Пределы функции на бесконечности



Введение

Данное пособие является составной частью учебного комплекса по курсу высшей математики, которое может быть полезно для организации учебного процесса на факультете дистанционного обучения при самостоятельной подготовке студентов к экзаменам. Оно поможет без помощи преподавателя организовать планомерное изучение материала не только основных понятий и положений теории, но и основных приемов и методов решения задач.

В учебном пособии рассматриваются следующие темы: введение в математический анализ, дифференциальное исчисление функций одной переменной, на которых базируется вся математика. Учебное пособие создано на основе опыта преподавания высшей математики в Комсомольском-на-Амуре государственном техническом университете на технических и гуманитарных факультетах.

Теоретический материал иллюстрируется большим количеством примеров и задач различной трудности.

После каждого раздела приводятся экзаменационные вопросы. Более подробное изложение данного материала можно найти в книгах, учебных пособиях и монографиях, указанных в списке литературы.

Специфика работы с пособием состоит в том, что сначала необходимо ознакомиться с базовыми понятиями и методами математического анализа, изложенными в соответствующих разделах, затем изучить практическую часть (главу 3), а затем перейти к выполнению контрольной работы, предусмотренной программой. Выполненную контрольную работу следует направить на рецензирование. В случае если рецензент обнаружит ошибки в контрольной работе, рекомендуется проработать материал до полного усвоения неясностей, сделать работу над ошибками в той же тетради, в которой была выполнена контрольная работа, и вернуть ее на повторное рецензирование.

Последним этапом работы с данным пособием является экзамен (зачет), вопросы к которому также приведены в заключительной части данного пособия.


ГЛАВА 1. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Логическая и математическая символика

В математике употребляются специальные символы, позволяющие сократить запись и точнее выразить утверждение.

Математические символы:

Например, применяя символ «>» к числам a, b, получим запись «a > b», которая является сокращением для предложения: «число a больше числа b». Если  – обозначения прямых, то запись  есть утверждение, что  параллельна . Запись «x M» означает, что x является элементом множества M.

Наряду с математической символикой в математике широко используется логическая символика, применяемая к высказываниями предикатам.

Под высказыванием понимается предложение, которое либо только истинно, либо только ложно. Например, высказывание «–3 > 0» ложно, а высказывание «2  2 = 4» истинное. Будем высказывания обозначать большими латинскими буквами, возможно с индексами. Например, A = «–3 > 0», B = «2  2 = 4».

Предикат – это предложение с одной переменной или несколькими переменными. Например, предложение: «число x больше числа 0» (в символах x > 0) является предикатом от одной переменной x, а предложение: «a + b = c» – предикат от трех переменных a, b, c.

Предикат при конкретных значениях переменных становится высказыванием, принимая истинное и ложное значение.

Будем обозначать предикаты как функции: Q(x) =«x > , F(x,b,c) = «x + b = c».

Логические символы: .

1. Отрицание применяется к одному высказыванию или предикату, соответствует частице «не» и обозначается .

Например, формула  есть сокращение для предложения: «–3 не больше 0» («неверно, что –3 больше 0»).

2. Конъюнкцияприменяется к двум высказываниям или предикатам, соответствует союзу «и», обозначается: А & B (или A  B).

Так формула (–3 > 0) & (2  2 = 4) означает предложение «–3 > 0 и 2  2 = 4», которое, очевидно, ложно.

3. Дизъюнкцияприменяется к двум высказываниям или предикатам, соответствует союзу «или» (неразделительному) и обозначается A B .

Предложение: «число x принадлежит множеству  или множеству » изображается формулой: .

4. Импликациясоответствует союзу «если ..., то ...» и обозначается: A B.

Так, запись «a > –1  a > 0» есть сокращение для предложения «если a > –1, то a > 0».

5. Эквиваленция A B соответствует предложению: «A тогда и только тогда, когда B».

Символы  называются кванторами общности и существования, соответственно применяются к предикатам (а не к высказываниям). Квантор  читается, как «любой», «каждый», «все», или с предлогом «для»: «для любого», «для всех» и т.д. Квантор  читается: «существует», «найдется» и др.

6. Квантор общности применяется к предикату F(x, ...), содержащему одну переменную (например, x) или несколько переменных, при этом получается формула xF(x,...), которая соответствует предложению: «для любого x выполняется F(x, ...)»или «все x обладают свойством F(x, ...)».

Например: x(x > 0) есть сокращение для фразы: «любое x больше 0», которая является ложным высказыванием. Предложение: a(a > 0  a > –1) является истинным высказыванием.

7. Квантор существования, примененный к предикату F(x,...) соответствует предложению «существует x, такой, что F(x,...)» («найдется x, для которого F(x,...)») и обозначается: xF(x,...).

Например, истинное высказывание «существует действительное число, квадрат которого равен 2» записывается формулой x(x R & x2 = 2). Здесь квантор существования применен к предикату: F(x)=(x R & x2 = 2) (напомним, что множество всех действительных чисел обозначается через R).

Если квантор применяется к предикату с одной переменной, то получается высказывание, истинное или ложное. Если квантор применяется к предикату с двумя или большим числом переменных, то получается предикат, в котором переменных на одну меньше. Так, если предикат F(x, y) содержит две переменные, то в предикате xF(x, y) одна переменная y (переменная x является «связанной», вместо нее нельзя подставлять значения x). К предикату xF(x, y) можно применить квантор общности или существования по переменной y, тогда полученная формула xF(x, y)или xF(x, y) является высказыванием.

Так, предикат «|sinx| < a» содержит две переменные x, a. Предикат x (|sinx| < a) зависит от одной переменной a, при  этот предикат обращается в ложное высказывание (|sinx| < ), при а = 2 получаем истинное высказывание x (|sinx| < 2).

Если к предикату x (|sinx| < a)применить квантор существования, то получим формулу: , выражающую истинное высказывание: «функция sinx является ограниченной».

Для некоторых формул введем сокращенную запись.

Так, вместо формулы x(x R & x2 = 2)           будем писать: x R(x2 = 2),

вместо                  x(x > 0 & x2 + 3 = 4)      пишем:       x > 0(x2 + 3 = 4).

Формулу                x (x R  x2  0)       сократим так: x R(x2  0) и т.д.

Будем называть  и т.д. ограниченными кванторами.

Несколько кванторов общности (существования) заменяем на один: вместо  пишем x,y(P(x,y)), вместо  будем писать .

Множества

Понятие множества является первоначальным понятием математики, точное определение ему не дается, но его можно пояснить, описать через другие понятия. Можно сказать, что множество – это совокупность, собрание каких-то объектов, предметов, при этом объект, входящий в это множество, называют его элементом. Множества могут содержать как конечное число элементов, так и бесконечно много элементов. Рассматривают и множество, не содержащее элементов, его называют пустым и обозначают символом Æ.

В математическом анализе чаще всего рассматриваются числовые множества, за некоторыми из них закреплены специальные обозначения. Так, множество всех натуральных чисел обозначаются через N и записывают так: N = {1,2,3,...}. Далее, через Z обозначают множество всех целых чисел, содержащее как натуральные числа, так и 0, и целые отрицательные числа; Z= {..., –3, –2, –1, 0, 1, 2, 3, ...}.

Рациональным называется число, которое можно представить в виде отношения двух целых чисел:  (pÎZ, qÎZ, q¹0). Множество всех рациональных чисел обозначается через Q. Символически определение множества рациональных чисел можно записать так: Q {  | pÎZ & qÎZ & q¹0}. Здесь знак  заменяет слово «называется». Заметим, что множество можно задать перечислением элементов, а можно описанием свойств элементов (предикатом), как в последнем случае.

Известно, что любое рациональное число можно представить десятичной дробью, конечной и бесконечной периодической. Например, рациональное число 5/6 представимо бесконечной периодической дробью 5/6 = 0,83333..., а число 3/8 = 0,375. В последнем случае можно считать десятичную дробь тоже бесконечной с числом 0 в периоде: 3/8 = 0,3750000... . Известно, что всякую периодическую бесконечную дробь можно обратить в обыкновенную дробь p/q.

Иррациональным числом называется всякая бесконечная непериодическая десятичная дробь. Множество всех рациональных и иррациональных чисел называется множеством действительных чисел и обозначается через R. Иными словами, множество действительных чисел R – это множество всех бесконечных десятичных дробей.

Пусть M1, M2 – некоторые множества. Если каждый элемент множества M1 является элементом множества M2, то говорят, что M1 есть подмножество множества M2 и обозначается M1 Ì M2. Итак, M1 Ì M2 тогда и только тогда, когда "x(xÎM1 ® xÎM2).

Из определения числовых множеств можно заключить, что N Ì Z,  Z Ì Q,  Q Ì R. Множество действительных чисел является подмножеством множества C всех комплексных (о которых мы сейчас говорить не будем), т.е. R Ì C.

Часто рассматриваются подмножества действительных чисел (a, b), [a, b], [a, b), (a, b] называемые, соответственно, интервалом, отрезком, полуинтервалом. Дадим символические определения этих множеств, а слово «называется» заменим на знак :

(a, b) {xÎR| a < x < b}; [a, b] {xÎR| a £ x £ b};

(a, b] {xÎR| a < x £ b}; [a, b) {xÎR| a £ x < b }.

Заметим, что на числовой оси каждое действительное число изображается определенной точкой и любая точка числовой оси задает некоторое число, поэтому [a, b] изображается множеством всех точек отрезка, вместе с концами a, b, в то время как (a, b) – множеством точек отрезка без концов a, b.

Объединение AÈB, пересечение AÇB

Рассмотрим операции множеств A,B давая им символические определения:

AÈB{x| xÎA Ú xÎB}, AÇB{x| xÎA & xÎB}

Иногда рассматривается операция разности множеств A и B, это множество элементов A, не входящие в B. Обозначение: A\B. Таким образом, A \ B {x| }. В частном случае R \ Q есть множество иррациональных чисел.


Функции

Пусть x, y – переменные величины. Если каждому значению переменных x из множества A соответствует по определенному закону единственное значение переменной y, то говорят, что y является функцией (однозначной) от x и пишут y = f(x) или
y = y(x). При этом переменную x называют аргументом или независимой переменной, множество A – областью определения функции y = f(x). Обозначим множество всех значений функции, т.е. {f(x)|x Î A}, через B.

Пример 1. Для функции y =  область определения A= (–¥, –1]È[1, +¥), множество значений B= [0, +¥).

Пример 2. y =  , A= R, B= (–¥, +1].

Замечание. Иногда рассматривают многозначные функции, допуская, что каждому значению xÎA, соответствует одно или более одного значений y. Мы в дальнейшем под функцией будем понимать однозначную функцию.

Способы задания функции

Аналитический способ: связь между аргументом x и функцией y задается формулой, при этом на разных участках области определения она может задаваться различными формулами (см. пример 2) . В примерах 1, 2 функции заданы аналитически.

Табличный способ: функция задается таблицей отдельных значений аргумента и соответствующих значений функции. Такими являются таблицы тригонометрических функций, таблицы логарифмов и т.д.

Графический способ: в этом случае соответствие между значениями x и y задается с помощью графика.

Среди числовых функций особое место занимают функции с областью определения A = N. Пусть аргумент функции f(x) принимает только значения 1, 2, 3,....n,...

Обозначим f(1) = a1, f(2) = a2, ...,  f(n) = an, ... Такую функцию называют последовательностью, a1 – первый член, ..., an – n-й член этой последовательности.

Рассмотрим свойства, которыми могут обладать (или не обладать) некоторые функции.

Функция f(x) называется возрастающейна множестве M (строго), если большему значению аргумента соответствует большее значение функции.

Символически это может быть записано так: "x1, x2ÎM(x1 < x2 ® f(x1) < f(x2)).

Функция f(x) называется убывающей (строго) на множестве M, если большему значению аргумента соответствует меньшее значение функции. Символически:
"x1, x2ÎM(x1< x2 ® f(x1) > f(x2)).

Функция, убывающая или возрастающая на множестве M, называется монотонной на множестве M.

В качестве примера рассмотрим функцию y = x2. На интервале (–¥, 0) это убывающая функция, а на интервале (0, + ¥ ) – возрастающая.

Функция f(x) называется ограниченной сверху на множестве M, если существует такое число k, что для любого значения xÎM f(x) < k.

Символически это может быть записано так:  $k "xÎM (f(x) < k).

Аналогично дается определение функции, ограниченной снизу.

Если функция ограничена и сверху, и снизу, то она называется ограниченной. Так, функция y = ограничена снизу на множестве A (пример 1), а функция из примера 2 ограничена сверху на множестве R.

Функция f(x) называется четной, если "xÎA (f(–x) = f(x)), и называется нечетной, если "xÎA (f(–x) = –f(x)).

Например, функция y = x2 является четной, а y = sinx – нечетной.

Функция f(x) называется периодической с периодом T (T ¹ 0 ), если
"xÎA(f(x + T) = f(x)).

Известно, что все тригонометрические функции являются периодическими.

Введем важные понятия сложной и обратной функции.

Если переменная y является функцией от x, y = f(x); а x – функция от переменной t: x = j(t), то y = f(j(t)) является функцией от t и называется сложной функцией или функцией от функции.

Например, пусть y = x2, x = sint, тогда функция y = (sint)2 является сложной.

Пусть y = f(x) с областью определения A и множеством значений B такова, что для любого значения yÎB существует единственное значение xÎB, такое, что f(x) = y, тогда переменная x является функцией от y, обозначим x = j(y). Эту функцию называют обратной для y = f(x). Для обратной функции x = j(y) область определения B, а множество значений A. Иногда функцию, обратную к функции y = f(x), обозначают: .

Например, для функции y = x2 с областью определения [0, +¥) и таким же множеством значений обратной является функция: x = .

В дальнейшем часто будет использоваться понятие абсолютной величины числа, а также понятие eокрестности точки.

Абсолютной величиной числа a называется неотрицательное число, обозначаемое |a|, такое, что

|a| = .

Неравенство |x| < m ( m > 0 ) равносильно двойному неравенству –m < x < m, неравенство |x – x0| < e (e > 0) равносильно x0 e < x< x0 + e. Множество точек с таким свойством (рис. 1.1) является интервалом (x0 e, x0 + e) и называется eокрестностью точки x0 (рис. 1.1).

Пределы функции на бесконечности

Рассмотрим одно из центральных понятий математического анализа – понятие предела функции. Ввиду сложности для понимания этого понятия сначала дадим его описательное определение, подкрепленное примерами, а затем строгое определение.

Предел функции при x ® +¥

Пусть функция y = f(x) определена на множестве всех действительных чисел R или на бесконечном интервале (a, +¥).

Число b называют пределом функции f(x)при стремлении x к +¥ (x® +¥), если значения f(x) приближаются к числу b как угодно близко при достаточно больших x.

Обозначение: .

Пример 1. Функция y =  определена на интервале (0, +¥). Составим таблицу ее некоторых значений и построим ее график (рис. 1.2):

 

x 1 5 10 20
y 4 3 2,5 2,2 2,1 2,05

 

Из таблицы видно, что значения функции приближаются к числу 2 с увеличением x.

Убедимся, что = 2.

Разность  показывает, на сколько отличается f(x) от 2. Так, если x равно 10, то f(x) отличается от 2 на 1/10, а если x = 100, то f(x) – 2 = 1/100. Разность
f(x) – 2 может стать меньше любого заданного положительного числа e, если x взять достаточно большим. Например, e = 1/1000. Чтобы определить, для каких значений x выполняется неравенство f(x) – 2 < 1/1000, надо решить это неравенство: , отсюда x > 1000.

Пусть e – произвольное (малое) положительное число, тогда найдется такое x0, что f(x) – 2 < e для всех x > x0. Действительно, f(x) – 2 = , < e, x > . Обозначив x0 = , получаем, что для всех x, если x > x0, то f(x) – 2 < e. Итак мы показали, что  = 2.

Пример 2. Функция y =  определена на (–2, +¥). Выпишем таблицу ее некоторых значений и построим график (рис. 1.3).

 

x 0 1 2 3 10 98 998
y 0

 

Из таблицы значений и графика (рис. 1.3) видим, что с ростом x значения f(x) приближаются к 1, оставаясь меньше 1.

Покажем, что  =1. Разность f(x) – 1 отрицательна, поэтому вычислим ее абсолютную величину:

Покажем, что |f(x) – 1| может стать меньше любого заданного положительного числа e при достаточно больших x. Для этого решим неравенство  < e, получим: 2 + x  > , и x >  – 2. Обозначим:  x0 = 2. Таким образом, если x > x0, то
| f(x) – 1| < . Например, возьмем в качестве e число 0,01, тогда:

x0 =  – 2 = 300 – 2 = 298, x0 = 298.

Если x > 298, то  < 0,01. Этим мы показали, что  = 1 (рис. 1.3).

Дадим строгое определение предела функции при x® +¥.

Число b называется пределом функции f(x) при стремлении x к +¥, если для любого положительного числа e найдется такое число x0, что для всех x, больших x0, выполняется неравенство:

f(x) – b | < e .

Геометрическая интерпретация этого определения приведена на рис. 1.4. В логических символах это определение выглядит так:

f(x) = b означает "e > 0 $x0 "x > x0 ( | f(x) – b | < e ).

Пример 3. Доказать, что  = 0 x Î (0, +¥).

Доказательство:f(x) = . Зафиксируем произвольное e > 0, покажем, что найдется такое x0, что для всех x, больших x0: | f(x) – 0 | < e. Действительно,

| f(x) – 0 | =   = ;
< e Û x >  .

Обозначим: x0 = , тогда при x > x0: |f(x) – 0 | < e, значит,  = 0.

Пусть для некоторой функции y = f(x) f(x )= b, геометрически это означает, что точки графика y = f(x) приближаются к точкам прямой y = b (с той же абсциссой) при неограниченном возрастании x. В этом случае говорят, что прямая y = b является асимптотой графика y = f(x) при x® +¥. Неравенство:
| f(x) – b | < e равносильно двойному неравенству: b – e < f(x) < b + e. Из определения предела следует, что по произвольному e > 0 найдется такое x0, что для всех x, больших x0, график y = f(x) заключен внутри полосы, ограниченной прямыми: y = b + e, y = b – e.

Предел последовательности

Как отмечалось раньше, любая последовательность a1, a2, ..., an , ... есть функция натурального аргумента, an = f(n), n Î N. Определение предела последовательности почти дословно повторяет определение предела функции при x®+Ґ.

Число b называется пределом последовательности {an}, если для любого e > 0 существует такое натуральное число n0, что для всех натуральных n, больших n0, выполняется неравенство: | an b | < e. Обозначение: an = b.

Доказать самостоятельно, что  = 0.

Предел функции при x® -¥

Пусть функция y = f(x) определена на R или (–¥, a). Число b называется пределом функции f(x) при стремлении x к –¥ (x ® –¥), если для любого положительного числа e существует такое x0, что для всех x, меньших x0, выполняется неравенство:
| f(x) – b | < e. Обозначение: f(x) = b.

Геометрически этот факт означает, что точки графика y = f(x) (рис. 1.5) приближаются как угодно близко к соответствующим точкам прямой y = b при движении x влево неограниченно и что по фиксированному e > 0 найдется число x0, такое, что для всех x, меньших x0, график y = f(x) заключен внутри полосы, ограниченной прямыми:

y = b + e, y = b – e.

Доказать самостоятельно, что  = 0

Рассмотренные пределы объединяются общим названием «пределы на бесконечности». Не надо думать, что любая функция, определенная на R, имеет предел при          x ® +¥ или x ® –¥. Например, sinx не существует, так как значения sinx при неограниченном возрастании x периодически меняются от –1 до +1, не приближаясь ни к какому постоянному числу. Аналогично, не существует sinx. Последовательность: a1= 1, a2= 3, a3= 5, ..., an = 2n – 1, ... также не имеет предела.

Предел функции в точке

Пусть функция f(x) определена в некоторой окрестности точки x0 (возможно, определена на R), но в самой точке x0 функция f(x) может быть и не определена.

Дадим сначала описательное определение предела функции в точке и приведем пример.

Число b называется пределом функции f(x) в точке x0 (x ® x0), если значения f(x) приближаются к числу b как угодно близко при условии, что значения аргумента x подходят к x0 достаточно близко. Обозначение: f(x) = b.

Пример 1. Функция y =  определена во всех точках числовой оси, за исключением x0 = 2. Найдем f(x), для этого вычислим значения f(x) для x, близких к 2, и построим график: y = f(x). Заметим, что для x ¹ 2:  = 2x.

 

x 1,6 1,7 1,8 1,9 2,1 2,2 2,3 2,4
y 3,2 3,4 3,6 3,8 4,2 4,4 4,6 4,8

 

График функции: y =  совпадает с прямой: y = 2x для всех x ¹ 2
(рис. 1.6). Из таблицы и графика видим, что значения f(x) тем меньше отличаются от числа 4, чем ближе значения аргумента x подходят к 2.

Покажем, что  = 4. Для этого убедимся, что | f(x) – 4 | может стать настолько малым, насколько пожелаем: |f(x) – 4| = |  – 4 | = | 2x – 4 |, так как x ¹ 2.

Потребуем, чтобы |f(x) – 4| < , тогда из неравенства: |2x – 4| <  получаем |x – 2| < . Т.е. при значениях x, удовлетворяющих неравенству: 2 – < x < 2 + , выполняется неравенство |f(x) – 4| < .

Аналогично можно показать, что |f(x) – 4| <  , если 2 –  < x < 2 +  и, вообще, для любого (малого) положительного числа e: |f(x) – 4| < e, если 2 –  < x < 2 +  (или, что то же самое, | x – 2 | < ). Обозначим  = d. Итак,  = 4.

Дадим строгое определение предела функции в точке.

Число b называется пределом функции f(x) в точке x0 (при стремлении x к x0), если для любого положительного числа e найдется положительное число d, такое, что для любого x ¹ x0 и удовлетворяющему неравенству: x0 d < x < x0 + d, выполняется неравенство: | f(x) – b| < e.

Символически f(x) = b означает:

"e > 0 $d > 0 "x ¹ x0 (x0 d < x < x0 + d ® | f(x) – b | < e).                     (*)

Заметим, что условие:

«x ¹ x0  и x0 d < x < x0 + d»

можно записать в виде неравенства: 0 < | x – x0 | < d , и тогда формула (*) примет вид:

"e > 0 $d > 0 "x (0 < | x – x0 | < d ® | f(x) – b | < e).

Если f(x) = b, то на графике функции y = f(x) (рис. 1.7) это иллюстрируется (по определению предела) так: для всех точек x, отстоящих от x0 не далее, чем на d, значения f(x) отличаются от b не более чем на e.

Пример 2. Показать, что x = x0.

В самом деле f(x) = x, поэтому для любого e > 0: | f(x) – x0 | < e при условии | x – x0 | < e (здесь d = e).


Дата добавления: 2018-05-13; просмотров: 280; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!