Выявление наличия связи между признаками



В системах с отказами заявка, поступившая в момент, когда все каналы обслуживания заняты, немедленно получает отказ, покидает систему и в дальнейшем процессе обслуживания не участвует.

Пример. Пусть n-канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (n=3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность λ=1 задача в час. Средняя продолжительность обслуживания tоб=1,8 час.
Требуется вычислить значения:
- вероятности числа занятых каналов ВЦ;
- вероятности отказа в обслуживании заявки;
- относительной пропускной способности ВЦ;
- абсолютной пропускной способности ВЦ;
- среднего числа занятых ПЭВМ на ВЦ.
Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.
Решение.
Определим параметр μ потока обслуживаний:
.
Приведенная интенсивность потока заявок
.
Предельные вероятности состояний найдем по формулам Эрланга:

Вероятность отказа в обслуживании заявки
.
Относительная пропускная способность ВЦ
.
Абсолютная пропускная способность ВЦ:
.
Среднее число занятых каналов – ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех – остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно считать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (Р3= 0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.
Определим, сколько нужно использовать ПЭВМ, чтобы сократить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу вероятности отказа:

Составим следующую таблицу:

n            
P0 0,357 0,226 0,186 0,172 0,167 0,166
Pотк 0,673 0,367 0,18 0,075 0,026 0,0078


Анализируя данные таблицы, следует отметить, что расширение числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение задач на 99,22%, так как при n = 6 вероятность отказа в обслуживании (Ротк) составляет 0,0078.

25. система обслуживания с ограниченной длиной очереди (расчёт для двух продавцов и длиной очереди до трёх покупателей).

Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3, то есть (N — 1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику имеет интенсивность λ =0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно =1,05 час.
Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.
Решение
Интенсивность потока обслуживаний автомобилей:

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

Вычислим вероятности нахождения п заявок в системе:

P 1=r∙ P 0=0,893∙0,248=0,221;
P 2=r2P 0=0,8932∙0,248=0,198;
P 3=r3P 0=0,8933∙0,248=0,177;
P 4=r4P 0=0,8934∙0,248=0,158.
Вероятность отказа в обслуживании автомобиля:
Pотк = Р 4=r4P 0≈0,158.
Относительная пропускная способность поста диагностики:
q =1– Pотк =1-0,158=0,842.
Абсолютная пропускная способность поста диагностики
А =λ∙ q =0,85∙0,842=0,716 (автомобиля в час).
Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


Среднее время пребывания автомобиля в системе:
часа.
Средняя продолжительность пребывания заявки в очереди на обслуживание:
Wq = Ws -1/μ=2,473-1/0,952=1,423 часа.
Среднее число заявок в очереди (длина очереди):
Lq=λ∙(1-PN)∙Wq= 0,85∙(1-0,158)∙1,423=1,02.
Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обнаруживает автомобили в среднем в 15,8% случаев (Ротк =0,158).

 

26. моделирование деятельности торгового предприятия методами регрессионного анализа (пример постановки задачи, модели, проблемы, применение).?????????????

Связь как зависимость (влияние) – регрессионный анализ (причинно-следственные связи).

Основные понятия

• В регрессионном анализе один из признаков зависит от другого.

• Первый (зависимый) признак называется в регрессионном анализе результирующим, второй (независимый) – факторным.

• Не всегда можно однозначно определить, какой из признаков является независимым, а какой – зависимым. Часто связь может рассматриваться как двунаправленная.

Этапы анализа

• Выявление наличия взаимосвязи между признаками;

• Определение формы связи;

• Определение силы (тесноты) и направления связи.

Выявление наличия связи между признаками


Дата добавления: 2015-12-19; просмотров: 22; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!