Мощность машин и её преобразование в механизмах 6 страница



 

Алюминиевые порошки, распыленные плазмотроном на поверхности детали, увеличивают срок службы в 2-3 раза от коррозии.

 

Применение биметаллических материалов для деталей рациональной пустотелой формы увеличивает контактную прочность, при этом масса детали уменьшается в 2 раза.

 

Научно-технический прогресс в машиностроении тесно связан с созданием новых конструкционных материалов. Для повышения качества, надежности изделия с одновременным ресурсосбережением разрабатываются эффективные методы повышения прочности, коррозионной стойкости, тепло и хладостойкости сплавов. Расширено производство новых полимерных и композиционных материалов с заданным свойством.

 

Так, например, ионная имплантация снижает точечную коррозию, поверхностное легирование приводит к экономии дорогостоящих сталей. Если удельная прочность улучшенной стали 40Х составляет 13км, то для титанового сплава составляет до 31км, а для композиционного материала на основе алюминия, армированного борным волокном до 43км.

 

Таким образом, повышение удельной прочности приводит к значительному сокращению металлоёмкости изделия.

 

 

 

Основные машиностроительные материалы

Конструкционными называют материалы, обладающие прочностью и применяемые для изготовления конструкций, воспринимающих силовую нагрузку. Конструкционные материалы подразделяют на: металлические, неметаллические и композиционные.

 

Материалы имеют решающее значение для качества и экономичности машин. Выбирая материал, необходимо учитывать следующие факторы:

 

1) соответствие свойств материала основным требованиям надежности деталей в течение заданного срока службы;

 

2) весовые и габаритные требования к детали и машине в целом;

 

3) соответствие технологических свойств материала конструктивной форме и намеченному способу обработки детали (штампуемость, обрабатываемость на станках и т.д.);

 

4) стоимость и дефицитность материала.

 

Таблица 1

 

Критерии оценки материалов

 

Эксплуатационные требования

 

Производственные факторы

 

Экономические показатели

 

Механические свойства

 

Технологические свойства

 

1. Прочность

 

2. Жёсткость

 

3. Износостойкость

 

4. Теплостойкость

 

5. Виброустойчивость

 

6. Устойчивость

 

7. Коррозионная стойкость

 

8. Жаростойкость

 

9. Хладостойкость

 

10. Теплопроводность

 

11.Электропроводность

 

12. Магнитная проницаемость

 

13. Долговечность

 

14. Надежность

 

1. Серийность изделия

 

2. Требуемая точность изготовления деталей и сборки узлов

 

3. Наличие оборудования для получения заготовок передовой технологией

 

4. Наличие режущего инструмента и металлообратывающего оборудования

 

5. Наличие химико-термических и упрочняющих установок

 

6. Наличие исследовательской базы

 

1. Доступность и стоимость материала

 

2. Затраты на проектирование

 

3. Затраты на изготовление

 

4. Эксплуатационные затраты

 

5. Затраты на ведение НИР

 

6. Затраты на разработку перспективных конструкций

 

7. Затраты на приобретение лицензии на

 

производство машин или наукоемкой технологии

 

1. Предел текучести

 

2. Предел прочности

 

3.Относительное удлинение

 

4. Модуль упругости

 

5. Модуль сдвига

 

6. Коэффициент Пуассона

 

7. Твёрдость НВ, НRC, HV.

 

8. Модуль объемной упругости

 

9. Удельная прочность

 

1.Обрабатываемость резанием

 

2. Жидко текучесть

 

3. Литейные усадки

 

4. Деформируемость (пластичность)

 

5. Упрочняемость

 

6. Свариваемость

 

7. Пластичность

 

8. Флокене-чувствительность

 

9. Отпускная хрупкость

 

 

 

Для изготовления деталей в машиностроении применяют различные материалы: сталь, чугун, сплавы цветных металлов, пластмассы, резину. Свойства, методы получения, обозначения этих материалов рассмотрены в курсе «Технология металлов».

 

Металлы подразделяют на черные металлы (сталь, чугун) и сплавы цветных металлов (на основе меди, алюминия, титана и др.). К неметаллическим материалам относятся пластмассы (текстолит, волокнит, лигнофоль), резина, кожа, графит, минералокерамические материалы, древесина и др.

 

Черные металлы, подразделяемые на чугуны и стали, имеют наибольшее распространение. Это объясняется, прежде всего, их высокой прочностью и жесткостью, а также сравнительно невысокой стоимостью. Основные недостатки черных металлов - большая плотность и слабая коррозионная стойкость.

 

 

 

Железо и сплавы на его основе

Железо – это металл сероватого цвета, атомная масса которого равна 55,85, а атомный радиус – 0,127 нм. Температура плавления 1539 0С. В твердом состоянии железо имеет кристаллическую решетку, для которой характерно два возможных состояния, называемых полиморфной модификацией и обозначаемых как α-Fe и γ-Fe. Существование этих модификаций зависит от температуры нагрева.

 

Для α-Fe характерна объемноцентрированная кубическая решетка, которая существует при температурах менее T≤9100C и в диапазоне T=1392÷1539 0C. В диапазоне температур T=910÷1392 0C железо существует в форме γ-Fe.

 

Углерод является неметаллическим элементом, который растворяется в железе как в жидком, так и твердом состояниях. Чаще всего система Fe-C существует в виде жидкого сплава или твердого раствора. Твердыми растворами называют такие фазы, в которых один из компонентов сохраняет свою кристаллическую структуру, а атомы других компонентов присутствуют в решетке первого, изменяя ее размеры. Различают твердые растворы замещения и внедрения.

 

Твердый раствор углерода и других примесей в α-Fe называется ферритом. Углерод при этом располагается в центре грани куба, в котором может поместиться сфера радиусом, равным 0,29R, где R – атомный радиус железа.

 

Раствор углерода и других примесей в γ-Fe называют аустенитом. Атом углерода при этом размещается в центре куба со вписанной сферой радиусом 0,41R. Аустенит характеризуется высокой пластичностью и низкой прочностью.

 

Наиболее распространенными сплавами на основе железа являются сталь и чугун, которые представляют собой твердые растворы (сплавы) железа Fe с углеродом С. Если содержание углерода в растворе менее 2,14%, то такой сплав называется сталью, а если больше 2,14%, то чугуном. Граница разделения чугуна и стали соответствует предельной растворимости углерода в аустените. Стали после затвердевания не содержат хрупкой структурной составляющей и при высоком нагреве имеют только аустенитную структуру, обладающую высокой пластичностью. По этой причине стали легко деформируются при нормальных и повышенных температурах, т.е. являются ковкими материалами. В отличие от сталей чугуны характеризуются хрупкостью, но обладают хорошими литейными свойствами, в том числе более низкими температурами плавления.                 

 

 

 

Стали

Стали – это деформируемые сплавы железа с углеродом (до 2,14% углерода) и другими элементами. Конструкционная сталь должна иметь и хорошие технологические свойства: хорошо обрабатываться давлением и резанием, быть не склонной к шлифовочным трещинам, обладать высокой прокаливаемостью и малой склонностью к обезуглероживанию, деформациям и трещинообразованию при закалке.

 

По химсоставу стали делят на углеродистые и легированные. Углеродистые стали содержат кроме железа и углерода также марганец (до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей: сера увеличивает хрупкость в горячем состоянии (красноломкость), а фосфор – при пониженных температурах (хладноломкость). В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне- (0,25 < С ≤ 0,6%) и высокоуглеродистые (C > 0,6%) стали. С повышением содержания углерода повышается твердость и прочность, но уменьшается пластичность и ухудшается свариваемость стали.

 

В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром, никель, молибден, вольфрам, ванадий, титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний – более 0,8%.

 

В общем объеме продукции машиностроения, продукции из стали обыкновенного качества (ГОСТ 380-94) и качественной (ГОСТ 1050-74), а также легированной (ГОСТ 4543-71) составляют почти 80%. Они дешевые и имеют удовлетворительные механические свойства в сочетании с хорошей обрабатываемостью резанием и давлением.

 

Углеродистые стали являются наиболее распространенными. Их производство доходит до 80% от общего объема производства всех сталей.    

 

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми (С ≤ 0,7%), так и легированными. Инструментальные стали служат для изготовления режущего, ударно-штампового и мерительного инструментов. Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем, кремнием и другими элементами. К сталям с особыми свойствами относят нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.

 

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные. Различие между ними заключается в количестве вредных (сера и фосфор) примесей. Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных – каждого элемента не более 0,035%; а в высококачественных – не более 0,025%.

 

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»). Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки.

 

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства. Из углеродистых сталей обыкновенного качества (ГОСТ 380-94) изготавливают неответственные корпусные детали, крепежные детали, фасонный прокат (двутавры, швеллера, уголки) и др.

 

Степень раскисления обозначается индексами, стоящим справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А, кипящая; БСт3пс – сталь группы Б, полуспокойная; ВСт5сп – сталь группы В, спокойная.

 

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью. Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50 благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием. Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью и упругостью, используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки.

 

Легированными называют стали, в состав которых для придания им специальных свойств вводят легирующие элементы. В качестве легирующих элементов, как правило, используются: хром (Cr), кремний (Si), никель (Ni), ванадий (W), алюминий (Al), марганец (Mg) и др. Они по-разному влияют на свойства стали: марганец повышает прочность и износостойкость; кремний увеличивает упругие характеристики стали; хром повышает коррозионную стойкость, твердость, прочность, жаропрочность; никель снижает коэффициент линейного расширения, повышает прочность и износостойкость; вольфрам и молибден повышают прочность и твердость, улучшают режущие свойства при повышенной температуре.

 

Стали, в которых суммарное содержание легирующих элементов не превышает 2,5%, называются низколегированными; в том случае, если содержание легирующих элементов составляет 2,5...10% - это легированные стали, а если легирующих добавок больше 10%, то такие стали называют высоколегированными.

 

Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%.

 

Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш – шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д.

 

Углеродистые стали обыкновенного качества по ГОСТу 380-94 с обозначением Ст предназначены для изготовления горячекатаного проката: сортового, фасонного, толсто- и тонколистового, широкополосного (холодного тонколистового), а также слитков, блюмсов, слябов, сутунки, катаной и литой заготовок, труб, поковок и штамповок, ленты, проволоки, метизов, малонагруженных деталей, металлоконструкций, всевозможных корпусных деталей и т.п.

 

Марки зарубежных углеродистых сталей обыкновенного качества и международного стандарта, соответствующих российским сталям марки СТ по механическим свойствам приведены в табл. 2. При этом содержание основных элементов (С, Si, Mn, P, S) лежат в предусмотренных интервалах.

 

При сопоставлении пределов прочности и текучести разброс составляет в пределах ±50 МПа.

 

Марки зарубежных аналогов углеродистой и низколегированной качественной конструкционной стали приведены для сравнения результатов исследования ученых различных стран мира (табл. 3 и 4).

 

 

Таблица 2

Россия

 

(ГОСТ)

 

США

 

(ASTM)

 

Германия

 

(DIN)

 

Япония

 

(JIS)

 

ИСО

 

630-80

 

1052-82

 

Ст.2кп, Ст.2пс

 

 

 

Ust 34-2

 

SS 34

 

-

 

Ст.3сп

 

А283/С

 

RSt 37-2

 

-

 

Fe 360C

 

Ст.3кп, Ст.3пс

 

А283/С

 

Ust 37-2

 

-

 

Fe 360A

 

Ст.3Гпс

 

А572/42

 

-

 

SM 41B

 

Fe 360B

 

Ст.3Гсп

 

А131/В

 

-

 

SM 41B

 

Fe 360D

 

Ст.4сп

 

А283/D

 

St 42-2

 

SM 41

 

Fe 430C

 

Ст.4сп

 

А131/A

 

St 44-2

 

SM 41A

 

Fe 430Д

 

Ст.5сп

 

-

 

St 50-2

 

SS 50

 

Fe 510C

 

Ст.6сп

 

-

 

St 60-2

 

-

 

Fe 590

 

 

 

Таблица 3

 

Россия

 

США

 

Германия

 

Япония

 

ГОСТ 1050

 

ASTM A29/A29M

 

DIN 1629/3

 

JIS G3445

 

35

 

1034

 

1035

 

1038

 

Ск 35 (2)

 

С 35 (2)

 

Ст 35 (2)

 

S 30 C

 

-

 

-

 

45

 

M1044

 

1045

 

1045H

 

Ск 45

 

С 45

 

Ст 45

 

-

 

S 45 C

 

S 48 C

 

55

 

1055

 

-

 

Ск 55 (2)

 

М 55 (2)

 

-

 

S 55 C

 

60

 

1060

 

С 60

 

Ст 60

 

S 58 C

 

 

 

Таблица 4

 

Россия

 

США

 

Германия

 


Дата добавления: 2019-01-14; просмотров: 244; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!