Приравняв правые части равенств (1) и (2), получим



или ,

где n = v2 / v1.

Отсюда искомая разность потенциалов

.                                         (3)

Подставим числовые значения физических величин и вычислим:

.

 

№ 11. Конденсатор емкостью С1 = 3 мкФ был заряжен до разности потенциалов U 1 = 40 В. После отключенияот источника тока конденсатор был соединен параллельно с другим незаряженным конденсатором емкостью С2 = 5мкФ. Какая энергия W´ израсходуется на образование искры в момент присоединения второго конденсатора?

Р е ш е н и е.

Энергия W´, израсходованная на образование искры,

W ´ = W 1 – W 2                                               (1)

где W 1 - энергия, которой обладал первый конденсатор до присоединения к нему второго конденсатора; W 2 - энергия, которую имеет батарея, составленная из первого и второго конденсаторов. Энергия заряженного конденсатора определяется по формуле

,                                              (2)

где С - емкость конденсатора или батареи конденсаторов; U -разность потенциалов.

Выразив в формуле (1) энергии W1 и W2 по формуле (2) и принимая во внимание, что общая емкость параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов, получим

,            (3)

где U2 - разность потенциалов на зажимах батареи параллельно соединенных конденсаторов.

Учитывая, что заряд после присоединения второго конденсатора остается прежним, выразим разность потенциалов U2 следующим образом:

.

Подставим выражение U2 в формулу (3):

.

После преобразований имеем .

Подставим числовые значения и вычислим W´:

.

 

 


№ 12. Потенциометр с сопро­тивлением Rп = 100 Ом подключен к батарее, э.д.с. которой ε = 160 В и внутреннее сопротивление r = 50 Ом. Определить показание вольтметра с сопротивлением Rv = 500 Ом, соединенным с одной из клемм потенциометра и подвижным контактом, установленным посередине потенциометра. Какова разность потенциалов между теми же точками потенциометра при отключении вольтметра?

Р е ш е н и е.

Показание U1 вольтметра, подключенного к точкам А и В (рис. 8), определяется по формуле

U 1 = I 1 R 1 ,                                              (1)

где I1 - сила тока в неразветвленной части цепи; R1 сопротивление параллельно соединенных вольтметра и половины потенциометра.

Силу тока I1 найдем по закону Ома для всей цепи:

,                                                (2)

где R - сопротивление внешней цепи.

Внешнее сопротивление R есть сумма двух сопротивлений

,                                                (3)

Сопротивление R1 параллельного соединения может быть найдено по формуле , откуда .

Подставив числовые значения, найдем

Из выражений (2) и (3) определим силу тока:

.

Если подставить значения I1 и R1 в формулу (1), то можно определить показание вольтметра: U 1 = 1,03·45,5 В = 46,9 В.

Разность потенциалов между точками А и В при отключенном вольтметре равна произведению силы тока I 2 на половину сопротивления потенциометра: .

Подставляя в эту формулу числовые значения, получим

.

№ 13. Сила тока в проводнике сопротивлением R= 20 Ом нарастает в течение времени Δt = 2 с по линейному закону от I0 = 0 до I 2 = 6 А. Определить теплоту Q, выделившуюся в этом проводнике за вторую секунду.

Р е ш е н и е. Закон Джоуля - Ленца в виде Q = I 2 R t справедлив только для постоянного тока (I = const). Если же сила тока в проводнике изменяется, то указанный закон справедлив для бесконечно малого промежутка времени и записывается в виде

dQ = I 2 R dt.                                           (1)

Здесь сила тока I является некоторой функцией времени. В нашем случае

I = k t + I 0 ,                                             (2)

где k - коэффициент пропорциональности, численно равный приращению силы тока в единицу времени, т. е.

.

С учетом (2) формула (1) примет вид

dQ = k 2 R t 2 dt.                                          (3)

Для определения теплоты, выделившейся за конечный промежуток времени Δt, выражение (3) надо проинтегрировать в пределах от t 1до t 2:

.

При определении теплоты Q, выделившейся за вторую секунду, пределы интегрирования t1 = 1 с, t 2 =2 с, тогда

.

 

 


№ 14. Электрическая цепь состоит из двух гальванических элементов, трех сопротивлений и гальванометра (рис. 9). В этой цепи R1 = 100 Ом, R2 = 50 Ом, R3 = 20 Ом, э.д.с. элемента ε1 = 2 В. Гальванометр регистрирует ток I3 = 50 мА, идущий в направлении, указанном стрелкой. Определить э.д.с. ε2 второго элемента. Сопротивлением гальванометра и внутренним сопротивлением элементов пренебречь.

Указание. Для расчета разветвленных цепей применяются правила Кирхгофа.

Первое правило Кирхгофа. Алгебраическая сумма сил токов, сходящихся в узле, равна нулю, т. е. å Ii= 0.

Второе правило Кирхгофа. В любом замкнутом контуре алгебраическая сумма напряжений на отдельных участках цепи равна алгебраической сумме э.д.с., в этом контуре.

На основании этих правил можно составить уравнения, необходимые для определения искомых величин (сил токов, сопротивлений и э.д.с.). Применяя правила Кирхгофа, следует соблюдать следующую последовательность.

1. Перед составлением уравнений произвольно выбрать: а) направления токов (если они не заданы по условию задачи) и указать их стрелками на чертеже; б) направление обхода контуров.

2. При составлении уравнений по первому правилу Кирхгофа считать токи, подходящие к узлу, положительными; токи, отходящие от узла, отрицательными. Возможное число уравнений, составляемых по первому закону Кирхгофа, на единицу меньше числа узлов, содержащихся в цепи.

3. При составлении уравнений по второму правилу Кирхгофа надо считать, что: а) падение напряжения на участке цепи (т.е. произведение IR) входит в уравнение со знаком плюс, если направление тока в данном участке совпадает с выбранным направлением обхода контура; в противном случае произведение IR входит в уравнение со знаком минус; б) э.д.с. входит в уравнение со знаком плюс, если она повышает потенциал в направлении обхода контура, т.е. если при обходе приходится идти от минуса к плюсу внутри источника тока; в противном случае э.д.с. входит в уравнение со знаком минус.

Число независимых уравнений, которые могут быть составлены по второму правилу Кирхгофа, должно быть меньше числа замкнутых контуров, имеющихся в цепи. Для составления уравнений первый контур можно выбрать произвольно. Все последующие контуры следует выбирать таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь цепи, не участвовавшая ни в одном из ранее использованных контуров. Если при решении уравнений, составленных указанным выше способом, получены отрицательные значения силы тока, то это означает, что ток через данное сопротивление в действительности течет в направлении, противоположном выбранному.

Р е ш е н и е.

Выберем направления токов, как они показаны на рис. 9, и условимся обходить контуры по часовой стрелке.

По первому правилу Кирхгофа для узла F имеем

I 1 – I 2 – I 3 = 0.                                          (1)

По второму правилу Кирхгофа имеем для контура АВСDFА:

- I 1 R 1 – I 2 R 2 = -ε1,

или после умножения обеих частей равенства на -1

I 1 R 1 + I 2 R 2 = ε1.                                         (2)

Соответственно для контура AFGHA:

I 1 R 1 + I 3 R 3 = ε2.                                     (3)

После подстановки числовых значений в формулы (1), (2) и (3) получим:

I 1 – I 2 = 0,05;

50 I 1 + 25 I 2 = 1;

100 I1 + 0,05·20 = ε2.

Перенеся в этих уравнениях неизвестные величины в левые части, а известные - в правые, получим следующую систему уравнений:

I 1 – I 2 = 0,05; 50 I 1 + 25 I 2 = 1; 100 I1 - ε2 = -1.

Эту систему с тремя неизвестными можно решить обычными приемами алгебры, но так как по условию задачи требуется определить только одно неизвестное ε 2 из трех, то воспользуемся методом Крамера.

Составим и вычислим определитель Δ системы:

.

Составим и вычислим определитель Δε2:

.

Разделив определитель Δε2 на определитель Δ, найдем числовое значение э.д.с. ε2:

ε2= -300/(-75) = 4 В.

 

3.2. ТРЕНИРОВОЧНЫЕ ЗАДАЧИ.

 

1. Два шарика массой m = 1 г каждый подвешены на нитях, верхние концы которых соединены вместе. Длина каждой нити l = 10 см. Какие одинаковые заряды надо сообщить шарикам, чтобы нити разошлись на угол α = 60°? ( Ответ. 79 нКл.)

2. Расстояние между зарядами q 1 = 100 нКл и q 2 = 60 нКл равно d = 10 см. Определить силу F, действующую на заряд q 3 = 1мкКл, отстоящий на r1 = 12 см от заряда q 1 и на r2 = 10 см от заряда q 2. (Ответ. 51 мН)

3. Тонкий длинный стержень равномерно заряжен с линейной плотностью τ = 1,5 нКл/см. На протяжении оси стержня на расстоянии d = 12 см от его конца находится точечный заряд q = 0,2 мкКл. Определить силу взаимодействия заряженного стержня и точечного заряда. (Ответ. 2,26 мН)

4. Длинная прямая тонкая проволока имеет равномерно распределенный заряд. Вычислить линейную плотность τ заряда, если напряженность поля на расстоянии d = 0,5 м от проволоки против ее середины E = 2 В/см. (Ответ. 5,55 нКл/м)

5. С какой силой, приходящейся на единицу площади, отталкиваются две одноименно заряженные бесконечно протяженные плоскости с одинаковой поверхностной плотностью заряда σ = 2 мкКл/м2? (Ответ. 0,23 Н/м2)

6. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы получить скорость v = 8 Мм/с? (Ответ. 182 В)

7. Заряд равномерно распределен по бесконечной плоскости с поверхностной плотностью σ = 10 нКл/м2. Определить разность потенциалов двух точек поля, одна из которых находится на плоскости, а другая удалена от нее на расстояние d = 10 см. (Ответ. 56,6 В)

8. Электрон с начальной скоростью v 0 = 3 Мм/с влетел в однородное электрическое поле с напряженностью Е = 150 В/м. Вектор начальной скорости перпендикулярен линиям напряженности электрического поля. Найти: 1) силу, действующую на электрон; 2) ускорение, приобретаемое электроном; 3) скорость электрона через t = 0,1 мкс. (Ответ. 24 аН; 26,4 Тм/с2; 4 Мм/с)

9. К батарее с э.д.с. ε = 300 В подключены два плоских конденсатора емкостью С1 = 2 пФ и С2 = 3 пФ. Определить заряд q и напряжение U на пластинах конденсаторов в двух случаях: 1) при последовательном соединении; 2) при параллельном соединении. (Ответ. 1) 0,36 нКл; 189 В; 120 В; 2) 0,6 нКл; 0,9 нКл; 300 В)

10. Конденсатор емкостью С1 = 600 см зарядили до разности потенциалов U = 1,6 кВ и отключили от источника напряжения. Затем к конденсатору присоединили второй, незаряженный конденсатор емкостью С2 = 400 см. Сколько энергии W, запасенной в первом конденсаторе, было израсходовано на образование искры, проскочившей при соединении конденсаторов? (Ответ. 0,3 мДж)

11. На концах медного провода длиной l = 5 м поддерживается напряжение U = 1 В. Определить плотность тока j в проводе. (Ответ. 1,18·107 А/м)

12. Сопротивление R1 = 5 Ом, вольтметр и источник тока соединены параллельно. Вольтметр показывает напряжение U1 = 10 В. Если заменить сопротивление R1 на R2 = 12 Ом, то вольтметр покажет напряжение U2 = 12 В. Определить э.д.с. и внутреннее сопротивление источника тока. Током через вольтметр пренебречь. (Ответ. 14 В; 2 Ом.)

13. Определить заряд, прошедший по проводу с сопротивлением R = 3 Ом при равномерном нарастании напряжения на концах провода от U1 = 2 В до U2 = 4 В в течение t = 20 с. (Ответ. 20 Кл)

14. Определить силу тока I в цепи, состоящей из двух элементов с э.д.с. ε1 = 1,6 В и ε2 = 1,2 В с внутренними сопротивлениями r1 = 0,6 Ом и r2 = 0,4 Ом, соединенных одноименными полюсами. (Ответ. 0.4 А)

15. Три батареи с э.д.с. ε1 = 8 В, ε2 = 3 В и ε3 = 4 В с внутренними со­про­тивлениями r = 2 Ом каждое соединены одно­и­менными полюсами. Пре­не­брегая сопротивлением соединительных про­во­дов, определить токи, идущие через батареи. (Ответ. 1,5 А; 1 А; 0,5 А)

16. Определить напряжение U на зажимах реостата сопротивлением R (рис 10), если ε1 = 5 В, r1 = 1 Ом, ε2 = 3 В, r2 = 0,6 Ом, R = 3 Ом. (Ответ. 3,3 В)

17. Определить напряжение на сопротивлениях R1 = 2 Ом, R2 = R3 = 4 Ом и R4 = 2 Ом, включенных в цепь, как показано на рис. 11, если ε1 = 10 В, ε2 = 4 В. Сопротивлениями источников тока пренебречь. (Ответ. 6 В; 0; 4 В; 4 B)

 

 

3.3. ПРОВЕРОЧНЫЙ ТЕСТ

 

Электростатика

 

1. В какой из четырех точек А, В,С. D  (см. рис). некоторый положительный заряд q3 может находиться в равновесии?

Варианты ответа:

1. В точке А. 2. В точке В. 3. В точке С. 4. В точке D.

 

2. Шарик массой 2,0 г, имеющий заряд 2×10-6 Кл, подвешен в воздухе на тонкой нити. Каким будет натяжение нити, если снизу шарика на расстоянии 5 см от него расположен одноименный заряд 1,2×10-7Кл.?

Варианты ответа:

1. 11×10-3 Н. 2. 23×10-3 Н. 3. 0,65×10-2 Н. 4. 20×10-3 Н. 5. 8,6×10-3 Н.

 

3. В каких из четырех случаев распределения зарядов напряженность электростатического поля в точке А ЕА = 0 (см. рис.).

              1.                    2.                  3.               4.

 

4. На рисунке приведена картина силовых линий электростатического поля. Какое соотношение для напряженностей Е и потенциалов j в точках 1 и 2 верно ?

Варианты ответа:

1) Е1 < E2 , j1 > j2;

2) Е1 > E2 , j1 < j2;

3) Е1 > E2 , j1 > j2;

4) Е1 < E2 , j1 < j2;

5) Е1 = E2 , j1 < j2 .

 

5. На рис. показаны силовые линии и две эквипотенциальные поверхности I и II в электростатическом поле. Какие точки имеют одинаковые потенциалы?

Варианты ответа: В и С. 2. A и D. 3. B , C и D . 4 A , B и C. 5. A , B , C , D .

 

6. Плоский конденсатор между обкладками содержит диэлектрик. Конденсатор подключили к источнику напряжения, а затем удалили диэлектрик. Что при этом произошло?

А. Напряжение на обкладках уменьшилось.

Б. Емкость конденсатора уменьшилась.

В. Напряженность поля увеличилась.

Г. Заряд на обкладках уменьшился.

Варианты ответа: 1) только Б и Г; 2) только А и Б;

3) только В и Г; 4) Б, В и Г; 5) А, Б, В и Г.

 

7. Какие из нижеприведенных выражений дают в той или иной форме поток вектора напряженности  через произвольную замкнутую поверхность?

Варианты ответа:

 

8. Какие из равенств соблюдаются 1) при последовательном соединении; 2) при параллельном соединении конденсаторов с емкостями С1 и С2?

Варианты ответа:

1. С = С1 + С2. 2.     3. q  =q1= q2. 4. q  = q1+ q2.

5. U = U1 + U2, 6. U = U1 + U2.

 

9. На заряд q , помещенный между пластинами плоского воздушного конденсатора емкостью С и площадью каждой пластины S, действует сила F. Какова энергия конденсатора?

Варианты ответа:

 

Постоянный ток

 

1. В проводнике длиной l и площадью поперечного сечения S течет постоянный электрический ток. Средняя скорость направленного движения носителей тока v, их количество в единице объема n, а заряд частицы q. Какое из выражений дает силу тока в проводнике?

Варианты ответа: qvnS . 2. qvn . 3. qvnS / l . 4. qvnS . 5. qvnl / S .

 

2. Ток идет по проводнику, форма которого показана на рис. Одинакова ли напряженность поля в местах с узким и широким сечениями?

Варианты ответа:

1. Не одинакова. 2. При постоянном токе - одинакова, при переменном - разная. 3. При переменном токе - одинаковая, при постоянном - разная. 4. Одинакова.

 

3. Источник тока, амперметр и некоторое сопротивление соединены последовательно в замкнутую цепь. Сопротивление сделано из медной проволоки длиной 100 м и поперечным сечением 2 мм2. Сопротивление амперметра равно 0,05 Ом. Амперметр показывает 1,43 А. Определить э.д.с. источника, если его внутреннее сопротивление 0,5 Ом.

Варианты ответа: 1. 2 В; 2. 1,2 В; 3. 1,8 В; 4. 3 В; 5. 3, 7 В.

4. Каким должно быть сопротивление шунта по сравнению с сопротивлением амперметра , если надо измерить общий ток в цепи 10 А, а амперметр имеет предел 2 А?

Варианты ответа:

1. Rш = 0,25 RА; 2. Rш = RА; 3. Rш = 5RА; 4. Rш = 0,1RА.

 

5. Две электрические лампочки с сопротивлением R1 = 360 Ом и R2 = 240 Ом включены в сеть параллельно. Какая из лампочек потребляет большую мощность и во сколько раз?

Варианты ответа: 1. Вторая, в 1,5 раза; 2. Первая в 1,5 раза;  

3. Первая, в 2,25 раза; 4. Вторая, в 2,25 раза; 5. Первая, в 1,2 раза.

6. Какое из уравнений представляет второе правило Кирхгофа для данного контура? Ток через сопротивление R1 идет слева - направо.

Варианты ответа:

1. I1 (R1+r1) - I2(R2+r2) = e1 - e2.

2. I1 R1 - I2R2 = e1 - e2.

3. -I1 (R1+r1) - I2(R2+r2) = e1 + e2.

4. I1 (R1+R2) + I2(r1+r2) = e1 + e2

 

З а м е ч а н и е : правильный ответ в задачах теста - под номером 1.

 

 

3.4. КОНТРОЛЬНАЯ РАБОТА № 3

 

Номера задач

0 300 310 320 330 340 350 360 370 380
1 301 311 321 331 341 351 361 371 381
2 302 312 322 332 342 352 362 372 382
3 303 313 323 333 343 353 363 373 383
4 304 314 324 334 344 354 364 374 384
5 305 315 325 335 345 355 365 375 385
6 306 316 326 336 346 356 366 376 386
7 307 317 327 337 347 357 367 377 387
8 308 318 328 338 348 358 368 378 388
9 309 319 329 339 349 359 369 379 389

 

300. В вершинах квадрата находятся одинаковые заряды q = З·10-10 Кл каждый. Какой отрицательный заряд q0 нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?

301. В вершинах шестиугольника со стороной а = 10 см расположены точечные заряды q, 2 q, 3 q, 4 q, 5 q, 6 q (q = 0,1 мкКл). Найти силу F, действующую на точечный заряд q, лежащий в плоскости шестиугольника и равноудаленный от его вершин.

302. Четыре одинаковых заряда q = 40 нКл каждый закреплены в вершинах квадрата со стороной а = 10 см. Найти силу, действующую на один из этих зарядов со стороны трех остальных.

303. Три одинаковых заряда q = 10-9 Кл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд q0 нужно поместить в центре треугольника, чтобы его притяжение уравновесило силы взаимного отталкивания зарядов?

304. В вершинах квадрата находятся положительные одинаковые заряды q. В центр квадрата помещен отрицательный заряд q0 = -0,287 нКл. Найти q, если результирующая сила, действующая на каждый заряд, равна нулю.

305. Сила взаимного гравитационного притяжения двух водяных одинаково заряженных капель уравновешивается силой электростатического отталкивания. Определить заряд q капель, если их радиусы r = 1,5·10-4 м. ρводы = 103 кг/м3.

306. В элементарной теории атома водорода принимают, что электрон обращается вокруг ядра по круговой орбите. Определить скорость электрона, если радиус орбиты R = 5,3·10-9 см. Сколько оборотов в секунду делает электрон?

307. Заряд q = 3·10-7 Кл равномерно распределен по сферической поверхности. Какую скорость нужно сообщить точечному заряду q0 = 2·10-9 Кл, массой m = 6·10-6 кг в направлении, перпендикулярном, прямой, соединяющей центр сферической поверхности с точечным зарядом, чтобы он начал вращаться по окружности с радиусом r = 10 см, Rсф < r, m<<mсф.

308. Два положительных заряда q1 = 2 нКл и q2 = 4 нКл находятся на расстоянии l = 60 см друг от друга. Определить местоположение, величину и знак заряда q 3 , чтобы все заряды находились в равновесии.

309. Два одинаковых алюминиевых шарика радиусом R надеты на тонкий непроводящий стержень. Верхний шарик, имеющий заряд +q , закреплен, а нижний (его заряд -q) может свободно перемещаться вдоль стержня. На каком расстоянии r будут находиться в равновесии заряженные шарики при вертикальном положении стержня. (r>>R)

310. Треть тонкого кольца радиуса R = 10 см несет равномерно распределенный заряд q = 50 нКл. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке, совпадающей с центром кольца.

311 Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд с линейной плотностью τ = 0,1 мкКл. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке А, лежащей на оси стержня на расстоянии d = 20 см от его конца.

312. По дуге кольца длиной в шестую часть окружности распределен заряд q = 31,4 нКл. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. Радиус окружности R = 10 см.

313. По дуге кольца длиной в три четверти окружности распределен заряд с линейной плотностью τ = 20 нКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. Радиус окружности R = 14,1 см.

314. Тонкое кольцо несет распределенный заряд q = 0,2 мкКл. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см. Радиус кольца R = 10 см.

315. По дуге кольца длиной в пять шестых окружности распределен заряд с линейной плотностью τ = 20 нКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца. Радиус окружности R = 10 см.

316. Тонкий стержень, уходящий одним концом в бесконечность, несет равномерно распределенный заряд с линейной плотностью τ = 0,5 мкКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого зарядом стержня в точке А, лежащей на оси стержня на расстоянии а = 20 см от его начала.

317. Четверть тонкого кольца радиусом R = 10 см несет равномерно распределенный заряд q = 0,05 мкКл. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

318. Две трети тонкого кольца радиусом R = 10 см несут равномерно распределенный заряд с линейной плотностью τ= 0,2 мкКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром кольца.

319. По тонкому полукольцу радиуса R = 10 см равномерно распределен заряд с линейной плотностью τ = 1 мкКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в центре кольца.

320. На двух параллельных бесконечных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = -4σ, σ2 = 2σ, где σ = 40 нКл/м2. 1) Найти напряженность Е электрического поля в трех областях: слева, между и справа от плоскостей; 2) на чертеже указать направление вектора  для каждой области.

321. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = σ и σ2 = -σ, где σ = 0,1 мкКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния от центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 3 R и указать направление вектора .

322. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = 2σ и σ2 = σ, где σ= 20 нКл/м. Требуется: 1) найти напряженность Е электрического поля в трех областях: слева от плоскостей, между плоскостями и справа от плоскостей; 2) на чертеже указать направление вектора  для каждой области.

323. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = σ, σ2 = -2σ, где σ = 20 нКл/м2. Требуется: 1) найти напряженность Е электрического поля в трех областях: слева, между и справа от плоскостей, 2) на чертеже указать направление вектора  для каждой области.

324. На двух концентрических сферах радиусами R и. 2 R равномерно распределены заряды с поверхностными плотностями σ1 = 4σ и σ2 = σ, где σ = 30 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 1,5 R и указать направление вектора .

325. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = -2σ и σ2 = σ, где σ = 50 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 1,5 R и указать направление вектора .

326. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = -4σ и σ2 = σ, где σ = 50 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 1,5 R и указать направление вектора .

327. На двух коаксиальных бесконечных цилиндрах радиусами R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = σ и σ2 = -σ, где σ = 60 мкКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 3 R, и указать направление вектора .

328. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = -σ и σ2 = 4σ, где σ = 30 НКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2)вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 4 R, и указать направление вектора .

329. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = -2σ и σ2 = σ, где σ = 0,1 мкКл/м2. Требуется: 1) найти зависимость напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстоянии r = 3R, и указать направление вектора .

330. Четыре одинаковые капли ртути, заряженные до потенциала φ1 = 10 В, сливаются в одну. Каков потенциал φ образовавшейся капли?

331. В однородное электрическое поле напряженностью Е = 200 В/м влетает вдоль силовых линий электрон со скоростью v 0 = 2 Мм/с. Определить расстояние l, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.

332. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом (τ = 10 нКл/м). Определить кинетическую энергию Wк2 электрона на расстоянии а, если на расстоянии от линии его кинетическая энергия Wк1 = 200 эВ.

333. Шарик массой m = 40 мг, имеющий положительный заряд q = 1 нКл, движется со скоростью v = 10 см/с. На какое расстояние минимальное r может приблизиться шарик к положительному точечному заряду q0 = 1,33 нКл?

334. Шарик массой m = 1 г и зарядом q = 10 нКл перемещается из точки 1, потенциал которой φ1 = 600 В, в точку 2, потенциал которой φ2 = 0. Найти его скорость в точке 1, если в точке 2 она стала равной v2 = 20 см/с.

335. Найти скорость электрона, прошедшего разность потенциалов U, равную 100 В.

336. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1 = 100 В электрон имел скорость v 1 = 6 Мм/с. Определить потенциал φ2 точки поля, дойдя до которой электрон потеряет половину своей скорости.

337. Найти отношение скоростей ионов Cu++ и К+, прошедших одинаковую разность потенциалов.

338. Электрон с энергией W = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если заряд ее q = -10 нКл.

339. Электрическое поле создано заряженным проводящим шаром, потенциал φ которого 300 В. Определить работу сил поля по перемещению заряда q = 0,2 мкКл из точки, отстоящей от поверхности шара на расстоянии R, до точки, отстоящей на расстоянии 3 R.

340. Конденсатор электроемкостью С1 = 0,6 мкФ был заряжен до разности потенциалов U 1 = 300 В и соединен параллельно со вторым конденсатором электроемкостью C 2 = 0,4 мкФ, заряженным до разности потенциалов U 2 = 160 В. Найти заряд, перетекший с пластин первого конденсатора на второй.

341. Конденсатор электроемкостью С1 = 0,2 мкФ был заряжен до разности потенциалов U1 = 320 В. После того, как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов U 2 = 450 В, напряжение на нем изменилось до 400 В. Вычислить емкость С2 второго конденсатора.

342. Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка (ε = 7). Конденсатор заряжен до разности потенциалов U = 100 В. Какова будет разность потенциалов, если вытащить стеклянную пластинку из конденсатора?

343. К воздушному конденсатору, заряженному до разности потенциалов U1 = 500 В и отключенному от источника напряжения, присоединили параллельно второй конденсатор таких же размеров и формы, но с другим диэлектриком (стекло). Определить диэлектрическую проницаемость стекла ε, если после присоединения второго конденсатора разность потенциалов уменьшилась до U2 = 70 В

344. Два конденсатора емкостями С1 = 5 мкФ и С2 = 8 мкФ соединены последовательно и присоединены к батарее с э.д.с. ε = 80 В. Определить заряды q1 и q2 конденсаторов и разности потенциалов U1 и U2 между их обкладками.

345. Пластины плоского конденсатора изолированы друг от друга слоем диэлектрика. Конденсатор заряжен до разности потенциалов U = 1 кВ и отключен от источника напряжения. Определить диэлектрическую проницаемость диэлектрика, если при его удалении разность потенциалов между пластинами конденсатора возрастет до 3 кВ.

346. Три конденсатора (С1 = 1 мкФ, С2 = 2 мкФ, С3 = 3 мкФ) соединены последовательно и присоединены к источнику напряжения (U = 220 В). Найти заряд и напряжение на каждом конденсаторе.

347. Два одинаковых плоских воздушных конденсатора емкостью С = 100 пФ каждый соединены в батарею последовательно. Определить, на сколько изменится емкость С батареи, если пространство между пластинами одного из конденсаторов заполнить парафином.

348. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной d1 = 0,2 см и парафина толщиной d2 = 0,3 см. Разность потенциалов между обкладками U = 300 В. Определить напряженность Е поля и падение потенциала в каждом из слоев.

349. Два шара, радиусы которых 5 и 8 см, а потенциалы соответственно 120 и 50 В, соединяют проводом. Найти потенциалы шаров после их соединения и заряд, перешедший с одного шара на другой.

350. Плоский конденсатор с площадью пластин S = 300 см2 каждая заряжен до разности потенциалов U = 103 В. Расстояние между пластинами d = 4 см. Диэлектрик – стекло (ε = 7). Какую нужно совершить работу, чтобы удалить стекло из конденсатора? Конденсатор отключен от источника.

351. Энергия плоского воздушного конденсатора W1 = 2·10-7 Дж. Определить энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 2, если конденсатор отключен от источника питания.

352. Энергия плоского воздушного конденсатора W1 = 4·10-7 Дж. Определить энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 4, если конденсатор подключен к источнику питания.

353. Пластины плоского конденсатора подключены к источнику с э.д.с 2 В. Определить изменение энергии электрического поля конденсатора, если конденсатор наполовину заполнить диэлектриком с диэлектрической проницаемостью ε = 2. Граница между диэлектриком и воздухом расположена перпендикулярно пластинам. Расстояние между пластинами d = 1 см, площадь пластин S = 50 см2.

354. Пластины плоского конденсатора подключены к источнику с э.д.с 2 В. Определить изменение энергии электрического поля конденсатора, если конденсатор наполовину заполнить диэлектриком с диэлектрической проницаемостью ε = 2. Граница между диэлектриком и воздухом расположена параллельно пластинам конденсатора. Расстояние между пластинами d = 1 см, площадь пластин S = 50 см2.

355. Разность потенциалов между пластинами плоского конденсатора 100 В. Площадь каждой пластины 200 см2, расстояние между пластинами 0,5 мм, пространство между ними заполнено парафином (ε = 2). Определить силу притяжения пластин друг к другу и энергию поля конденсатора.

356. Плоский конденсатор заполнен диэлектрикоми на егопластины подана некоторая разность потенциалов. Его энергия при этом равна 2·10-5 Дж. После того как конденсатор отключили от источника напряжения, диэлектрик вынули из конденсатора. Работа, которую надо было совершить против сил электрического поля, чтобы вынуть диэлектрик, равна 7·10-5 Дж. Найти диэлектрическую проницаемость диэлектрика.

357. Плоский воздушный конденсатор с площадью пластин 100 см2 и расстоянием, между ними 1мм заряжен до 100 В. Затем пластины раздвигаются до расстояния 25 мм. Найти энергию конденсатора до и после раздвижения пластин, если источник напряжения перед раздвижением: 1) не отключается; 2) отключается.

358. Пять параллельно соединенных одинаковых конденсаторов емкостью по 0,1 мкФ заряжаются до общей разности потенциалов U = 30 кВ. Определить среднюю мощность разряда, если батарея разряжается за τ = 1,5·10-6 с. Остаточное напряжение равно 0,5 кВ.

359. Плоский воздушный конденсатор с площадью пластины S = 400 см2 подключен к источнику тока, э.д.с. которого равна 200 В. определить работу внешних сил по раздвижению пластин от расстояния d1 = 2 см до d2 = 4 см. Пластины в процессе раздвижения остаются подключенными к источнику.

360. Э.д.с. батареи 12 В, сила тока короткого замыкания 5 А. Какую наибольшую мощность можно получить во внешней цепи, соединенной с такой батареей?

361. Э.д.с. батареи ε = 80 В, внутреннее сопротивление r1 = 5 Ом. Внешняя цепь потребляет мощность Р = 100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внешняя цепь, и ее сопротивление R.

362. Обмотка катушки из медной проволоки при t1 = 14 ºС имеет сопротивление R1 = 10 Ом. После пропускания тока сопротивление обмотки стало равным R2 = 12,2 Ом. До какой температуры t2 нагрелась обмотка? Температурный коэффициент сопротивления меди α = 4,15·10-3 К-1.

363. В сеть с напряжением U = 100 В подключили катушку с сопротивлением R1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U = 80 В. Когда катушку заменили другой, вольтметр показал U2 = 60 В. Определить сопротивление R2 другой катушки.

364. Э.д.с. батареи ε = 24 В, внутреннее сопротивление r = 2,4 Ом. Определить максимальную мощность Рmax, которая может выделяться во внешней цепи.

365. При внешнем сопротивлении R1 = 8 Ом сила тока в цепи I1 = 0,8 А, при сопротивлении R 2 = 15 Ом сила тока I2 = 0,5 А. Определить силу тока Iкз короткого замыкания источника э.д.с.

366. Элемент, имеющий э.д.с. ε = 1,1 В и внутреннее сопротивление r = 1 Ом, замкнут на внешнее сопротивление R = 9 Ом. Найти ток I в цепи, падение потенциала U во внешней цепи и падение потенциала Ur внутри элемента. С каким к.п.д. η работает элемент?

367. Пять последовательно соединенных источников с э.д.с. ε = 1,2 В и внутренним сопротивлением 0,2 Ом каждый замкнуты на внешнее сопротивление R. Какой величины должно быть R, чтобы во внешней цепи выделялась максимальная мощность?

368. Сопротивление гальванометра R Г = 720 Ом, шкала его рассчитана на 300 мкА. Как и какое добавочное сопротивление нужно подключить, чтобы можно было систему включать в цепь с напряжением 300 В?

369. Сопротивление гальванометра R Г = 680 Ом. Какое сопротивление (шунт) нужно подключить к нему, чтобы можно было измерить ток силой 2,5 А? Шкала гальванометра рассчитана на 300 мкА.

370. Сила тока в проводнике равномерно убывает от 20 А до 6 А в течение 6 с. Какой заряд проходит через поперечное течение проводника за последние четыре секунды?

371. Определить напряженность электрического поля в алюминиевом проводнике объемом 10 см3, если при прохождении по нему постоянного тока за время 5 мин выделилось количество теплоты 2,3 кДж. Удельное сопротивление алюминия ρ = 26 нОм×м.

372. Сила тока в проводнике равномерно нарастает от I0 = 0 до I = 5 А в течение времени 10 с. Определить заряд, прошедший по проводнику.

373. Определить количество теплоты Q, выделившееся за время t = 10 с в проводнике сопротивлением R = 10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I1 = 10 А до I2 = 0.

374. За время t = 8 с при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, прошедший в проводнике, если сила тока в начальный момент времени равна нулю.

375. За время t = 10 с при равномерно возрастающей силе тока от нуля до некоторого максимального значения в проводнике выделилось количество теплоты Q = 40 кДж. Определить среднюю силу тока <I> в проводнике, если его сопротивление R = 26 Ом.

376. Плотность электрического тока в медном проводе равна 10 А/см2. Определить объемную плотность тепловой мощности тока, если удельное сопротивление меди ρ = 17 нОм×м.

377. В проводнике за время t = 10 с при равномерном возрастании силы тока от I1 = 1 А до I2 = 2 А выделилось количество теплоты Q = 5 кДж. Найти сопротивление R проводника.

378. Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50 с равномерно нарастает от I1 = 5 А до I 2 = 10 А. Определить количество теплоты Q, выделившееся за это время в проводнике.

379. За время t = 20 с при силе тока, равномерно возрастающей от нуля до некоторого максимума, в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Определить скорость нарастания силы тока.

380. В схеме на рис. ε1 = 2 В, ε2 = 4 В, R 1=0,5 Ом и падение потенциала на сопротивлении R 2 (ток через R2 направлен сверху вниз) равно 1 В. Найти показание амперметра. Внутренним сопротивлением элементов и амперметра пренебречь.

381. В схеме на рис. справа ε1 = 30 В, ε2 = 5 В, R2 = 10 Ом, R3 = 20 Ом. Через амперметр идет ток в 1 А, направленный от R3 к R1. Найти сопротивление R1. Сопротивлением батареи и амперметра пренебречь.

382. В схеме на рис. ε1 = ε2 = 100 В, R1 = 20 Ом, R2 = 10 Ом, R3 = 40 Ом, R4 = 30 Ом. Найти показание амперметра. Сопро­тив­ле­нием батарей и ампер­метра пренебречь.

383. В схеме на рис. ε12, R2 = 2R 1. Во сколько раз ток, текущий через вольтметр, больше тока, текущего через R2? Сопротивлением генераторов пренебречь.

384. В схеме на рис. ε1 = ε2 = 110 В, R1 = 200 Ом, сопротивление вольтметра 1000 Ом. Найти показание вольтметра. Сопротивлением батареи пренебречь. R2 = 100 Ом.

385. Какую силу тока показывает миллиамперметр мА в схеме на рис., если ε1 = 2 В, ε2 = 1 В, R1 = 103 Oм, R2 = 500 Ом, R3 = 200 Ом и сопротивление амперметра равно RА = 200 Ом? Внутренним сопротивлением элементов пренебречь.

 

386. Два элемента с одина­ковы­ми э.д.с. ε1 = ε2 = 2 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 2 Ом замкнуты на внешнее сопротивление R (см. рис.). Через элемент с э.д.с. ε1 течет ток I1 = 1 А. Найти сопротивление R и ток I2, текущий через элемент с э.д.с. ε2. Какой ток I течет через сопротивление R?

387. К двум батареям, соединенным параллельно, подключили электролампу, сопротивление которой 0,5 Ом, э.д.с. батареи ε1 = 12 В, ε2-= 10 В и их внутреннее сопротивление r1 = r2 = 1 Ом. Найти ток, протекающий через лампу.

388. В схеме на рис. ε1 = 2,1 В, ε2 = 1,9 В, R1 = 10 Ом, R2 = 10 Ом и R3 = 45 Ом. Найти силу тока во всех участках цепи. Внутренним сопротивлением элементов пренебречь.

 

389. В схеме на рис. ε1 = 2 В, ε2= 4 В, ε3 = 6 В, R1 = 4 Ом, R2 = 6 Ом и R3 = 8 Ом. Найти силу тока во всех участках цепи. Сопротивлением элементов пренебречь.

 

4. ОСНОВНЫЕ ФОРМУЛЫ

 

Электромагнетизм

1. Связь магнитной индукции  с напряженностью магнитного поля.

,

где m - магнитная проницаемость однородной среды; m0 - магнитная постоянная. В вакууме m = 1, и магнитная индукция в вакууме

.

2.  Закон Био-Савара-Лапласа

 или

где  - магнитная индукция поля, создаваемого элементом провода длиной  c током I;  - радиус-вектор, направленный от элемента проводника к точке, в которой определяется магнитная индукция; a - угол между радиус-вектором и направлением тока в элементе провода.

3. Принцип суперпозиции магнитных полей

 или

для , созданных элементом тока .

     Направление вектора магнитной индукции  поля, создаваемого прямым током, определяется по правилу буравчика (правого винта). Для этого проводим магнитную силовую линию (штриховая линия на рис.) и по касательной к ней в интересующей нас точке проводим вектор . Вектор магнитной индукции  в точке А направлен перпендикулярно плоскости чертежа от нас.

Рис. 1

4. Магнитная индукция в центре кругового тока

где R - радиус кругового витка.

     Магнитная индукция на оси кругового тока

где h - расстояние от центра витка до точки, в которой определяется магнитная индукция.

     Магнитная индукция поля, создаваемого отрезком провода с током (вывод этой формулы в примере № 1):

     Магнитная индукция поля, создаваемого бесконечно длинным прямолинейным проводником с током:

где r0 - расстояние от оси провода до точки, в которой определяется магнитная индукция.

     Магнитная индукция поля бесконечно длинного соленоида

B = mm0nI,

где n - отношение числа витков соленоида N к его длине l.

     5. Сила, действующая на элемент провода с током в магнитном поле (закон Ампера):

,

где  - вектор, равный по модулю длине участка провода и совпадающий по направлению с током; a - угол между направлением тока в проводе и вектором магнитной индукции .

Для однородного магнитного поля и прямого отрезка провода получим:

.

6. Магнитный момент плоского контура с током

,

где  - единичный вектор нормали (положительной) к плоскости контура; I - сила тока, протекающего по контуру; S - площадь контура.

7. Механический вращающий момент, действующий на контур с током, помещенный в однородное магнитное поле:

 или ,

где a - угол между векторами

     8. Сила Лоренца

 или ,

где  - скорость заряженной частицы; a - угол между векторами  и .

Если частица находится одновременно в электрическом и магнитном полях, то на нее действует сила

.

9. Магнитный поток (через поверхность S):

а) в случае однородного магнитного поля и плоской поверхности

Ф = BScosa или Ф = BnS ,

где S - площадь контура; a - угол между нормалью к плоскости контура и вектором магнитной индукции;

     б) в случае неоднородного поля и произвольной поверхности

(интегрирование ведется по всей поверхности).

Потокосцепление (полный поток) – Y = NФ.

Эта формула верна для соленоида и тороида с равномерной намоткой плотно прилегающих друг к другу N витков.

10. Работа по перемещению замкнутого контура с током в магнитном поле   dA= I dФ или А= I × DФ.

11. Основной закон электромагнитной индукции (закон Фарадея-Максвелла):                 .

     Разность потенциалов на концах проводника, движущегося со скоростью  в магнитном поле,    U = Blv ·sina,

где l - длина провода; a - угол между векторами  и .

Заряд, протекающий по замкнутому контуру при изменении магнитного потока, пронизывающего этот контур:  или , где R - сопротивление контура.

     12. Индуктивность контура L = Ф/I .

Индуктивность соленоида L = mm0n2lS,

где n - отношение числа витков соленоида к его длине; l – длина соленоида, S – площадь его поперечного сечения.

13. Э.д.с. самоиндукции

     14. Мгновенное значение силы тока в цепи, обладающей сопротивлением R и индуктивностью L:

     а)  - при замыкании цепи, где e -э.д.с. источника тока; t - время, прошедшее после замыкания цепи;

     б)  - при размыкании цепи, где I0 - сила тока в цепи при t = 0; t - время, прошедшее с момента размыкания цепи.

     15. Энергия магнитного поля соленоида W =

Объемная плотность энергии магнитного поля (отношение энергии поля к его объему)

w = BH/2 = B2/(2mm0) = mm0 H2/2.

 

4.1. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

№ 1. По отрезку прямого провода длиной l = 80 см течет ток I = 50 А. Определить магнитную индукцию поля, создаваемого этим током в точке А, равноудаленной от концов отрезка провода и находящейся на расстоянии r0 = 30 см от его середины.

     Р е ш е н и е.

 Для решения задачи воспользуемся законом Био-Савара-Лапласа

            (1)

и принципом суперпозиции магнитных полей:

,                           (2)

где символ l означает, что интегрирование распространяется на всю длину провода,  магнитная индукция, создаваемая элементом тока  в точке, определяемой радиус-вектором ; m0 - магнитная постоянная; m - магнитная проницаемость среды, в которой находится провод (в нашем случае m = 1). Векторы  от различных элементов тока сонаправлены, поэтому выражения (1), (2) можно переписать в скалярной форме:

, ,

где a есть угол между вектором  и радиус-вектором . Таким образом,

.                                        (3)

Выразим длину элемента провода dl через угол da: dl = rda/sina.

     Запишем выражение  в виде  Переменная r также зависит от a (r = r0/sina), следовательно: . Таким образом, выражение (2) можно переписать в виде , где a1 и a2 - пределы интегрирования.

Выполним интегрирование:

                                (4)

При симметричном расположении точки А относительно отрезка провода cos a2 = -cos a1. С учетом этого формула (4) примет вид

.                                     (5)

     Из рис.2 следует

Подставив выражение cosa1 в формулу (5), получим

.                                    (6)

     Произведя вычисления по формуле (6), получим В = 26,7 мкТл.

№ 2. Два бесконечно длинных провода D  и С, по которым текут в одном направлении токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию  поля, создаваемого проводниками в точке А. (см. рис.), отстоящей от оси одного проводника на расстояние r1 = 5 см, от другого на r2 = 12 см.

      

Р е ш е н и е.

Для нахождения магнитной индукции  в точке А воспользуемся принципом суперпозиции магнитных полей:  = 1+ 2.

Модуль вектора  может быть найден из теоремы косинусов

               

                Рис. 3

,    (1)

где a - угол между векторами 1 и 2.

Магнитные индукции 1 и 2 выражаются соответственно через силу тока I и расстояния r1 и r2 от проводов до точки А

В1 = m0I/(2pr1); B2 = m0I/(2pr2).

     Подставляя выражения В1 и В2 в формулу (1), получаем

.                               (2)

     Вычислим cosa по теореме косинусов (Ða = ÐDAC как углы с соответственно перпендикулярными сторонами), d 2 = r12 + r22 - 2r1r 2cosa,

где d - расстояние между проводами. Отсюда

    Подставим в формулу (2) числовые значения физических величин и произведем вычисления:

 = 308 мкТл.

 

№ 3.  По тонкому проводящему кольцу радиусом R = 10 см течет ток I = 80 А. Найти магнитную индукцию  в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см.

     Р е ш е н и е.

 Для решения задачи воспользуемся законом Био-Савара-Лапласа:

,

где d  - магнитная индукция поля, создаваемого элементом тока I в точке, определяемой радиус-вектором .

     Выделим на кольце элемент и от него в точку А проведем радиус-вектор  (рис. 4). Вектор d  направим в соответствии с правилом буравчика.

     Согласно принципу суперпозиции магнитных полей, магнитная индукция  в точке А определяется интегрированием: , где интегрирование ведется по всем элементам dl кольца.

Разложим вектор d  на две составляющие: перпендикулярную плоскости

кольца d ^ и параллельную d ||, т.е. .Тогда ,

     Рис. 4

 из соображений симметрии, а векторы от различных элементов dl сонаправлены, следовательно , где dB^ = dBcosb и dB =  (поскольку  перпендикулярен , то sina = 1). Таким образом, , где cosb = R/r (см. рис 4). Окончательно получим: .

     Выразим все величины в единицах СИ и произведем вычисления:

Вектор  направлен по оси кольца в соответствии с правилом буравчика.

 

     № 4. Длинный провод с током I = 50 А изогнут под углом a = (2/3)p.. Определить магнитную индукцию  в точке А (см. рис. 5). Расстояние d = 5 см.

         

 

Рис. 5

Рис. 5

Р е ш е н и е.

Изогнутый провод можно рассматривать как два длинных провода, концы которых соединены в точке О (Рис. 5) В соответствии с принципом суперпозиции магнитных полей магнитная индукция  в точке А будет равна геометрической сумме индукций 1 и 2 магнитных полей, создаваемых отрезками длинных проводов 1 и 2, т.е.  = 1 + 2.

Магнитная индукция 2 равна нулю. Это следует из закона Био-Савара-Лапласа, согласно которому в точках, лежащих на оси провода, d = 0, т.к. [d ]= 0.

Магнитную индукцию B1 найдем, воспользовавшись соотношением (4), из примера 1:  где r0 - кратчайшее расстояние от провода 1 до точки А (см. рис. 5)

В нашем случае a1®0 (провод длинный), a2 =a = 2p/3. Расстояние r0 = d sin(p - a). Тогда магнитная индукция .

Так как B = B1 (B2 = 0), то .

Вектор  сонаправлен с вектором 1 и направление его определяется правилом правого винта. На рис. 5 это направление отмечено крестиком в кружочке (перпендикулярно плоскости чертежа, от нас).

     Произведем вычисления:

 

     № 5. Два бесконечно длинных провода скрещены под прямым углом (см. рис. 6) По проводам текут токи I1 = 80 A и I2 = 60 A. Расстояние d между проводами равно 10 см. Определить магнитную индукцию  в точке А, одинаково удаленной от обоих проводов.

Р е ш е н и е.

В соответствии с принципом суперпозиции магнитных полей индукция  магнитного поля, создаваемого токами I1 и I2, определяется

Рис. 6

выражением  = 1 + 2, где 1 - индукция магнитного поля, созданного в точке А током I1; 2 - индукция магнитного поля, созданного в точке А током I2 (направление отмечено точкой в кружочке - перпендикулярно плоскости чертежа к нам).

     Векторы 1 и 2, взаимно перпендикулярны, их направления находятся по правилу буравчика, и изображены в двух проекциях на рисунке. Модуль  можно определить по теореме Пифагора (см. рис. 6)

,

В1 и В2 определяются по формулам расчета магнитной индукции для бесконечно длинного прямолинейного провода с током:

и .

В нашем случае r0 = d/2. Тогда .

Произведем вычисления: .

 

№ 6. Бесконечно длинный провод изогнут так, как изображено на рис.7. Радиус R дуги окружности равен 10 см. Определить индукцию магнитного поля, создаваемого в точке О током I = 80 А, текущим по этому проводу.

Р е ш е н и е.

Магнитную индукцию  в точке О найдем, используя принцип суперпозиции магнитных полей: .

 

Рис. 7

В нашем случае провод можно разбить на три части (см. рис 7): два прямолинейных провода (1 и 3) , одним концом уходящие в бесконечность, и дугу полуокружности (2) радиуса R . Тогда , где ,  и   - индукции магнитных полей в точке О, создаваемые током первого, второго и третьего участков провода.

Так как точка О лежит на оси провода 1, то  = 0 и тогда  =  + . Учитывая, что векторы  и   направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, геометрическое суммирование можно заменить алгебраическим: В = В2 + В3.

     Магнитную индукцию В2 найдем, воспользовавшись выражением для магнитной индукции в центре кругового тока: .

В нашем случае магнитное поле в точке О создается лишь половиной кругового тока, поэтому .

     Магнитную индукцию В3 найдем, применив соотношение (4), пример 1: .

В нашем случае r0 =R, a1 = p/2 (cos a1 = 0), a2 ®p (cos a2 = -1). Тогда .

Используя найденные выражения, получим В = В2 + В3 =  + ,

ли .

     Произведем вычисления:

 

     № 7. По двум параллельным прямым проводам длиной l = 2 м каждый, находящихся на расстоянии d = 20 см друг от друга, текут одинаковые токи I = 1 кА. Вычислить силу взаимодействия токов.

     Р е ш е н и е.

Взаимодействие двух проводов, по которым текут токи, осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой провод.

     Предположим, что оба тока (обозначим их I1 и I2) текут в одном направлении. Ток I1 создает в месте расположения второго провода (с током I2) магнитное поле, направление вектора магнитной индукции  определяется по правилу буравчика. Модуль магнитной индукции В1 задается соотношением

.                                           (1)

     Согласно закону Ампера, на каждый элемент  второго провода действует в магнитном поле сила . Так как вектор перпендикулярен вектору , то  и тогда dF = I2B1dl .Подставив в это выражение значение В1, получим .

     Силу F взаимодействия токов найдем интегрированием:

.

Учитывая, что I1= I2 = I, получим

.

     Произведем вычисления:

              Рис. 8

 

Сила  сонаправлена с силой d , а направление d  определяется правилом левой руки.

 

№ 8. Протон, прошедший ускоряющую разность потенциалов U = 600 В, влетел в однородное магнитное поле с индукцией В = 0,3 Тл и начал двигаться по окружности. Вычислить радиус R окружности.

Р е ш е н и е.

Движение заряженной частицы в одно­родном магнитном поле будет происходить по окружности только в том случае, если частица влетит в магнитное поле перпендикулярно линиям индукции: . Так как сила Лоренца перпендикулярна вектору , то она сообщает        Рис. 9

частице (протону) нормальное ускорение n .

     Согласно второму закону Ньютона,

                ,                                               (1)

      

где m - масса протона. На рис. 9 совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора скорости . Силу Лоренца направим перпендикулярно вектору  к центру окружности (векторы n и  сонаправлены.). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).

     Перепишем выражение (1) в скалярной форме (в проекции на радиус):

Fл = man .                                             (2)

В скалярной форме Fл = qvBsin a. В нашем случае  и sin a = 1, тогда Fл = qvB . Так как нормальное ускорение an = v2/R, то выражение (2) перепишем следующим образом: qvB = m v2/R. Отсюда выразим радиус окружности:

R = mv/( qB ).                                            (3)

Скорость протона найдем, воспользовавшись связью между работой сил электрического поля и изменением кинетической энергии протона, т.е. А = DW , или q(j1 - j2) = W2 - W1, где ( j 1 - j 2 ) = U- ускоряющая разность потенциалов (или ускоряющее напряжение); W1 и W2 - начальная и конечная кинетические энергии протона.

     Пренебрегая начальной кинетической энергией протона W1 » 0, и, учитывая, что Wк = mv2/2, получим qU = mv2/2.

Найдем из этого выражения скорость и подставим ее в формулу (3), в результате получим

                                          (4)

Произведем вычисления:

 

     № 9. Электрон, влетев в однородное магнитное поле(В = 0,2 Тл), стал двигаться по окружности радиуса R = 5 см. Определить магнитный момент рm эквивалентного кругового тока.

Р е ш е н и е.

Электрон  начинает двигаться по окружности, если он влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции.

Движение электрона по окружности эквивалентно току, который в данном случае определяется выражением:  где е - заряд электрона; Т - период его обращения.

     Период обращения можно найти через скорость электрона и путь, проходимый электроном за период Т = (2p R)/ v. Тогда

                                              (1)

     По определению, магнитный момент контура с током выражается соотношением

Pm = IэквS,                                           (2)

где S - площадь, ограниченная окружностью, описываемой электроном S = p R2. Учитывая (1), (2) и (3), получим Рm = или

Известно, что R = mv /(е B) (см. пример 8). Тогда для скорости v электрона находим . Подставив это выражение в (4) для магнитного момента Pm электрона получим

     Произведем вычисления:

 

     № 10. Электрон движется в однородном магнитном поле по винтовой линии, радиус R которой равен 1 см и шаг h = 6 см. Определить период Т обращения электрона и его скорость v.

Р е ш е н и е.

Электрон будет двигаться по винтовой линии, если он влетает в однородное магнитное поле под некоторым углом (a ¹ p/2) к линиям магнитной индукции. Разложим, как это показано на рис. скорость  электрона на две составляющие: параллельную

        Рис. 10          вектору индукции  и перпендикулярную ему ( ). Скорость   в магнитном поле не изменяется и обеспечивает перемещение электрона вдоль силовых линий. Скорость в результате действия силы Лоренца будет изменяться только по направлению  (в отсутствие параллельной составляющей скорости движение электрона происходило бы по окружности в плоскости, перпендикулярной магнитным силовым линиям). Таким образом, электрон будет участвовать одновременно в двух движениях: равномерном со скоростью  и равномерном движении по окружности со скоростью .

Период обращения электрона связан с перпендикулярной составляющей скорости соотношением

.                                       (1)

Найдем отношение R/v^. Сила Лоренца сообщает электрону нормальное ускорение an = v2/R. Согласно второму закону Ньютона Fл = man  или

                                            (2)

где v^ = v · sin a. Получим соотношение R/ v^ = m/eB и подставим его в формулу (1);

                                               (3)

     Произведем вычисления:

     Модуль скорости v определяем через v|| и v^: .

Из формулы (2) выразим перпендикулярную составляющую скорости:

Параллельную составляющую скорости v|| найдем из следующих соображений. За время, равное периоду обращения Т, электрон пройдет вдоль силовой линии расстояние, равное шагу винтовой линии, т.е. h = Tv||, откуда v|| = h/T . Подставив вместо Т правую часть выражения (3), получим

     Таким образом, модуль скорости электрона

     Произведем вычисления:

 

     № 11. Альфа-частица прошла ускоряющую разность потенциалов U = 104 В и влетела в скрещенные под прямым углом электрическое (Е = 10 кВ/м) и магнитное (В = 0,1 Тл) поля. Найти отношение заряда q a - частицы к ее массе m, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

     Р е ш е н и е.

Для того, чтобы найти отношение заряда q a - частицы к ее массе m, воспользуемся связью между работой сил электрического поля и изменением кинетической энергии частицы: qU = mv 2 /2, откуда

                                               (1)

     Скорость v альфа-частицы определим из следующих соображений. В скрещенных электрическом и магнитном полях на движущуюся частицу действуют две силы: сила Лоренца Fл = q  направленная перпендикулярно скорости  и вектору магнитной индукции ; кулоновская сила Fк = qE, сонаправленная с вектором напряженности  электростатического поля.

Направим вектор магнитной индукции вдоль оси О z, а вектор  вдоль оси Oy (см. рис.), скорость  - в положительном направлении оси Ох, тогда силы и  будут направлены так, как показано на рис. 11.

            Рис. 11                   Альфа-частица не будет испытывать отклонения, если геометрическая сумма сил Кулона и Лоренца будет равна нулю +  = 0. В проекции на ось Оу получим равенство ( при этом ^  и sina = 1): qE - qvB = 0, откуда

v = E/B                                                (2)

Подставив (2) в формулу (1), получим

     Произведем вычисления:

 

     № 12. Короткая катушка, содержащая N = 103 витков, равномерно вращается с частотой n = 10 с-1 относительно оси АС, лежащей в плоскости катушки и перпендикулярной линиям индукции однородного магнитного поля (В = 0,04 Тл). Определить мгновенное значение э.д.с. индукции e для тех моментов времени, когда плоскость катушки составляет угол a = 600 с линиями поля. Площадь S катушки равна 100 см2.

     Р е ш е н и е.

Мгновенное значение э.д.с. индукции ei определяется законом Фарадея

.                                         (1)

     Потокосцепление Y = N Ф, где N - число витков катушки, пронизываемых магнитным потоком Ф. Подставив это выражение в формулу (1), получим

.                                (2)

     При вращении катушки магнитный поток Ф, пронизывающий катушку, изменяется по закону Ф = BS ·cosj = BS ·cosw t, где В - магнитная индукция; S - площадь катушки; j - угол между  и ; w - угловая скорость вращения.

Подставив в формулу (2) выражение магнитного потока Ф  и, продифференцировав по

Рис. 12         времени, найдем мгновенное значение э.д.с. индук­ции: ei = ωNBS ·sinwt .

Учитывая, что угловая скорость вращения w катушки связана с частотой вращения n соотношением w = 2pn и что угол wt = p/2 - a (см. рис.), sin( p /2 - a ) = cosa, получим ei = 2pnNBS ·cos a.

Произведем вычисления: ei = 2×3,14×10×103×0,04×10-2×0,5 = 25,1 В.

№ 13. Квадратная проволочная рамка со стороной а = 5 см и сопротивлением R = 10 мОм находится в однородном магнитном поле (В = 40 мТл). Нормаль к плоскости рамки составляет угол a = 300 с линиями магнитной индукции. Определить заряд q, который пройдет по рамке, если магнитное поле выключить.

     Р е ш е н и е.

При выключении магнитного поля произойдет изменение магнитного потока. Вследствие этого в рамке возникнет э.д.с. индукции  Возникшая э.д.с. индукции вызовет в рамке индукционный ток, мгновенное значение которого можно определить по закону Ома для полной цепи Ii = ei/R , где R - сопротивление рамки. Тогда .

Так как мгновенное значение силы индукционного тока Ii = dq/dt, то предыдущее выражение можно переписать в виде ,

откуда

                                            (1)

Проинтегрировав выражение (1), найдем  или .

При выключенном поле Ф2 = 0, и последнее равенство перепишется в виде q = Ф1/R.                                               (2)

По определению магнитного потока Ф1 = BS ·cosa. В нашем случае площадь рамки S = а2. Тогда

Ф1 = Ва2cosa.                                          (3)

Подставив (3) в (2), получим

Произведем вычисления: .

 

№ 14. Плоский квадратный контур со стороной а = 10 см, по которому течет ток I = 100 А, свободно установился в однородном магнитном поле (В = 1 Тл). Определить работу А, совершаемую внешними силами при повороте контура относительно оси, проходящей через середину его противоположных сторон, на угол j = 900. При повороте контура сила тока в нем поддерживается неизменной.

     Р е ш е н и е.

На контур с током в магнитном поле действует момент силы (см. рис. 13)

M = pmB sinj,                                     (1)

где pm = IS = Ia2 - магнитный момент контура; В - индукция магнитного поля; j - угол между векторами  (направлен по нормали к контуру) и .

По условию задачи в начальном положении контур свободно установился в магнитном поле. При этом момент силы равен нулю (М = 0), а значит, угол j  = 0, т. е. векторы  и  сонаправлены. Если внешние силы выведут контур из положения равновесия, то возникший момент сил будет стремиться возвратить контур в исходное положение. Против этого момента и будет совершаться работа внешними силами. Так как момент сил переменный (зависит от угла поворота j),  то для подсчета работы применим

      Рис. 13      формулу работы в дифференциальной форме dA = Md j . Учитывая формулу (1), получаем dA = IBa2sinj dj.

Взяв интеграл от этого выражения, найдем работу при повороте на конечный угол .   Работа при повороте на угол j = 900

           (2)

     Произведем вычисления: А = 100× 1 (0,1)2 = 1 Дж.

Задачу можно решить другим способом.

     Работа внешних сил по перемещению контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, пронизывающего контур: А = - I D Ф = I (Ф1 - Ф2), где Ф1 - магнитный поток до перемещения, Ф2 - после. Ф1 = BScos00 = BS; Ф2 = BScos900 = 0. Следовательно, А = IBS = IBa2, что совпадает с формулой (2).

 

     № 15. На железный стержень длиной 50 см и сечением 2 см2 намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию магнитного поля в сердечнике соленоида, если сила тока в обмотке 0,5 А.

     Р е ш е н и е.

Энергия магнитного поля соленоида с индуктивностью L, по обмотке которого течет ток I, выражается формулой:

.                                       (1)

     Индуктивность соленоида зависит от числа витков на единицу длины n, от объема сердечника V и от магнитной проницаемости m сердечника, т.е. L = mm0 n2V , где m0 = магнитная постоянная.

     Магнитную проницаемость можно выразить следующей формулой:  где В - индукция магнитного поля, Н - напряженность.

     Подставив в формулу (1) выражение индуктивности L и магнитной проницаемости, получим .

Объем сердечника выразим через длину l и сечение S

     Напряженность магнитного поля найдем по формуле: Н = nI .

Подставив данные в единицах СИ, получим: Н = 2×103× 0,5 А/м = 103 А/м.

     Значению напряженности намагничивающего поля в 103 А/м в железе соответствует индукция В = 1,3 Тл (см. график зависимости между Н и В в приложении).

     Произведем вычисления:

№ 16. Обмотка соленоида состоит из одного слоя плотно прилегающих друг к другу витков медного провода. Диаметр провода 0,2 мм, диаметр соленоида – 5 см. По соленоиду течет ток 1 А. Определить, какое количество электричества протечет через обмотку, если концы ее замкнуть накоротко. Толщиной изоляции пренебречь.

     Р е ш е н и е.

Количество электричества dq, которое протекает по проводнику за время dt при силе тока I, определяется равенством: dq = Idt. Общее количество электричества, протекшее через проводник за время t будет: q = .

     Сила тока в данном случае убывает экспоненциально со временем и выражается формулой:  где I0 - сила тока до замыкания, R - сопротивление обмотки соленоида, L - индуктивность соленоида.

     Внося выражение для силы тока I  под знак интеграла и интегрируя от 0 до ¥ (при t ®¥, I ® 0), получим:

Подставим пределы интегрирования и определим количество электричества, протекающее через обмотку.

                                 (1)

     Найдем L и R. Индуктивность соленоида

.                       (2)

     Сопротивление обмотки соленоида

                               (3)

     Подставляя (2) и (3) в (1) и учитывая, что , получим:

.

 

4.2. ТРЕНИРОВОЧНЫЕ ЗАДАЧИ

 

1. Напряженность магнитного поля Н = 100 А/м. Вычислить магнитную индукцию В этого поля в вакууме. (Ответ. 126 мкТл).

2. По двум длинным проводам текут в одинаковом направлении токи I1 = 10 A и I2 = 15 A. Расстояние между проводами а = 10 см. Определить напряженность Н магнитного поля в точке, удаленной от первого провода на расстояние r1 = 8 см и от второго на r2 = 6 см . (Ответ. 44,5 А/м).

3. Решить задачу 2 при условии, что токи текут в противоположных направлениях. Точка удалена от первого провода на r1 = 15 см и от второго на r2 = 10 см. (Ответ. 17,4 А/м).

4. По тонкому проводнику, изогнутому в виде правильного шестиугольника со стороной а = 10 см, идет ток силой I = 20 А. Определить магнитную индукцию в центре шестиугольника. (Ответ. 138 мкТл).

5. Обмотка соленоида содержит два слоя плотно прилегающих друг к другу витков диаметром d = 0,2 мм. Определить магнитную индукцию В на оси соленоида, если по проводнику идет ток силой I = 0,5 А. (Ответ. 6,28 мТл).

6. В однородном магнитном поле с индукцией В = 0,01 Тл помещен прямой проводник длиной l = 20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток силой I = 5 А, а угол j между направлением тока и вектором магнитной индукции равен 30 0. (Ответ. 50 мН).

7. Рамка с током силой I = 5 А содержит N = 20 витков тонкого провода. Определить магнитный момент рm рамки с током, если ее площадь S = 10 см2. (Ответ. 0,1 Ам2).

8. По витку радиусом R = 10 см течет ток I = 50 А. Виток помещен в однородное магнитное поле с индукцией В = 0,2 Тл. Определить момент силы М, действующей на виток, если плоскость витка составляет угол j = 600 с линиями индукции. (Ответ. 0,157 Н м).

9. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость v протона, если магнитная индукция В = 1 Тл. (Ответ. 9,57×106 м/с).

10. Определить частоту n обращения электрона по круговой орбите в магнитном поле с индукцией В = 1 Тл. (Ответ. 2,8×1010с-1).

11. Электрон в однородном магнитном поле движется по винтовой линии радиусом R = 5 см и шагом h = 20 см. Определить скорость v электрона, если магнитная индукция В = 0,1 мТл. (Ответ. 1,04×106 м/с).

12. Кольцо радиусом R = 10 см находится в однородном магнитном поле с индукцией В = 0,138 Тл. Плоскость кольца составляет угол j= 300 с линиями индукции. Вычислить магнитный поток Ф, пронизывающий кольцо. (Ответ. 5 мВб).

13. По проводнику, согнутому в виде квадрата со стороной а = 10 см, течет ток силой I =20 А. Плоскость квадрата перпендикулярна силовым линиям магнитного поля. Определить работу А, которую необходимо совершить для того, чтобы удалить проводник за пределы поля. Магнитная индукция В = 0,1 Тл. Поле считать однородным. (Ответ. 0,02 Дж).

14. Проводник длиной l = 1 м движется со скоростью v = 5 м/с перпендикулярно линиям индукции магнитного поля. Определить магнитную индукцию В, если на концах проводника возникает разность потенциалов U = 0,02 В. (Ответ. 4 мТл).

15. Рамка площадью S = 50 см2, содержащая N = 100 витков, равномерно вращается в однородном магнитном поле (В = 40 мТл). Определить максимальную э.д.с. индукции emax, если ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции, а рамка вращается с частотой n = 96 об/мин. (Ответ. 2,01 В).

16. Кольцо из проволоки сопротивлением R = 1 мОм находится в однородном магнитном поле (В = 0,4 Тл). Плоскость кольца составляет угол j = 900 с линиями индукции. Определить заряд q, который протечет по кольцу, если его выдернуть из поля. Площадь кольца S = 10 см2. (Ответ. 0,4 Кл).

17. Соленоид содержит N = 4000 витков провода, по которому течет ток силой I = 20 А. Определить магнитный поток Ф и потокосцепление y, если индуктивность L = 0,4 Гн. (Ответ. 2 мВб. 8 Вб).

18. На картонный каркас длиной l = 50 см и площадью сечения S = 4 см2 намотан в один слой провод диаметром d = 0,2 мм так, что витки плотно прилегают друг к другу (толщиной изоляции пренебречь). Определить индуктивность L получившегося соленоида. (Ответ. 6,28 мГн).

19. Определить силу тока в цепи через время t = 0,01 с после ее размыкания. Сопротивление цепи r = 20 Ом и индуктивность L = 0,1 Гн. Сила тока до размыкания цепи I0 = 50 А. (Ответ. 6,75 А).

20. По обмотке соленоида индуктивностью L = 0,2 Гн течет ток силой I = 10 А. Определить энергию W магнитного поля соленоида. (Ответ. 10 Дж).

 

4.3. ПРОВЕРОЧНЫЙ ТЕСТ

 

1. Указать все случаи, когда напряженность магнитного поля в точке А направлена за плоскость рисунка (I1 = I2).

1.                       2.                       3.                  4.

 

2. Поле создано двумя длинными параллельными проводами с то­ками I1 = I2 = I. Через точку А пролетает электрон. Как направлена сила, действующая на электрон?

Варианты ответа:

 

1) влево, 2) вправо, 3) к нам, 4) от нас

 

3. По контуру АВСА идет ток I = 12 А. Определить магнитную индукцию в точке А, если радиус дуги АВ = АС = 10 см, а угол a = 600.

Варианты ответа: 1) 13 мкТл; 2) 6,3 мкТл; 3) 19 мкТл;                   4) 25 мкТл; 5) 36 мкТл.

 

4. Предположим, что по длинному прямому проводу, лежащему недалеко от Вас в плоскости листа, течет ток в направлении слева направо. Между Вами и проводом в том же направлении движется электрон. Указать верную комбинацию направлений вектора магнитной индукции в месте нахождения электрона и силы, действующей на этот электрон.

       Вектор магнитной индукции:             Сила:

1) вниз от плоскости листа              от провода

2) вверх от плоскости листа           к проводу

3) вверх от плоскости листа            от провода

4) вниз от плоскости листа                       к проводу

5) вверх от плоскости листа            вдоль провода

 

5. Две заряженные частицы, имеющие одинаковые скорости, попадают в однородное магнитное поле так, что . Направления движения частиц вдоль траекторий (окружности одинакового радиуса) противоположны.

На какие вопросы Вы ответите «да»?

1) Совпадают ли удельные заряды частиц по величине?

2) Совпадают ли периоды их вращения?

3) Является ли частица, движущаяся по траектории I, отрицательной, а по траектории II - положительной?

4) Является ли частица, движущаяся по траектории I, положительной, а по траектории II - отрицательной?

         

6. В магнитном поле, индукция которого 0,5 Тл, вращается стержень длиной 1 м. Ось вращения проходит через конец стержня перпендикулярно стержню и параллельно магнитному полю. Каково число силовых линий индукции, пересекаемых стержнем за один оборот (через площадь 1 м2 перпендикулярно полю проводят число силовых линий, равное В)?

Варианты ответа:

1) 0; 2) 0,05; 3) 0,32; 4) 50; 5) 64.

 

7. Виток, по которому течет ток I = 20 A, свободно установился в однородном магнитном поле с индукцией В = 0,016 Тл. Диаметр витка d = 10 см. Какую работу нужно совершить, чтобы перенести виток за пределы поля?

Варианты ответа:

1) 25×10-4 Дж; 2) 50×10-2 Дж; 3) 25×10-2 Дж; 4) 50×10-4 Дж; 5) 12×10-4 Дж.

 

8. Рамка с током расположена перпендикулярно линиям магнитной индукции. Рамку повернули относительно оси ОО' сначала на 600, а затем, еще на 300 по часовой стрелке. Каково отношение работы А1 при первом повороте к работе А2 при втором повороте?

Варианты ответа:

1) 1; 2) ; 3) ; 4) ; 5) .

 

9. Потокосцепление катушки Y изменяется со временем, как показано на рис. Определить э.д.с., возникшую в катушке при изменении Y по закону, соответствующему участкам 1 и 2 .

 

Варианты ответа:

1) e 1 = -1 В, e2 = 0,33 В; 2) e 1 = 1 В, e2 = -0,33 В;

3) e 1 = -2 В, e2 = 1 В; 4) e 1 = 2 В, e2 = -1 В.

         

 

4.4. КОНТРОЛЬНАЯ РАБОТА № 4

 

Номера задач

0 1 2 3 4 5 6 7 8 9 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

 

400. Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг к другу и находятся в одной плоскости (см. рис.) Найти напряженность магнитного поля в точках М1 и М2, если I1 = 2 A и I2 = 3 A. Расстояние АМ1 = АМ2 = 1 см, СМ1 = ВМ2 = 2 см.

401. Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг другу и находятся во взаимно перпендикулярных плоскостях. Найти напряженность магнитного поля в точках М1 и М2, если I1 = 2 A, I2 = 3 A; AM1 = AM2 = 1 см, AB = 2 см.

     402. Два прямолинейных длинных проводника расположены параллельно на расстоянии 10 см друг от друга. По проводникам текут токи I1 = I2 = 5 A в противоположных направлениях. Найти величину и направление напряженности магнитного поля в точке, находящейся на расстоянии 10 см от каждого проводника.

403. На рис изображено сечение двух прямолинейных бесконечно длинных проводников с током. Расстояние АВ между проводниками равно 10 см, I1 = 20 A, I2 = 30 A. Найти напряженность магнитного поля, вызванного токами I1 и I2 в точках М1, М2,  М3. Расстояния М1А = 2 см, АМ2 = 4 см, ВМ3 = 3 см.

 404. На рис. изображено сечение трех бесконечно длинных проводников с током. Расстояния АВ = ВС = 5 см; I1 = I2 = I и I3 = 2I. Найти точку на прямой, в которой напряженность магнитного поля, вызванного токами I1, I2, и I3, равна нулю.

405. Проволочное кольцо расположено в вертикальной плоскости. К двум точкам проволочного кольца подведены идущие радиально провода, соединенные с источником тока (см. рис.). Найти напряженность магнитного поля в центре кольца.

406. По двум бесконечно длинным прямолинейным параллельным проводникам, расстояние между которыми 15 см, в одном направлении текут токи 4 и 6 А. Определить расстояние от проводника с меньшим током до геометрического места точек, в котором напряженность магнитного поля равна нулю.

407. По прямому бесконечно длинному проводнику течет ток I1 = 3,14 А. Круговой виток расположен так, что плоскость витка параллельна прямому проводнику, а перпендикуляр, опущенный на него из центра витка, имеет длину d = 20 см. По витку проходит ток I2 = 3 А, радиус витка R = 30 cм. Найти напряженность магнитного поля в центре витка.

408. По прямому бесконечно длинному проводнику течет ток I1 = 3,14 А. Круговой виток расположен так, что плоскость витка параллельна прямому проводнику, а перпендикуляр, опущенный на него из центра вика, имеет длину d = 20 см. По витку проходит ток I2 = 3 А, радиус витка R = 30 cм. Найти напряженность магнитного поля в точке, делящей пополам перпендикуляр, опущенный из центра витка на прямолинейный проводник.

409. На рис. изображено сечение трех прямолинейных бесконечно длинных проводников с током. АВ = ВС = 5 см. I1 = I2 = I, I3 = 2I. Найти точку на прямой АС, в которой напряженность магнитного поля, вызванного токами I1, I2, и I3 , равна нулю.

410. По плоскому контуру из тонкого провода течет ток I = 100 А. Определить магнитную индукцию В поля, создаваемого этим током в центре окружности (см. рис.). Радиус R изогнутой части контура равен 20 см.

 

411. По бесконечно длинному проводу, изогнутому как показано на рис., течет ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см.

 

412. Бесконечно длинный провод с током I = 100 А изогнут так, как это показано на рис. Определить магнитную индукцию В в центре полуокружностей. Радиус дуги R = 10 см.

413. По плоскому контуру из тонкого провода течет ток I = 100 А. Определить магнитную индукцию В поля, создаваемого этим током в точке О (см. рис.). Радиус R изогнутой части контура равен 20 см.

414. По плоскому контуру из тонкого провода течет ток I = 100 А. Определить магнитную индукцию В поля, создаваемого этим током в точке О (см. рис.). Радиус R изогнутой части контура равен 20 см.

415. По плоскому контуру из тонкого провода течет ток I = 100 А. Определить магнитную индукцию В поля, создаваемого этим током в точке О (см. рис.). Радиус R изогнутой части контура равен 20 см.

416. Бесконечно длинный тонкий проводник с током I = 50 А имеет изгиб (плоскую петлю) радиусом R = 10 cм. Определить в точке О магнитную индукцию В поля, создаваемого этим током (см. рис.).

417. Бесконечно длинный тонкий проводник с током I = 50 А имеет изгиб (плоскую петлю) радиусом R = 10 cм. Определить в точке О магнитную индукцию В поля, создаваемого этим током (см. рис.).

418. Бесконечно длинный тонкий проводник с током I = 50 А имеет изгиб (плоскую петлю) радиусом R = 10 cм. Определить в точке О магнитную индукцию В поля, создаваемого этим током (см. рис.).

419. По бесконечно длинному проводу, изогнутому так, как это показано на рис., течет ток I = 200 А. Определить магнитную индукцию В поля в точке О. Радиус дуги R = 10 см.

420. По прямому горизонтально расположенному проводу проходит ток I1 = 5 А. Под ним находится второй, параллельный ему алюминиевый провод такой же длины, по которому пропускают ток I2 = 1 А. Расстояние между проводами d = 1 см. Какова должна быть площадь поперечного сечения второго провода, чтобы он находился в состоянии равновесия незакрепленным?

421. Между горизонтальными полюсами магнита на двух тонких проволочках подвешен горизонтально линейный проводник массой m = 10 г и длиной l = 20 см. Индукция однородного магнитного поля B = 0,25 Тл. На какой угол a от вертикали отклоняются проволочки, поддерживающие проводник, если по нему пропустить ток силой I = 2 А? Массами проволочек пренебречь.

422. По двум параллельным проводам длиной l = 3 м каждый текут одинаковые токи I = 500 А. Расстояние d между проводами равно 10 см. Определить силу взаимодействия проводов.

423. Два параллельных бесконечно длинных проводника с токами 10 А взаимодействуют с силой 1мН на 1 м их длины. На каком расстоянии находятся проводники?

424. По трем прямым параллельным проводам, находящимся на одинаковом расстоянии а = 10 см друг от друга, текут одинаковые токи по 100 А. В двух проводах направления токов совпадают. Вычислить силу, действующую на единицу длины каждого провода.

425. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. Результирующая сила, действующая на рамку со стороны магнитного поля прямолинейного проводника, равна 4·10-3 Н. Ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине. По рамке и проводу текут одинаковые токи I. Найти силу тока I.

426. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I = 200 А. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоянии, равном ее длине.

427. Проводник длиной l по которому идет ток I, лежит в плоскости, перпендикулярной магнитному полю, индукция которого В. Определить силу, действующую на этот проводник, если он имеет форму полукольца, и сравнить с силой, действующей на прямолинейный проводник длиной l, по которому течет ток I.

428. Контур из провода, согнутого в виде прямоугольника, по которому течет ток I1 = 3 А, расположен вблизи прямолинейного бесконечно длинного проводника, параллельного двум его меньшим сторонам. Прямолинейный проводник и контур расположены в одной плоскости. Контур имеет размеры b = 40 см, с = 20 см2. Расстояние от прямого провода до ближайшей стороны контура равно а = 5 см. По прямому проводу проходит ток I2 = 10 А. Определить силу, действующую со стороны магнитного поля прямого проводника на контур.

429. Тонкий провод длиной l = 20 см изогнут в виде полукольца и помещен в магнитное поле (В = 10 мТл) так, что плоскость полукольца перпендикулярна линиям магнитной индукции. По проводу пропустили ток I = 50 А. Определить силу F, действующую на провод. Подводящие провода направлены вдоль линий магнитной индукции.

430. В средней части соленоида, содержащего n = 8 витков/см, помещен круговой виток диаметром d = 4 см. Плоскость витка расположена под углом j = 600 к оси соленоида. Определить магнитный поток Ф, пронизывающий виток, если по обмотке соленоида течет ток I = 1 А.

431. На длинный картонный каркас диаметром d1 = 5 см уложена однослойная обмотка (виток к витку) из проволоки диаметром d2 = 0,2 мм. Определить магнитный поток Ф, создаваемый таким соленоидом при силе тока I = 0,5 А.

432. Квадратный контур со стороной а = 10 см, в котором течет ток I = 6 А, находится в магнитном поле (В = 0,8 Тл) под углом a = 500 к линиям индукции. Какую работу А нужно совершить, чтобы при неизменной силе тока в контуре изменить его форму на окружность?

433. Плоский контур с током I = 5 А свободно установился в однородном магнитном поле (В = 0,4 Тл). Площадь контура S = 200 см2. Поддерживая ток в контуре неизменным, его повернули относительно оси, лежащей в плоскости контура, на угол a = 400. Определить совершенную при этом работу А.

434. Виток, в котором поддерживается постоянная сила тока I = 60 А, свободно установился в однородном магнитном поле (В = 20 мТл). Диаметр витка d = 10 см. Какую работу А нужно совершить для того, чтобы повернуть виток относительно оси, совпадающей с диаметром, на угол a = p/3?

435. В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью S = 100 см2. Поддерживая в контуре постоянную силу тока I = 50 А, его переместили из поля в область пространства, где поле отсутствует. Определить магнитную индукцию В поля, если при перемещении контура была совершена работа А = 0,4 Дж.

436. Плоский контур с током I = 50 А расположен в однородном магнитном поле (В = 0,6 Тл) так, что нормаль к контуру перпендикулярна линиям магнитной индукции. Определить работу, совершаемую силами поля при медленном повороте контура около оси, лежащей в плоскости контура, на угол a = 300.

437. Определить магнитный поток Ф, пронизывающий соленоид, если его длина l = 50 см, число витков N = 100 и магнитный момент Pm = 0,4 А×м2.

438. Какая необходима мощность, чтобы проводник длиной l = 20 см перемещать со скоростью v = 5м/с в магнитном поле с индукцией B = 0,5 Тл, если по проводнику течет ток в I =10 А и проводник движется перпендикулярно силовым линиям магнитного поля?

439. Два прямолинейных длинных параллельных проводника находятся на расстоянии r1= 10 см друг от друга. По проводникам текут токи I1 = 20 А и I2 = 30 А одном направлении. Какую работу надо совершить (на единицу длины проводников), чтобы раздвинуть эти проводники до расстояния r2 = 20 см?

440. Электрон в атоме водорода движется вокруг ядра (протона) по окружности радиусом R = 53 пм. Определить магнитный момент Pm эквивалентного кругового тока.

441. По тонкому кольцу радиусом R = 10 cм равномерно распределен заряд с линейной плотностью t = 50 нКл/м. Кольцо вращается относительно оси, перпендикулярной плоскости кольца и проходящей через его центр, с частотой n = 10 с-1. Определить магнитный момент Pm, обусловленный вращением кольца.

442. Напряженность магнитного поля Н в центре кругового витка равна 500 А/м. Магнитный момент витка Pm = 6 А×м2. Вычислить силу тока I в витке и радиус R витка.

443. Проволочный виток радиусом r = 5 см находится в однородном магнитном поле напряженностью Н = 2 кА/м. Плоскость витка образует угол a = 600 с направлением поля. По витку течет ток силой I = 4 А. Найти вращающий момент М, действующий на виток.

444. Катушка, состоящая из N = 200 витков тонкой проволоки, намотанной на прямоугольный каркас длиной l = 3 см и шириной b = 2 см, подвешена на нити в магнитном поле с индукцией В = 0,1 Тл. По катушке течет ток I = 0,2 мкА. Найти вращающий момент М, действующий на катушку, если плоскость катушки составляет угол a = 600 с направлением магнитного поля.

435. Из проволоки длиной l = 40см сделаны квадратный и круговой контуры. Найти вращающие моменты сил М1 и М2, действующие на каждый контур, помещенный в однородное магнитное поле с индукцией В = 0,2 Тл. По контурам течет ток I = 4 А. Плоскость каждого контура составляет угол a = 600 с направлением поля.

446. Короткая катушка площадью поперечного сечения S = 150 см2, содержащая N = 200 витков провода, по которому течет ток I = 4 А, помещена в однородное магнитное поле напряженностью Н = 8 кА/м. Определить вращающий момент М, действующий на нее со стороны поля, если ось катушки составляет угол a = 600 с линиями поля.

447. Виток диаметром d = 20 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток I = 10 А. Какой вращающий момент M нужноприложить к витку, чтобы удержать его в начальном положении? Нз = 16 А/м.

448. Короткая катушка площадью поперечного сечения S = 250 см2, содержащая N = 500 витков провода, по которому течет ток I = 5 А, помещена в однородное магнитное поле напряженностью Н = 1000 А/м. Найти вращающий момент М, действующий на катушку, если ось катушки составляет угол j = 300 с линиями поля.

449. Вращающий момент, действующий на квадратную рамку, помещенную в однородное магнитное поле, М = 2,5·10-4 Н·м. Длина стороны рамки 2 см, сила тока, текущего по рамке, 5 А. Найти индукцию магнитного поля, если плоскость рамки составляет угол 60° с направлением вектора .

450. Альфа–частица прошла ускоряющую разность потенциалов U = 300 В и, попав в однородное магнитное поле, стала двигаться по винтовой линии радиусом R = 1 см и шагом h = 4 см. Определить магнитную индукцию В поля.

451. Два иона разных масс с одинаковыми зарядами влетели в однородное магнитное поле и стали двигаться по окружностям радиусами R1 = 3 см и R2 = 1,73 см. Определить отношение масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.

452. Протон и альфа–частица, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько раз радиус R1 кривизны траектории протона больше радиуса R2 кривизны траектории альфа–частицы?

453. Альфа–частица, пройдя ускоряющую разность потенциалов U, стала двигаться в однородном магнитном поле (В = 50 мТл) по винтовой линии с шагом h = 5см и радиусом R = 1 см. Определить ускоряющую разность потенциалов, которую прошла альфа–частица.

454. Ион с кинетической энергией Wr = 1 кэВ попал в однородное магнитное поле (В = 21 мТл) и стал двигаться по окружности. Определить магнитный момент Рm эквивалентного кругового тока.

455. В однородном магнитном поле с индукцией В = 2 Тл движется альфа–частица. Траектория ее движения представляет собой винтовую линию с радиусом R = 1 см и шагом h = 6 см. Определить кинетическую энергию альфа–частицы Т.

456. Протон влетел в однородное магнитное поле под углом a = 600 к направлению линий поля и движется по спирали, радиус которой R = 2,5 см. Индукция магнитного поля В = 0,05 Тл. Найти кинетическую энергию протона Т.

457. Электрон движется в однородном магнитном поле с индукцией В = 10 мТл по винтовой линии, радиус которой R =1,5 см и шаг h = 10 см. Определить период Т электрона и его скорость v .

458. Заряженная частица прошла ускоряющую разность потенциалов U = 100 В и, влетев в однородное магнитное поле (В = 0,1 Тл), стала двигаться по винтовой линии с шагом h = 6,5 см и радиусом R = 1 cм. Определить отношение заряда частицы к ее массе.

459. Электрон влетел в однородное магнитное поле (В = 200 мТл) перпендикулярно линиям магнитной индукции. Определить силу эквивалентного кругового тока Iэкв, создаваемого движением электрона в магнитном поле.

460. Плоский конденсатор, между пластинами которого создано электрическое поле напряженностью Е = 100 В/м, помещен в магнитное поле так, что силовые линии полей взаимно перпендикулярны. Какова должна быть индукция В магнитного поля, чтобы электрон с начальной энергией Т = 4 кэВ, влетевший в пространство между пластинами конденсатора перпендикулярно силовым линиям магнитного поля, не изменил направление скорости?

461. Магнитное (В = 2 мТл) и электрическое (Е = 1,6 кВ/м) поля сонаправлены. Перпендикулярно векторам  влетает электрон со скоростью v = 0,8 Мм/c. Определить ускорение a электрона.

462. Однородное магнитное (В = 2,5 мТл) и электрическое (Е = 10 кВ/м) поля скрещены под прямым углом. Электрон, скорость v которого равна 4 106 м/с, влетает в эти поля так, что силы, действующие на него со стороны магнитного и электрического полей, сонаправлены. Определить ускорение электрона.

463. Протон влетел в скрещенные под углом a = 1200 магнитное (В = 50 мТл) и электрическое (Е = 20 кВ/м) поля со скоростью v = 4×105 м/c. Определить ускорение a протона, если вектор его скорости перпендикулярен векторам .

464. Альфа–частица  влетела в скрещенные под прямым углом магнитное (В = 5 мТл) и электрическое (Е = 30 кВ/м) поля со скоростью v = 2·106 м/с. Определить ускорение альфа–частицы, если вектор ее скорости перпендикулярен векторам , причем силы, действующие со стороны этих полей, противонаправлены.

465. Ион, пройдя ускоряющую разность потенциалов U = 645 В, влетел в скрещенные под прямым углом однородные магнитное (В = 1,5 мТл) и электрическое (Е = 200 В/м) поля. Определить отношение заряда иона к его массе, если ион в этих полях движется прямолинейно.

466. Электрон, пройдя ускоряющую разность потенциалов U = 1,2 кВ, попал в скрещенные под прямым углом однородные магнитное и электрическое поля. Определить напряженность Е электрического поля, если магнитная индукция В поля равна 6 мТл. Электрон движется прямолинейно.

467. Альфа–частица, имеющая скорость v = 2 Мм/с, влетает под углом a = 300 к сонаправленным магнитному (В = 1 мТл) и электрическому (Е = 1 кВ/м) полям. Определить ускорение альфа–частицы.

468. Перпендикулярно однородному магнитному полю (В = 1 мТл) возбуждено однородное электрическое поле (Е = 1 кВ/м). Перпендикулярно обоим полям влетает aчастица со скоростью v = 1 Мм/с. Определить нормальное an итангенциальное at ускорения aчастицы в момент вхождения ее в поле.

469. Одновалентный ион лития массой m = 7 а.е.м. прошел ускоряющую разность потенциалов U = 300 В и влетел в скрещенные под прямым углом однородные магнитное и электрическое поля. Определить магнитную индукцию В поля, если траектория иона в скрещенных полях прямолинейна. Напряженность Е электрического поля равна 2 кВ/м.

470. В однородном магнитном поле, индукция которого равна 0,1 Тл, вращается катушка, состоящая из 200 витков. Ось вращения катушки перпендикулярна ее оси и направлению магнитного поля. Период обращения катушки равен 0, 2 с, площадь поперечного сечения катушки 4 см2. Найти максимальную э.д.с. индукции во вращающейся катушке.

471. На соленоид длиной 20 см и площадью поперечного сечения 30 см2 надет проволочный виток. Соленоид имеет 320 витков и по нему идет ток в 3 А. Какая средняя э.д.с индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение 0,001 с? Соленоид имеет железный сердечник. Зависимость В(Н) приведена в приложении.

472. Квадратная рамка из медной проволоки сечением 1 мм2 помещена в магнитное поле, индукция которого меняется по закону В = В0sin wt , где В0 = 0,01 Тл, w = 2p/Т и Т = 0,02 с. Площадь рамки 25 см2. Плоскость рамки перпендикулярна направлению магнитного поля. Найти зависимость от времени и наибольшее значение: 1) магнитного потока, пронизывающего рамку, 2) э.д.с. индукции, возникшей в рамке, 3) силы тока, текущего по рамке.

473. В магнитном поле, индукция которого 0,5 Тл, вращается стержень длиной 1 м с постоянной угловой скоростью 20 рад/с. Ось вращения проходит через конец стержня и параллельна силовым линиям магнитного поля. Найти э.д.с. индукции, возникшую на концах стержня.

474. Через катушку, индуктивность которой равна 0,021 Гн, течет ток, изменяющийся со временем по закону I = I0 sin wt, где I0 = 5 A, w = 2p/T и Т = 0,02 с. Найти зависимость от времени: 1) э.д.с. самоиндукции, возникающей в катушке, 2) энергии магнитного поля катушки.

475. Скорость самолета равна 960 км/час. Найти э.д.с. индукции, возникающую на концах крыльев самолета, если вертикальная составляющая напряженности магнитного поля Земли равна 25 А/м и размах крыльев - 12,5 м.

476. В магнитном поле, индукция которого равна 0,05 Тл, вращается стержень длиной 1 м. Ось вращения, проходящая через один из концов стержня, параллельна силовым линиям магнитного поля. Найти поток магнитной индукции, пересекаемый стержнем при каждом обороте.

477. Круговой проволочный виток площадью 100 см2 находится в однородном магнитном поле, индукция которого 1 Тл. Плоскость витка перпендикулярна направлению магнитного поля. Чему равно значение э.д.с. индукции, возникшей в витке при выключении поля в течение 0,01 с?

478. В однородном магнитном поле, индукция которого равна 0,1 Тл, равномерно вращается катушка, состоящая из 100 витков проволоки. Катушка делает 5 об/с. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Найти максимальную э.д.с. индукции во вращающейся катушке.

479. Горизонтальный стержень длиной 1 м вращается вокруг вертикальной оси, проходящей через один из его концов. Ось вращения параллельна силовым линиям магнитного поля, индукция которого равна 5 10-5 Тл. При каком числе оборотов в секунду разность потенциалов на концах этого стержня будет равна 1 мВ?

480. Катушка с железным сердечником имеет площадь поперечного сечения 20 см2 и число витков 500. Индуктивность катушки с сердечником 0,28 Гн при силе тока через обмотку 5 А. Найти магнитную проницаемость железного сердечника в этих условиях. Зависимость В(Н) приведена в приложении.

481. По соленоиду длиной 0,25 м, имеющему число витков 500, течет ток 1 А. Площадь поперечного сечения соленоида 15 см2. В соленоид вставлен железный сердечник. Найти энергию магнитного поля соленоида. Зависимость В(Н) приведена в приложении.

482. Площадь поперечного сечения соленоида с железным сердечником 10 см2. Найти: 1) магнитную проницаемость материала сердечника при условии, когда магнитный поток, пронизывающий площадь поперечного сечения соленоида, равен 1,4 10-3  Вб. 2) какой силе тока, текущего через соленоид, соответствует этот магнитный поток, если известно, что индуктивность соленоида равна 0,44 Гн? Длина соленоида 1 м. Зависимость В(Н) приведена в приложении.

483. Имеется соленоид с железным сердечником длиной 50 см, площадью поперечного сечения 10 см2 и числом витков 1000. Найти индуктивность этого соленоида, если по обмотке течет ток I = 0,1 А.

484. Замкнутый железный сердечник длиной 50 см имеет обмотку в 1000 витков. По обмотке течет ток силой 1 А. Какой ток надо пропустить через обмотку, чтобы при удалении сердечника индукция осталась прежней? Зависимость В(Н) приведена в приложении.

485. Катушка длиной 20 см и диаметром 3 см имеет 400 витков. По катушке идет ток силой 2 А. Найти: 1) индуктивность катушки, 2) поток магнитной индукции, пронизывающий площадь ее поперечного сечения. Зависимость В(Н) приведена в приложении.

 486. Имеется соленоид с железным сердечником длиной 50 см, площадью поперечного сечения 10 см2 и числом витков 1000. Найти индуктивность этого соленоида, если по обмотке соленоида течет ток I = 0,2 А. Зависимость В(Н) приведена в приложении.

487. Сколько ампер-витков потребуется для создания магнитного потока в 42 10-5 Вб в соленоиде с железным сердечником длиной 120 см и площадью поперечного сечения 3 см2? Зависимость В(Н) приведена в приложении.

488. В соленоид длиной 50 см вставлен сердечник из такого сорта железа, для которого зависимость В = f(H) неизвестна. Число витков на единицу длины соленоида равно 400, площадь поперечного сечения соленоида 10 см2. Найти: 1) магнитную проницаемость сердечника при силе тока через обмотку 5 А, если известно, что при этих условиях магнитный поток, пронизывающий площадь поперечного сечения соленоида с сердечником, равен 1,6×10-3 Вб, 2) найти индуктивность соленоида.

489. Определить магнитную индукцию в замкнутом железном сердечнике тороида длиной 20,9 см, если число ампер-витков обмотки тороида равно 1500. Найти магнитную проницаемость материала сердечника при этих условиях. Зависимость В(Н) приведена в приложении.

490. Источник тока замкнули на катушку сопротивлением R = 10 Ом и индуктивностью L = 0,2 Гн. Через какое время сила тока в цепи достигнет 50% максимального значения?

491. Имеется катушка, индуктивность которой 0,2 Гн и сопротивление 1,64 Ом. Найти, во сколько раз уменьшится сила тока в катушке через 0,05 с после того, как э.д.с. выключена и катушка замкнута накоротко.

492. Рамка из провода сопротивлением R = 0,04 Ом равномерно вращается в однородном магнитном поле (В = 0,6 Тл). Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь рамки S =200 см2.  Определить заряд Q, который потечет по рамке при изменении угла между нормалью к рамке и линиями индукции: 1) от 0 до 450, 2) от 45 до 900.

493. Катушка имеет индуктивность L = 0,144 Гн. Через время t = 0,01 с после включения в катушке потечет ток, равный половине максимального. Определить сопротивление катушки.

494. Проволочный виток диаметром D = 5 см и сопротивлением R = 0,02 Омнаходится в однородном магнитном поле (В = 0,3 Тл). Плоскость витка составляет угол j = 400 с линиями индукции. Какой заряд Q протечет по витку при выключении магнитного поля?

495. Цепь состоит из катушки индуктивностью L = 0,1 Гн и источника тока. Источник отключили, не разрывая цепи. Время, через которое сила тока уменьшится до 0,001 первоначального значения, равно t = 0,07 с. Определить сопротивление катушки.

496. В магнитное поле, индукция которого равна 0,1 Тл, помещена квадратная рамка из медной проволоки. Площадь поперечного сечения проволоки 1 мм2, площадь рамки 25 см2, нормаль к плоскости рамки направлена по силовым линиям поля. Какое количество электричества пройдет по контуру рамки при исчезновении магнитного поля?

     497. Электрическая лампочка, сопротивление которой в горячем состоянии 10 Ом, подключается через дроссель к 12-вольтовому аккумулятору. Индуктивность дросселя 2 Гн. Сопротивление 1 Ом. Через сколько времени после включения лампочка загорится, если она начинает заметно светиться при напряжении на ней 6 В?

498. В магнитном поле, индукция которого равна 0,05 Тл. Имеется катушка, состоящая из 200 витков проволоки. Сопротивление катушки 40 Ом, площадь поперечного сечения 12 см2. Катушка помещена так, что ее ось составляет 600 с направлением магнитного поля. Какое количество электричества протечет по катушке при исчезновении магнитного поля?

499. Источник тока замкнули на катушку сопротивлением R = 20 Ом. Через время t = 0,1 с сила тока в катушке достигла 0,96 предельного значения. Определить индуктивность L катушки.


Дата добавления: 2021-04-05; просмотров: 484; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!