Применение электролиза в народном хозяйстве



1. Для защиты металлических изделий от коррозии на их поверхность наносят тончайший слой другого металла: хрома, серебра, золота, никеля и т.д. Иногда, чтобы не расходовать дорогие металлы, производят многослойное покрытие. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тонкий слой никеля, а на него – слой хрома.

При нанесении покрытий на металл электролизом они получаются ровными по толщине, прочными. Таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией.

2. Кроме защиты от коррозии гальванические покрытия придают красивый декоративный вид изделиям.

3.Другая отрасль электрохимии, близкая по принципу к гальваностегии, названа гальванопластикой. Это процесс получения точных копий различных предметов. Для этого предмет покрывают воском и получают матрицу. Все углубления копируемого предмета на матрице будут выпуклостями. Поверхность восковой матрицы покрывают тонким слоем графита, делая ее проводящей электрический ток.

Полученный графитовый электрод опускают в ванну с раствором сульфата меди. Анодом служит медь. При электролизе медный анод растворяется, а на графитовом катоде осаждается медь. Таким образом получается точная медная копия.

С помощью гальванопластики изготавливают клише для печати, грампластинки, металлизируют различные предметы. Гальванопластика открыта русским ученым Б.С.Якоби (1838).

Изготовление штампов для грампластинок включает нанесение тончайшего серебряного покрытия на пластмассовую пластинку, чтобы она стала электропроводной. Затем на пластинку наносят электролитическое никелевое покрытие.

Чем следует сделать пластинку в электролитической ванне – анодом или катодом? (О т в е т. Катодом.)

4. Электролиз используют для получения многих металлов: щелочных, щелочноземельных, алюминия, лантаноидов и др.

5. Для очистки некоторых металлов от примесей металл с примесями подключают к аноду. Металл растворяется в процессе электролиза и выделяется на металлическом катоде, а примесь остается в растворе.

6. Электролиз находит широкое применение для получения сложных веществ (щелочей, кислородсодержащих кислот), галогенов.

Алюминотермия — способ получения металлов, неметаллов (а также сплавов) восстановлением их оксидов металлическим алюминием:

2Al + Cr2О3 = Al2О3 + 2Cr

При этой реакции выделяется большое количество теплоты, смесь нагревается до 1900—2400 °C.

Контроль знаний:

1. Что такое гидролиз солей? Дайте определение.

2. Какие соли подвергаются гидролизу? Приведите примеры.

3. Какие факторы влияют на гидролиз солей и почему?

4. Составьте молекулярные и ионные уравнения гидролиза следующих солей    NiCl2, NaNO2.

5. Дайте определение электролиза,степени окисления.

Литература:

 1.Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб. для общеобразоват. учреждений. – М., 2010,

2.Габриелян О.С. Химия: учеб.для студ. сред. проф. учеб. заведений.- 2-е издание / О.С. Габриелян, И.Г. Остроумов. – М., 2013.

 3. http://ru.wikipedia.org- энциклопедия

4. .Рудзитис Г.Е., Фельдман Ф.Г, химия. 10 класс: учебник для общеобразовательных учреждений (базовый уровень). – М.: Просвещение, 2016.

 

 

Самостоятельная работа №5

Тема:Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Резина.

Бензол. Получение бензола из гексана и ацетилена. Химические свойства бензола: горение, галогенирование, нитрование. Применение бензола на основе свойств.

Основные понятия и термины по теме:алкадиены и каучуки,полимеризация, каучуки, резина, бензол, галогенирование, нитрование.

План изучения темы

 (перечень вопросов, обязательных к изучению):

1.Понятие про алкадиены и каучуки.

План:
1Ароматические углеводороды: состав, строение.

2.Номенклатура и изомерия.

3Физические свойства этилена и ацетилена.

4.Способы получения.

5.Химические свойства.

6Примение.

          Содержание:

1Ароматические углеводороды: состав, строение, изомерия.

Ароматическими углеводородами (аренами) называются вещества, в молекулах которых содержится одно или несколько бензольных колец — циклических групп атомов углерода с особым характером связей.общая формула: С6Н2n-6.

Простейшие и наиболее важные представители Аренов— бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. дПервая структура бензола была предложена в 1865г. немецким ученым А. Кекуле:

Электронное строение бензола Циклическое строение; Валентный угол 120° (плоская молекула); Длина связи 0,139нм; Наличие единого электронного облака, охватывающего 6 атомов углерода в цикле (сопряжённая система).

Эта формула правильно отражает равноценность шести атомов углерода, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, бензол не проявляет склонности к реакциям присоединения: он не обесцвечивает бромную воду и раствор перманганата калия, т. е. не дает типичных для непредельных соединений качественных реакций.

По современным представлениям все шесть атомов углерода в молекуле бензола находятся в sp2-гибридном состоянии. Каждый атом углерода образует  -связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Валентные углы между тремя -связями равны 120°. Таким образом, все шесть атомов углерода лежат в одной плоскости, образуя правильный шестиугольник ( -скелет молекулы бензола).

 Каждый атом углерода имеет одну негибридизованную р-орбиталь. Шесть таких орбиталей располагаются перпендикулярно плоскому скелету и параллельно друг другу. Все шесть электронов взаимодействуют между собой, образуя  -связи, не локализованные в пары как при образовании двойных связей, а объединенные в единое  -электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение.Наибольшая  -электронная плотность в этой сопряженной системе располагается над и под плоскостью  -скелета

2.Номенклатура и изомерия.

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму — конденсированные (полиядерные) арены (простейший из них — нафталин):

Гомологический ряд бензола отвечает общей формуле С6Н2n-6.

Структурная изомерия в гомологическом ряду бензола обусловлена взаимным расположением заместителей в ядре. Монозамещенные производные бензола не имеют изомеров положения, так как все атомы в бензольном ядре равноценны. Дизамещенные производные существуют в виде трех изомеров, различающихся взаимным расположением заместителей. Положение заместителей указывают цифрами или приставками: орто- (о-), мета- (м-), пара- (п-).

Радикал С6Н5 — называется фенил.

3.Физические свойства бензолов.

Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) — бесцветные жидкости со специфическим запахом, ядовиты (бензол) Они легче воды и нерастворимы в ней. Хорошо растворяются в органических растворителях. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах. температурой кипения +80ºС и температурой плавления + 5ºС.

Способы получения аренов.

Бензол получают из каменноугольной смолы, образующейся при коксовании угля, из нефти, синтетическими методами.                                                                                           1.Получение из алифатических углеводородов. При пропускании алканов с неразветвленной цепью, имеющих не менее шести атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация— образование арена с выделением водорода: способ Б.А.Казанского и А.Ф.Платэ

2.Дегидрирование циклоалканов.(Н.Д.Зелинский)Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной при 30000 .

3. Получение бензола тримеризацией ацетилена над активированным углём при 6000 (Н.Д.Зелинский)

3НCСН

––600C

4.. Сплавление солей ароматических кислот со щелочью или натронной известью:

5.Химические свойствааренов.

Бензольное ядро обладает высокой прочностью. Для аренов наиболее характерны реакции, протекающие по механизмуэлектрофильного замещения,обозначаемого символом SE (от англ. substitutionelectrophilic).

По химическим свойствам, бензол занимает промежуточное положение между алканами и алкенами, т.е. как в реакции присоединения, так и в реакции замещения.

Химические свойства бензола.

1.Реакции замещения:

Галогенирование. Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов — безводных АlСl3, FeСl3, АlВr3. В результате реакции образуются галогенозамещенные арены:

Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы:

Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

Сулъфирование. Реакция легко проходит под действием “дымящей” серной кислоты (олеума):

2.Алкилирование по Фриделю—Крафтсу. В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналкановRСl в присутствии катализаторов — галогенидов алюминия. Роль катализатора сводится к поляризации молекулы RСl с образованием электрофильной частицы:

В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

Алкилированиеалкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора АlСl3. Механизм реакции сходен с механизмом предыдущей реакции:

Все рассмотренные выше реакции протекают по механизму электрофильного замещения SE.

Реакции присоединения к аренам приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.

3.Реакции присоединения, идущие с разрывом связей:

Гидрирование. Реакция присоединения водорода к аренам идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан, а гомологи бензола — в производные циклогексана:

Радикальное галогенирование. Взаимодействие паров бензола с хлором протекает по радикальному механизму только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт —гексахлорциклогексан(гексахлоран) С6Н6Сl6:

4. Окисление кислородом воздуха.По устойчивости к действию окислителей бензол напоминает алканы. Только при сильном нагревании (400 °С) паров бензола с кислородом воздуха в присутствии катализатора V2О5 получается смесь малеиновой кислоты и ее ангидрида:

5.Бензол горит. (Просмотр опыта) Пламя бензола коптящее из-за высокого содержания углерода в молекуле.

2 C6 H6 + 15 O2 → 12CO2 + 6H2O

6.Применение аренов.

Бензол и его гомологи применяются как химическое сырье для производства лекарств, пластмасс, красителей, ацетона, фенола, формальдегидных пластмасс. ядохимикатов и многих других органических веществ. Широко используются как растворители. Бензол в качестве добавки улучшает качество моторного топлива.Этилен используют для получения этилового спирта, полиэтилена. Он ускоряет созревание плодов (помидоров, цитрусовых) при введении незначительных количеств его в воздух теплиц. Пропилен используется для синтеза глицерина, спирта, для добывания полипропилена, который идет на изготовление веревок, канатов, упаковочного материала. Исходя из 1-бутену, добывают синтетический каучук.
     Ацетилен используют для автогенной сварки металлов. Полиэтилен используются как упаковочный материал, для изготовления сумок, игрушек, домашней посуды (бутылок, ведер, мисок и т.п.). Ароматические углеводороды широко применяют в производстве красителей, пластических масс, химико-фармацевтических препаратов, взрывчатых веществ, синтетических волокон, моторного топлива и др.Основным источником получения А. у. служат продукты коксования каменного угля. Из 1 ткам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда. Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу.

Понятие об алкадиенах как углеводородах с двумя двойными связями.

Алкадиены- алифитические(ациклические), непредельные(ненасыщенные) углеводороды, с двумя дойными связями.

Общая формула:CnH2n-2.Представитель– пропадиен;Структурная формула: CH2= C =CH2

HH

Электронная формула: ::C::

Вид гибридизации - sp2

Форма молекулы - плоская. Угол связи -120ο

CH2=C=CH-CH3 Бутадиен - 1,2 CH2=CH-CH=CH2 Бутадиен 1,3

Бутадиен-1,3 – легко сжижающийся газ с неприятным запахом, tпл. = -108,90 С, растворяется в эфире, бензоле, не растворяется в воде.

 

Для алкадиенов характерны реакции горения, присоединения, обесцвечивания водного раствора перманганата калия и бромной воды.
1) CH2=CH-CH=CH2 + Br2 -- t=40 -->CH2Br-CHBr-CH=CH2 перваястадия.
2) CH2Br-CHBr-CH=CH2 + Br2 -------> CH2Br - CHBr - CHBr - CH2Br вторая.
3) nCH2=CH-CH=CH2 ----t, Na -----> (-CH2-CH=CH-CH2-)n полимеризация.

 

Важной особенностью алкадиенов является большая легкость их к полимеризации. Эта реакция лежит в основе получения синтетических каучуков.

n Н2С = СН – СН = СН2 → (…– Н2С – СН = СН – СН2 –…) n

бутадиен-1,3 (дивинил)

синтетический бутадиеновый каучук.

Резина — эластичный материал, получаемый вулканизацией каучука.

 

Контроль знаний:

1. Какие соединения называются аренами?

2. Какие характерные физические свойства?

3. В какие химические реакции вступает бензол?

4. Дайте характеристику алкадиенам.

 

Литература:

 1.Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб. для общеобразоват. учреждений. – М., 2010,

2.Габриелян О.С. Химия: учеб.для студ. сред. проф. учеб. заведений.- 2-е издание / О.С. Габриелян, И.Г. Остроумов. – М., 2013.

 3. http://ru.wikipedia.org- энциклопедия

4. .Рудзитис Г.Е., Фельдман Ф.Г, химия. 10 класс: учебник для общеобразовательных учреждений (базовый уровень). – М.: Просвещение, 2016.

 

Самостоятельная работа №6

Тема:Природный газ. Природный газ как топливо. Преимущества природного газа перед другими видами топлива. Состав природного газа.Каменный уголь. Коксохимическое производство и его продукция.

Нефть. Состав и переработка нефти. Нефтепродукты. Бензин и понятие об октановом числе.

Основные понятия и термины по теме:нефть,природный газ, продукты перегонки нефти, перегонка нефти, детонационная стойкость бензина, виды топлива, применение природных источников углеводородов.

План изучения темы

(перечень вопросов, обязательных к изучению):

 

 

1.Природный газ. Природный газ как топливо.

2. Нефть. Состав, свойства нефти. Продукты перегонки нефти, их применение. Детонационная стойкость бензина.

3. Каменный уголь, продукты его переработки.

4. Основные виды топлива и их значение в энергетике страны.

                                 Содержание:

1. Природный газ. Природный газ как топливо.


     В природном газе содержатся углеводороды с низкой молекулярной массой. Он имеет примерно такой состав (по объему): 80-98 % метана, 2-3 % его ближайших гомологов - этана, пропана, бутана и небольшое количество примесей - сероводорода, азота, благородных газов, оксида углерода (IV) и водяного пара. Так, например, газ Ставропольского месторождения содержит 97,7 % метана и 2,3 % других газов, газ Саратовского месторождения - 93,4 % метана, 3,6 % этана, пропана, бутана и 3,0 % негорючих газов. До природного газа относятся и сопутствующие газы, растворенные в нефти, содержащихся над ней и выделяются при ее добыче. На поверхность нефть поступает под давлением этих газов и фонтанирует.

       Сопутствующий нефтяной газ отличается по составу от природного: в нем содержится меньше метана (30-59% по объему), но больше этана, пропана, бутана, пентана (7-20% по объему) и высших углеводородов, чем в природном газе. Ранее сопутствующий газ не находил применения и во время добычи нефти сжигали факельным способом. При переработке попутного нефтяного газа сначала отделяют жидкие легко кипящие углеводороды - пентан, гексан и др. Они вместе образуют так называемый газовый бензин (газолин), который используется как добавка к обычным бензинам для лучшего их воспламенения при запуске двигателей.

   Затем отделяется пропан-бутановая смесь, которой заполняют баллоны под давлением. Сжиженный газ используется как газообразное топливо, что остается после отделения газового бензина и бутан-пропановой смеси, состоящий преимущественно из метана и используется как топливо.
    Для химической переработки попутного газа отделяют индивидуальные углеводороды: этап, пропан, н - бутан и т.д. Поскольку насыщенные углеводороды относительно химически инертны и малопригодны как сырье для химического синтеза, их превращают с помощью реакций.
   Природный газ широко используют как дешевое топливо с высокой теплотворной способностью (при сжигании 1 м3 газа выделяется до 54 400 кДж). Это один из лучших видов топлива для бытовых и промышленных нужд. Кроме того, природный газ является ценным сырьем для химической промышленности.
   Разработано много способов переработки природных газов. Главная задача этой переработки - превращение насыщенных углеводородов в более активные - ненасыщенные, которые далее превращают в синтетические полимеры (каучук, пластмассы). Кроме того, окислением углеводородов добывают органические кислоты, спирты и другие продукты. В последнее время значительно выросло производство газов переработкой каменного угля, торфа и сланцев.


Дата добавления: 2018-02-28; просмотров: 450; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!