических понятий, а их применение к новым открытиям в науке об экзопланетах приносит нам все новые сюрпризы.

 

[129] Эта тема затронута во множестве научных статей. См., например, F. C. Adams, G. Laughlin. Migration and Dynamical Relaxation in Crowded Systems of Giant Planets // Icarus 163 (2003): 290–306; M. Juric, S. Tremaine. Dynamical Origin of Extrasolar Planet Eccentricity Distribution // The Astrophysical Journal 686 (2008): 603–620.

 

[130] Эта теория известна как «Модель Ниццы» в честь Обсерватории Лазурного Берега во французском городе Ницца, где ее разработали. См., например, K. Tsiganis et al. Origin of the Orbital Architecture of the Giant Planets of the Solar System // Nature 435 (2005): 459–61.

 

[131] Его статья с описанием пятой гигантской планеты – D. Nesvorný. Young Solar System’s Fifth Giant Planet? // The Astrophysical Journal Letters 742 (2011): L22—L27.

 

[132] См., например, A. Cassan et al. One or More Bound Planets per Milky Way Star from Microlensing Observations // Nature 481 (2012): 167–69.

 

[133] На эту тему издано колоссальное количество книг и статей, выдвинуто множество интереснейших гипотез и не достигнуто практически никакого согласия по поводу того, на каких именно критериях основываться при решении, способна ли та или иная планета поддерживать жизнь. При всем при том начать изучать эту тему стоит с глубокой книги James Kasting . How to Find a Habitable Planet. Princeton: Princeton University Press, 2010.

 

[134] Эта проблема получила название «проблемы тусклого молодого Солнца», и она до сих пор не решена, несмотря на то, что статьи с претензией на ответ поступают бесперебойно. Обзор можно прочитать у G. Feulner. The Faint Young Sun Problem // Reviews of Geophysics 50 (2012): RG2006. Лично я подозреваю, что решить ее помогут усовершенствованные (трехмерные) модели, которые позволят точнее описать климат на планетах. И лично у меня есть любимая теория, ничем не подкрепленная: возможно, орбита Земли была не совсем такой, как мы думаем.

 

[135] Так называемая модель ударного формирования Луны предполагает, что часть орбитального диапазона юной Земли занимало небесное тело размером примерно с Марс, протопланета под названием Тейя («богиня»): возможно, она описывала «подкову» вокруг одной из стабильных точек (точек Лагранжа), опережая Землю на ее орбите или отставая от нее. А впоследствии их орбитальные пути пересеклись, и это привело к столкновению Тейи с Землей. Хотя на данный момент это главенствующая теория, есть некоторые признаки того, что это, вероятно, не полная картина произошедшего. См., например, краткий обзор D. Clery. Impact Theory Gets Whacked // Science 342 (2013): 183–85

 

[136] Об их исследовании см. H. F. Levison et al. Capture of the Sun’s Oort Cloud from Stars in Its Birth Cluster // Science 329 (2010): 187–90.

 

[137] Археи, подобно бактериям, прокариоты, одноклеточные организмы, в клетках которых нет ядер и других органелл. В 1977 году некоторые виды архей были впервые классифицированы как особый тип прокариотов и выделены в собственное царство, отдельное от бактерий; это сделали Карл Вёзе и Джордж Фокс на основе генетических анализов. Об этом рассказано в статье C. R. Woese, G. E. Fox. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms // PNAS 74 (1977): 5088–90.

 

[138] Не приходится удивляться, что эти оценки варьируются. Приведенная величина основана на авторитетной статье William B. (Brad) Whitman. Prokaryotes: The Unseen Majority // PNAS 95 (1998): 6578–83. Автор исходит из большого количества обоснованных экстраполяций данных, полученных путем исследования различных популяций и сред.

 

[139] Я имею в виду статью P. Falkowski, T. Fenchel, E. Delong. The Microbial Engines That Drive Earth’s Biogeochemical Cycles // Science 320 (2008): 1034–39.

 

[140] Молекулярные машины зачастую состоят из белков, содержащих две и более одинаковые или разные полипептидные цепочки. Вообще говоря, полипептид – это цепочка аминокислот, которые скреплены ковалентными связями в результате обмена электронами между атомами. Ух, какая сложная наука химия…

 

[141] Хороший обзор энергетического бюджета живых организмов на примере сгорания «топлива» см. в статье K. H. Nealson and P. G. Conrad. Life: Past, Present, and Future // Philosophical Transactions of the Royal Society B // Biological Sciences 354 (1999). 1923–39.

 

[142] Кажется, будто процесс выработки метана микробами довольно прост, однако на самом деле, как и большинство метаболических процессов, он задействует безумное количество ферментов и реакций, причем не всегда одинаковых. В сущности, к получению метана приводит три основных метаболических маршрута: восстановление углекислого газа (о нем здесь и идет речь), ферментация соли уксусной кислоты и дисмутация (одновременное окисление и восстановление, в результате которых получаются два вещества) метанола или метиламинов. Каждый из них предполагает множество этапов-реакций.

 

[143] Примеров тому множество. Не так давно было открыто одно особенно удивительное сочетание химических реакций окисления-восстановления, которые идут в разных слоях осадков на морском дне, – расстояние между ними составляет целых 12 миллиметров, для бактерий это очень много. Вероятно, механизм, связывающий эти физические слои, – электрический: возможно, именно бактерии контролируют поток заряженных частиц по планете. L. P. Nielsen et al. Electric Currents Couple Spatially Separated Biogeochemical Processes in Marine Sediment // Nature 463 (2010): 1071–74.

 

[144] Разновидности сине-зеленых водорослей использовали солнечный свет для получения пищи еще более чем 3 миллиарда лет назад. Эти организмы, вырабатывающие кислород, и по сей день встречаются на Земле повсеместно.

 

[145] См., например, N. Lane, W. F. Martin. The Origin of Membrane Bioenergetics // Cell 151 (2012): 1406–16.

 

[146] Бактерии, например, могут обмениваться небольшими поднаборами генетического материала в виде плазмид. Эти плазмиды часто существуют в клетке в виде небольших колец ДНК (независимых от хромосомной ДНК) и содержат генетические коды размером от тысячи до миллиона базовых пар (знаков). Зачем природа придумала такое? Одно из преимуществ микробов состоит в способности делиться ДНК, в которой закодировано сопротивление неблагоприятным факторам вроде антибиотиков. В сущности, распределение плазмид увеличивает шансы на выживание целой популяции, а не только отдельной особи, которой повезло обрести нужную мутацию.

 

[147] Эта идея пока не вполне доказана. Изучение скальных пород показывает, что примерно 650–750 лет назад, возможно, был период глобального похолодания, и тогда, вероятно, было так холодно, что даже на самых низких широтах все было покрыто льдом. То, в какой степени Земля замерзла, почему это произошло и как климат снова потеплел, до сих пор вызывает споры. Доводы в пользу гипотезы «снежка» см., например, в статье P. F. Hoffman et al. A Neoproterozoic Snowball Earth // Science 281 (1998):1342–46. Планеты, на поверхности которых есть вода, и в самом деле подвержены процессу положительной обратной связи, когда лед отражает больше солнечной энергии, чем жидкая вода, и поэтому температура на поверхности падает еще сильнее. Вероятно, состояния «снежка» среди экзопланет не редкость.

 

[148] См., например, обсуждении в статье B. J. McCall and T. Oka. H3+ – an Ion with Many Talents // Science 287 (2000): 1941–42.

 

[149] См. D. F. Strobel. Molecular Hydrogen in Titan’s Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions // Icarus 208 (2010): 878–86

 

[150] И в самом деле, есть несколько работ о структуре более абстрактных метаболических систем и об углеродной химии, в которых предполагается, что метаболизм, основанный на углероде, был «почти достоверным» событием, своего рода аттрактором в пространстве вероятностей. См. R. Braakman and E. Smith. The Compositional and Evolutionary Logic of Metabolism // Physical Biology 10 (2012): 011001.

 

[151] Измерение нисходящего потока молекулярного водорода в атмосфере Титана привело к пересмотру и возобновлению дискуссии о жизни на этом небесном теле. См. уже упоминавшуюся ранее статью D. F. Strobel. Molecular Hydrogen in Titan’s Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions // Icarus 208 (2010): 878–86 (и список литературы в этой статье).

 

[152] Это делается при помощи инструментов «метагеномики», когда изучаются образцы, полученные из естественной среды, и изучается генетическое разнообразие определенных важнейших генов, которыми так или иначе пользуются все живые организмы. Например, рибосомальная последовательность РНК 16S состоит из 1542 нуклеиновых кислот – «букв», и эта последовательность, как говорят биологи, высоко консервативна, то есть случайные мутации в ней вызывают осложнения и быстро уничтожаются путем естественного отбора, а значит, любая версия, как правило, соответствует своему биологическому виду. Если изучить разнообразие вариантов этой последовательности в образце, можно получить оценку количества разных видов бактерий и архей в нем.

 

[153] См., например, обзор J. M. Beck, V. B. Young, and G. B. Huffnagle. The Microbiome of the Lung // Translational Research 160 (2012): 258–66.

 

[154] Об этой поразительной области исследований написано много превосходных работ. Отличная научно-популярная статья – J. Ackerman. The Ultimate Social Network // Scientific American 306 (2012): 36–43. Хотя по поводу микрофауны человека постоянно появляются новые работы, исследование микробов желудочно-кишечного тракта в 2010 году производилось в рамках проекта «MetaHIT» («Metagenomics of the Human Intestinal Tract»). Отчет о нем см. в статье J. Qin et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing // Nature 464 (2010): 59–65.

 

[155] Энтеротипы выявлены на основе алализа метагеномных данных, полученных при изучении (какая прелесть) человеческих каловых масс. Это исследование описано в статье M. Arumugam et al. Enterotypes of the human gut microbiome // Nature 473 (2011): 174–80.

 

[156] Подобные исследования начались только совсем недавно, однако, похоже, действительно есть какая-то связь – иногда ее называют «осью „микрофлора-кишечник-мозг“». Хороший обзор см. в статье V. O. Ezenwa et al. Animal Behavior and the Microbiome // Science 338 (2012): 198–99.

 

[157] И в самом деле, некоторых ученых это навело на использование термина «хологеном» – сумма генов человека (и любого многоклеточного организма) и его микрофлоры; с этой точки зрения они исследуют эволюцию и естественный отбор. Некоторые исследования, похоже, отчасти подтверждают подобные идеи; см., например, R. M. Brucker, S. R. Bordenstein. The Hologenomic Basis of Speciation: Gut Bacteria Cause Hybrid Lethality in the Genus Nasonia // Science 341 (2013): 667–69.

 

[158] Пожалуй, главным трудом по этому вопросу по сей день остается книга B. Hölldobler and E. O. Wilson . The Ants. Cambridge, MA: Belknap Press of Harvard University Press, 1990.

 

[159] Первое научное описание того, как осьминоги собирают и запасают «орудия», чтобы применять их впоследствии, приводится в статье J. K. Finn, T. Tregenza, and M. D. Norman. Defensive Tool Use in a Coconut– Carrying Octopus // Current Biology 19 (2009): R1069–70. Ученые отмечали, как так называемые кокосовые осьминоги собирают, складывают и перетаскивают с места на место (очень неуклюже, при помощи особого приема наподобие хождения на ходулях) кокосовую скорлупу, похоже, для того, чтобы затем строить из них жилища. Финн пишет, что зрелище было весьма комичное: «В жизни не приходилось так смеяться под водой». Статью можно найти в Интернете: www.eurekalert.org/pub_releases/2009–12/cp-tui120909.php.

 

[160] Точные даты, само собой, не известны. Временные рамки заданы по данным морской изотопной стадии 6 (MIS6) и изучения генетического разнообразия людей. Численность популяции людей резко падала и в другие периоды, например, около 70 000 лет назад и даже гораздо раньше – 1,2 миллиона лет назад. Однако, мне кажется, лучше уточнить, что с тем, что такие падения популяции вообще бывали, согласны не все. Хороший обзор можно найти в статье G. Hewitt. The Genetic Legacy of the Quaternary Ice Ages // Nature 405 (2000): 907–13.

 

[161] С таким толкованием, как обычно в случаях подобных заявлений, согласны не все. Судите сами. Для справки ознакомьтесь со статьей C. W. Marean et al. Early Human Use of Marine Resources and Pigment in South Africa During the Middle Pleistocene // Nature 449 (2007): 905–908.

 

[162] Дата, конечно, приблизительная. Судя по всему, согласия по поводу того, что и как погубило неандертальцев, пока нет, особенно много вопросов к тому, где именно это произошло.

 

[163] См. R. E. Green et al. A Draft Sequence of the Neanderthal Genome // Science 328 (2010): 710–22.

 

[164] Отличный научно-популярный рассказ об этом см. в статье K. S. Pollard. What Makes Us Different? // Scientific American 22 (2012): 30–49. Я во многом опирался именно на нее.

 

[165] Думаю, до определенной степени так и было – кроме того, многие ученые указывали, что если интеллект в человеческом стиле так хорош, почему он возник на Земле всего один раз за 4 миллиарда лет? Правда, я не знаю, насколько верен этот довод. Например, цветковые растения с точки зрения эволюции невероятно удачны, однако и они возникли всего один раз, примерно 130 миллионов лет назад, и то же самое вполне можно сказать о популяциях организмов вроде насекомых. Как всегда, за успех и неуспех той или иной биологической стратегии отвечает сразу много разнообразных факторов.

 

[166] В первую очередь мне вспоминается невероятная пещера Шове в департаменте Ардеш на юге Франции, где сохранились потрясающие изображения сотен животных, созданные 30–32 тысячи лет назад. Настоятельно советую посмотреть чудесный фильм Вернера Херцога «Пещера забытых снов» (2010 год).

 

[167] Идея цикличности космоса главенствует, в частности, в индуистской философии и в буддизме.

 

[168] Сейчас, когда я пишу эти строки, у нас нет абсолютно никаких данных о жизни где бы то ни было, кроме Земли. Разумеется, отсутствие данных само по себе интересно и, само собой, легло в основу разнообразных теорий о природе такой жизни во Вселенной, которая способна организовывать космические путешествия, и о том, почему она до сих пор не дала о себе знать (так и есть, как бы ни хотелось воображать себе обратное). Об этой загадке я поговорю в последней главе.

 

[169] Вильям Гершель (1738–1822) – английский ученый, родившийся в Германии, был великолепным астрономом, инженером-оптиком и даже композитором. Заявления о жизни на Луне и Солнце отчасти почерпнуты мной из книги Iwan Rhys. When Physics Became King. Chicago: The University of Chicago Press, 2005). Полезно почитать и труды самого Гершеля, например, W. Herschel. On the Nature and Construction of the Sun and Fixed Stars // Philosophical Transactions of the Royal Society of London 85 (1795): 46–72, а также о некоторых его соображениях по поводу Луны – W. Herschel. Astronomical Observations Relating to the Mountains of the Moon // Philosophical Transactions 70 (1780): 507–26.

 

[170] О представлениях Дика и Гершеля о множественности миров прекрасно рассказано в книге Michael J. Crowe. The Extraterrestrial Life Debate // 1750–1900: The Idea of a Plurality of Worlds from Kant to Lowell (Cambridge, UK: Cambridge University Press, 1986).

 

[171] Подсчет общего числа звезд во Вселенной не относится к точным наукам. Приводимое здесь число – достаточно скромная оценка, всего лишь 1021; в некоторых исследованиях предполагается, что их может быть и в 300 раз больше. Это результат экстраполяции данных исследований вроде P. G. van Dokkum and C. Conroy. A Substantial Population of Low-Mass Stars in Luminous Elliptical Galaxies // Nature 468 (2010): 940–42.

 

[172] О Байесе написано очень много, особенно после того, как в последние несколько десятилетий байесовские статистические методы стали применяться гораздо шире. В числе источников, которыми я пользовался, – эссе D. R. Bellhouse. The Reverend Thomas Bayes, FRS: A Biography to Celebrate the Tercentenary of his Birth // Statistical Science 19 (2009): 3–43. Более доступно биография Байеса изложена в книге Sharon Bertsch McGrayne. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy. New Haven: Yale University Press, 2011).

 

[173] Заслуги Прайса обычно сильно недооценивают: без него идеи Байеса не были бы приведены в пригодный для публикации вид и философски осмыслены.

 

[174] Теорема Байеса. В упрощенном виде она выглядит так:

Вероятность А при условии В есть произведение вероятности В при условии А и вероятности А, деленное на вероятность В, где А (например) может быть гипотезой или моделью, а В – данными.

 

[175] Прайс привел в пример новорожденного ребенка, который наблюдает восходы и закаты Солнца. Мне больше по душе цыплята.

 

[176] Что именно вдохновило Льюиса Кэролла на создание этих культовых животных (или по крайней мере одного), осталось неизвестным. Гипотез множество – от геральдических львов и церковных горгулий до сказок о всем довольных, напившихся молока котах из английского графства Чешир.

 

[177] Спорщики раскалывались на два лагеря – так называемых фреквентистов и байесианцев. Фреквентист толкует происходящее на основе результата измерений и, как правило, предполагает, что существуют постоянные фундаментальные параметры, которым нельзя приписывать вероятность. Например, если эксперимент приводит к определенному результату в 95 случаях из 100, фреквентист скажет, что к тому же результату приведут и 95 % дальнейших экспериментов, и не добавит, что это произойдет с той или иной вероятностью.

 

[178] D. Spiegel, E. Turner. Bayesian Analysis of the Astrobiological Implications of Life’s Early Emergence on Earth // PNAS 109 (2012): 395–400.

 

[179] Большинство ученых согласны, что самые ранние свидетельства о жизни на Земле – это строматолиты, слоистые каменные отложения, созданные колониями микробов. Подобные структуры и сейчас формируются в нескольких местах с особыми условиями, например, в заливе Шарк в Австралии и на коралловых рифах Эксума на Багамских островах. Возраст самого древнего строматолита, скорее всего, имеющего биологическое происхождение, около 3,45 миллиарда лет. Некоторые ученые утверждают, что найденные в Австралии сетевидные отпечатки колоний микробов могут насчитывать 3,49 миллиарда лет. Утверждают даже, что найдены отложения бактериального происхождения, которым 3,8 миллиарда лет, но это вопрос спорный. Найти первые следы жизни на Земле трудно еще и потому, что на свете осталось мало мест, где можно обнаружить такие древние скальные породы.

 

[180] Космический аппарат НАСА под названием «Новые горизонты» («New Horizons»), запущенный в 2006 году; ожидается, что в 2015 году он пролетит мимо Юпитера и его спутников со скоростью около 14 километров в секунду, а затем отправится к более далеким целям.

 

[181] С некоторыми зондами все обстоит иначе. Зонду «Пионер-10» понадобится более 60 миллионов лет, чтобы пройти относительно близко от звезды Альдебаран (до нее 68 световых лет). «Пионер-11» примерно через 40 000 лет пройдет в пределах 1,7 светового года мимо одной маломассивной звезды. «Вояджер-1» тоже, вероятно, пройдет в пределах пары световых лет от другой маломассивной звезды приблизительно через 40 000 лет, а «Вояджер-2» пройдет в нескольких световых годах от звезды Сириус через 296 000 лет.

 

[182] Визуальный осмотр структур на ледяной поверхности этого небесного тела и обнаружение там солей серной кислоты, которые, вероятно, сначала были солями соляной кислоты, а также измерение индуцированных магнитных полей, единогласно указывают на то, что под поверхностью Европы находится обширный океан. Скорее всего, он заключен под ледяной корой толщиной в десятки километров, однако его воды из-за тектоникоподобных процессов иногда протекают наружу. Недра Европы остаются теплыми, вероятно, благодаря сочетанию радиоактивного подогрева из скального ядра и тепла от трения во время гравитационных приливов, когда Европа растягивается и сокращается из-за эллиптичности своей орбиты вокруг массивного Юпитера (эта орбита – результат взаимодействия с другими спутниками Юпитера, которые открыл Галилей).

 

[183] Хорошая, пусть и несколько устаревшая обзорная статья – D. Penny and A. Poole. The Nature of the Last Universal Common Ancestor // Current Opinion in Genetics and Development 9 (1999): 672–77. Байесовский анализ в поддержку LUCA – D. L. Theobald. A Formal Test of the Theory of Universal Common Ancestry // Nature 465 (2010): 219–22. Кроме того, по поводу этой статьи есть прекрасная дискуссия – M. Steel and D. Penny. Origins of Life: Common Ancestry Put to the Test // Nature 465 (2010): 168–69.

 

[184] Об этой гипотезе, восходящей под разными обличьями к шестидесятым годам ХХ века, написано очень много. Термин «мир РНК» был впервые использован в статье Walter Gilbert. Origin of Life: The RNA World // Nature 319 (1986): 618.

 

[185] См. сноску о структурах пород, сформированных колониями бактерий на с. 263. Недавно палеонтологи заявили, что обнаружили ископаемые остатки клеток бактерий, перерабатывавших серу, возрастом 3,4 миллиарда лет, а также (независимо) сетевидные узоры в скальных породах – следы жизнедеятельности микробов – возрастом 3,49 миллиарда лет. И то и другое найдено при раскопках в регионе Пилбара в Западной Австралии.

 

[186] Эти зверюшки и в самом деле опровергли множество предрассудков. Прекрасная обзорная статья – James L. Van Etten. Giant Viruses // American Scientist 99 (2011): 304.

 

[187] О его открытии читайте в статье D. Arslan et al. Distant Mimivirus Relative with a Larger Genome Highlights the Fundamental Features of Megaviridae // PNAS 108 (2011): 17486–91.

 

[188] Это отнюдь не голословное заявление, а если оно подтвердится, то станет настоящей сенсацией. Об этом см. статью A. Nasir, K. M. Kim, and G. Caetano -Anolles. Giant Viruses Coexisted with the Cellular Ancestors and Represent a Distinct Supergroup along with Superkingdoms Archaea, Bacteria and Eukarya // BMC Evolutionary Biology 12 (2012): 156.

 

[189] Очень славная статья Дэвиса с соавторами об идее теневой жизни: Р. Davies et al. Signatures of a Shadow Biosphere // Astrobiology 9 (2009): 241–49. Хотя подобные идеи наталкиваются на суровую критику, да и сам я считаю, что в них полно фундаментальных пробелов, это отличная пища для ума.

 

[190] Строго говоря, арсенат – это молекулярная группа, которая присоединяется к чему-то еще. Его формула – AsO43–, то есть это ион. Есть организмы, которые и в самом деле инкорпорируют мышьяк в органические молекулы, например, некоторые морские водоросли и бактерии. Однако, судя по всему, диапазон подобного поведения ограничен.

 

[191] Молекула аденозинтрифосфат (АТФ, химическая формула C10H16N5O13P3) иногда называется молекулярной валютой при межклеточной передаче энергии. АТФ создается в результате процессов вроде фотосинтеза или ферментации, а затем используется во множестве других мест в клетке, которая превращает его обратно в молекулу-предшественницу, а энергию забирает. Иначе говоря, АТФ играет главную роль в обмене веществ.

 

[192] В печати этот вид получил обозначение GFAJ-1, которое в шутку расшифровали как «Give Felisa A Job» – «Дайте Фелисе работу»: главным автором статьи с описанием этого открытия была Фелиса Волф-Саймон, проходившая стажировку после защиты диссертации. Wolfe-Simon et al. A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus // Science 332 (2010): 1163–66. Однако читать эту статью отдельно, без учета реакции научного сообщества, нельзя, а она, само собой, столкнулась с серьезной критикой: хорошую проверку гипотезы из соображений здравого смысла предлагают авторы статьи B. P. Rosen, A. A. Ajees, and T.R. McDermott. Life and Death with Arsenic // BioEssays 33 (2011): 350–57.

 

[193] Из интервью, которое взял у меня Деннис Овербай для статьи в «The New York Times», которая была опубликована 2 декабря 2010 года. Эти слова потом часто цитировали.

 

[194] См. M. Elias et al. The Molecular Basis of Phosphate Discrimination in Arsenate-Rich Environments // Nature 491 (2012): 134–37. Более ранняя статья приводит доказательства внедрения мышьяка в жизнеспособные ДНК бактерии: M. L. Reaves et al. Absence of Detectable Arsenate in DNA from Arsenate – Grown GFAJ – 1 Cells // Science 337 (2012): 470–73.

 

[195] Об открытии этой системы было объявлено в 2012 году. В данном случае обе планеты большие, одна, вероятно, газовый гигант, другая немного больше Нептуна. Более крупная планета обращается вокруг двойной звезды за каждые 50 земных дней, та, что поменьше, за каждые 303 земных дня. Одна звезда похожа на Солнца, вторая примерно в три раза меньше.

 

[196] И в самом деле, некоторые астрономы утверждают, что самая распространенная конфигурация планетной системы в нашей Галактике состоит из нескольких планет, которые вращаются по довольно маленьким орбитам и облетают свою звезду за несколько дней или недель.

 

[197] Пример такой планетной системы – система HD 10180 у звезды размером с Солнце, которая находится от нас на расстоянии около 127 световых лет. Анализ данных транзитного анализа (сейчас, когда я пишу эти строки, они ждут подтверждения в результате новых наблюдений) показывает, что планет может быть по крайней мере девять – семь из них вращаются в пределах половины расстояния от Солнца до Земли, а две – на расстоянии от 1,5 до 3,5 этой дистанции. См. Tuomi. Evidence for Nine Planets и сноску на с. 136.

 

[198] В нашей собственной Солнечной системе есть планета Юпитер, у которой 67 спутников. Большинство из них совсем маленькие, однако галилеевы спутники – Ио, Европа, Ганимед и Каллисто – очень велики. Диаметр Ганимеда больше, чем у Меркурия. Астрономы почти уверены, что должны существовать не только экзопланеты, но и «экзолуны», и открыт сезон охоты на них. Уже давно обсуждается вероятность, что они могут оказаться «пригодными для обитания», и я даже писал об этом некоторое время назад, причем в моей статье есть ссылки на несколько более ранних работ: C. A. Scharf. The Potential for Tidally Heated Icy and Temperate Moons around Exoplanets // The Astrophysical Journal 648 (2006): 1196–1205.

 

[199] Иногда это называют «приливный захват».

 

[200] Томас Кун пишет это в своей книге о коперниковой революции, она упоминается в сноске к главе 1 на с. 25. Кроме того, стоит заглянуть в тоже уже упоминавшуюся (см. сноску на с. 31) книгу Owen Gingerich. The Book Nobody Read». Джинджерич рассказывает о своих титанических трудах по розыску экземпляров первого издания «De revolutionibus» и подробно излагает, как этой книгой пользовались – а иногда и составляли примечания к ней – Галилей, Кеплер и прочие. Эта книга очень популярна, и те, кому оказался по силам ее насыщенный терминами язык, высоко ее ценят.

 

[201] См., например, J. Laskar et al. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars // Icarus 170 (2004): 343–64.

 

[202] Судя по всему, наша Солнечная система в данный момент проходит через область, весьма бедную веществом, которая довольно оригинально называется «Местное межзвездное облако». Размером оно около 30 световых лет в поперечнике и содержит приблизительно один атом на три кубических сантиметра пространства. Мы находимся в нем примерно 40 000–150 000 лет и, вероятно, вынырнем из него лишь через 20 000 лет. Более плотные межзвездные облака, например, молекулярные облака, из которых возникают звезды, в среднем в 100–1000 раз плотнее.

 

[203] Один из самых известных обзоров на эту тему – книга Peter D. Ward and Donald Brownlee. Rare Earth: Why Complex Life Is Uncommon in the Universe. New York: Copernicus/Springer-Verlag, 2000. В ней предложено множество линий доказательств того, что сложноклеточная и разумная жизнь во Вселенной – большая редкость, а главный довод – сложноклеточным организмам требуется целый ряд характеристик окружающей среды и биологических соединений. Более современный и астрофизический подход к подобным идеям изложен в книге John Gribbin. Alone in the Universe: Why Our Planet is Unique. Hoboken, NJ: John Wiley & Sons, 2011.

 

[204] Я не стал подробно говорить об этом в основном тексте, однако, похоже, все гипотезы уникальной Земли имплицитно предполагают, что здесь, на Земле, созданы «идеальные» условия для сложноклеточной разумной жизни. Я не уверен, что так было всегда или достаточно долго. Возьмем, к примеру, существование ископаемого топлива – обширных залежей газа и угля, возникших в Каменноугольный период около 300 миллионов лет назад. Это топливо позволило человечеству встать на путь технического прогресса и дойти до нынешнего состояния цивилизации. Для создания этого энергетического запаса нужны были весьма специфические условия – неглубокие моря, особые породы деревьев с толстой корой и перемена климата (возможно, ей поспособствовал дрейф континентов и возникновение гор). Однако именно ископаемое топливо, возможно, приведет нас к катастрофе в ближайшие несколько столетий. Если мы всего лишь всплеск на кривой эволюции, едва ли Земля тонко настроена на наше существование, просто она оказалась подходящей для того, чтобы на ней на какое-то время завелись организмы вроде нас.

 

[205] N. Lane and W. Martin. The Energetics of Genome Complexity // Nature 467 (2010): 929–34. Еще одна статья о том, какими путями развилась сложная жизнь – J. A. Cotton and J. O. McInerney. Eukaryotic Genes of Archaebacterial Origin are More Important Than the More Numerous Eubacterial Genes, Irrespective of Function // PNAS 107 (2010): 17252–55. Авторы предпочитают говорить не о «древе жизни», а о «кольце жизни».

 

[206] Эта идея зародилась очень давно, еще у древних греков. В XIX веке о ней писали самые разные ученые, в том числе Кельвин и Гельмгольц, а в начале ХХ века – Сванте Аррениус. Она популярна и в наши дни, хотя подтверждения так и не нашла. И в самом деле, представляется, что Солнечная система, в принципе, обеспечивает все условия для обмена биологическим материалом – столкновения с астероидами выбрасывают в пространство вещества с поверхности планет, и они попадают на другие планеты (отсюда такой интерес к метеоритам марсианского происхождения). Однако может ли это привести к попаданию на другие планеты живых организмов, остается спорным.

 

[207] Думаю, можно обобщить пример с бейсболом, чтобы он несколько точнее соответствовал ситуации с жизнью на Земле. Представьте себе, что Джо не знал, сколько всего мячей попадет тем вечером в зрителей: может быть, такой мяч был всего один, а может быть, их было несколько тысяч. Оценить, сколько у него было шансов поймать мяч, Джо будет по-прежнему трудно, поскольку событие все равно удивительное. Так вот, если речь идет о жизни во Вселенной, мы столь же невежественны, а оценить вероятность нам еще сложнее, поскольку на самом деле мы не знаем ни размера стадиона, ни количества зрителей (пригодных для жизни планет).

 

[208] Так и есть – несколько ученых, сыгравших в нем важнейшую роль, получили за него в 2011 году Нобелевскую премию. На основании измерения яркости очень далеких сверхновых они оценили, как расширение Вселенной ведет себя в космических временных масштабах. И оказалось, что примерно 5 миллиардов лет назад Вселенная перешла от расширения с замедлением (из-за гравитационного воздействия всей массы) к расширению с ускорением. Найдено и много других признаков расширения с ускорением, которые подтвердили эту гипотезу.

 

[209] Сугубо научная статья – L. Krauss and R. Scherrer. The Return of a Static Universe and the End of Cosmology // General Relativity and Gravitation 39 (2007): 1545–50. Те же авторы составили и великолепное научно-популярное описание – L. Krauss and R. Scherrer. The End of Cosmology? // Scientific American 298 (March 2008): 46–53.

 

[210] Сейчас, когда я пишу эти строки, самые свежие оценки формирования звезд в космических временных масштабах сделаны в статье D. Sobral et al. A large Ha Survey at z = 2.23, 1.47, 0.84 and 0.40: The 11 Gyr Evolution of Star-Forming Galaxies from HiZELS // Monthly Notices of the Royal Astronomical Society 428 (2013): 1128–46.

 

[211] По чистому (гм) совпадению я написал об этом книгу. C. Scharf. Gravity’s Engines: How Bubble-Blowing Black Holes Rule Galaxies, Stars, and Life in the Cosmos. New York: Scientific American / Farrar, Straus and Giroux, 2012).

 

[212] Это не то расстояние, которое пройдет свет за 13,8 миллиардов лет и которое часто приводят, а расстояние от нас до наблюдаемого края Вселенной в данный момент космологического времени (равное интервалу в данный момент времени в терминологии специальной теории относительности). Это реальное физическое расстояние, хотя многие до сих пор по ошибке указывают в качестве радиуса Вселенной 13,8 миллиардов световых лет.

 

[213] Виды млекопитающих, как и птиц, рыб, насекомых и большинства макроскопических многоклеточных существ более или менее одинаково распределяются по диапазону физических размеров – с перекосом в сторону маленьких видов: мелких животных больше, однако они не могут быть меньше определенного размера. См., например, M. Buchanan. Size and Supersize // Nature Physics 9 (2013): 129.

 

[214] Концепция взаимосвязи и взаимодополнения противоположных или противодействующих сил в природе – света и тьмы, жара и холода, активного и пассивного и пр.

 

[215] В англоязычной литературе – «Goldilocks zone», «Зона Златовласки». – Прим. перев.

 

[216] Майкл Сторри-Ломбарди. Астробиолог и инженер с медицинским дипломом, первопроходец в области применения искусственных нейронных сетей в астрономии, проводивший исследования в самых разных областях – от сжатия изображений до узоров строматолитов и исследования происхождения жизни методами биоинформатики. Сайт его института – www.kinohi.org/

 

[217] Этот мыслитель-революционер лет двадцать назад написал прекрасную научно-популярную книгу о природе сложности и о пограничных явлениях: S. Kauffman. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. New York: Oxford University Press, 1995.

 

[218] Мне кажется, это привилегия ученого и писателя – право на обоснованные спекуляции. Однако, приступая к работе над книгой, я не знал, что вывод будет именно таким. Я сделал его, когда собирал все приведенные здесь свидетельства, оказавшие мне бесценную услугу.

 

[219] Тема эта непростая, иногда она подходит до опасного близко к ненаучным богословским доводам о «замысле». Поясню, что этого я не имел в виду. «Конвергенция» между множеством ответвлений жизни на Земле очевидна, и по логике вещей природа эволюции такова, что различия между видами также подвергаются естественному отбору сообразно с их преимуществами. А значит, поскольку набор физических и химических условий ограничен, а история развития видов на Земле пошла именно так, а не иначе, разумно предположить, что разные организмы «изобретали» заново одни и те же механизмы, даже очень сложные. Не вполне ясно, правда, до какой степени будет наблюдаться конвергенция между жизнью на Земле и на других планетах, которые вращаются вокруг других звезд.

 

[220] Этого радиотелескопа – довольно-таки удивительного – больше нет, его разобрали в 1998 году, чтобы освободить землю под застройку (там построили жилые дома и сделали поле для гольфа, словом, поспособствовали сохранению и развитию цивилизации). Однако примерно с 1963 года и до 1997, пока телескоп работал, на нем велись не только наблюдения в рамках SETI, но и «обычные» астрономические исследования – в частности, на нем сканировали небо в поисках радиоквазаров. На сайте www.bigear.org вы найдете многочисленные ресурсы и онлайн-музей «Большого уха».

 

[221] Эйман очень доходчиво и подробно рассказывает о сигнале «Ого!» и о своих попытках разобраться, что это такое, в статье, которую можно прочитать по адресу www.bigear.org/wow20th.htm.

 

[222] На эту мысль Ферми натолкнуло, в частности, следующее соображение: даже если на путешествия от одной звезды до другой уходят тысячи лет, возраст Млечного Пути (как минимум 10 миллиардов лет) позволяет даже очень древним видам распространиться повсеместно. Подобные соображения упоминаются и при обсуждении уравнения Дрейка. Как известно, американский ученый Фрэнк Дрейк в 1961 году представил формулу, состоящую из нескольких множителей и позволяющую подойти к поиску внеземной жизни с численными мерками. В число множителей входит, например, доля планет, способных обеспечить условия для жизни, и продолжительность времени, за которое цивилизация может давать знать о своем присутствии жителям других планет.

 

[223] Этот всплеск отражательной способности и прозрачности, свойственных земной растительности, называют также «красной границей», поскольку на длинах волн больше 700 нанометров отражательная способность резко – ступенькой – повышается.

 

[224] Об этом см. в его научно-популярной книге R. Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford, UK: Oxford University Press, 1989.

 

[225] Прекрасный пример – исследование вод так называемого озера Восток, которое залегает под ледяным щитом толщиной около четырех километров и имеет размеры примерно 250 на 50 километров. Вода в этом подледном озере, скорее всего, была совершенно изолирована в течение десятков тысяч лет, а может быть, и дольше.

 

[226] Сколько еще Вселенных может быть во множественной Вселенной, не знает никто. Некоторые так называемые хаотические теории инфляции (которые подводят физическую базу под то, что Вселенная расширяется во что-то большее) предполагают, что разных Вселенных, возможно, 1010 и все это еще в 16 степени. См., например, A. Linde, V. Vanchurin. How Many Universes Are in the Multiverse? // Physical Review D 81, no. 083525 (2010): 1–11.

 

[227] Я взял эти слова из книги C. Sagan. Pale Blue Dot: A Vision of the Human Future in Space. New York: Random House, 1994.

 


Дата добавления: 2019-02-12; просмотров: 149; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!