Передача без потерь



Когда элементы R и G малы, их значением можно пренебречь, линия электропередач при этом считается идеальной. В этом случае модель зависит только от элементов L и C, мы получаем пару дифференциальных уравнений в частных производных первого порядка, одна функция описывает распределение напряжения V вдоль линии, а другая - распределение тока I, обе функции зависят от координаты x и времени t.

Эти уравнения можно совместить для получения двух отдельных волновых уравнений:

В стационарном случае (считаем, что волна синусоидальная , уравнения упрощаются до

где ω - частота стационарной волны.

Если линяя является бесконечно длинной, или оканчивается характеристическим комплексным сопротивлением, уравнения показывают присутствие волны, распространяющейся со скоростью .

(Заметим, что такая скорость распространения применима к волновым явлениям и не учитывает дрейфовую скорость электрона. Другими словами, электрический импульс распространяется со скоростью, очень близкой к скорости света, несмотря на то, что сами электроны перемещаются со скоростью всего несколько сантиметров в секунду.) Можно показать, что эта скорость в коаксиальной линии, сделанной из идеальных проводников, разделенных вакуумом, равна скорости света.

Линии без потерь и линии без искажений обсуждаются в [8] и [9]

Линия с потерями

Когда элементами R и G нельзя пренебречь, первоначальные дифференциальные уравнения, описывающие элементарный участок, принимают вид

Дифференцируя первое уравнение по x и второе по t, после проведения некоторых алгебраических преобразований, мы получим пару гиперболических дифференциальных уравнений в частных производных, каждое из которых содержит по одной неизвестной:

Заметим, что эти уравнения похожи на уравнение однородной волны с дополнительными условиями над V и I и их первыми производными. Дополнительные условия вызывают затухание и рассеяние сигнала в течении времени и с увеличением расстояния. Если потери линии малы (малые R и G = 0), сигнал будет затухать с увеличением расстояния как ex , где α = R /2Z0


Дата добавления: 2016-01-05; просмотров: 20; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!