Классификация погрешностей. Систематические и случайные погрешности.



Виды и методы измерений.

 

Измерения могут быть классифицированы по ряду признаков.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточные измерения – это ряд измерений физической величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях.

Неравноточные измерения – это ряд измерений, выполненных различными по точности средствами измерений и (или) в несколько разных условиях. (Неравноточные измерения обрабатываются с целью получения результата измерений только в том случае, когда невозможно получить ряд равноточных измерений).

2. По  числу измерений, проводимых во время эксперимента, различают одно- и многократные измерения.

Однократное измерение – это измерения, выполненное только один раз.

Многократное измерение – это измерения одного и того же размера физической величины, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящие из ряда однократных измерений. (При четырёх измерениях и более, входящих в ряд, измерение можно считать многократным. За результат многократного измерения обычно применяют среднее арифметическое значение из отдельных измерений.)

3. По отношению к изменению измеряемой величины измерения делятся на статические и динамические. Целью данной классификации является возможность принятия решения о том, нужно ли при конкретных измерениях учитывать скорость изменения измеряемой величины или нет. Погрешности, вызываемые влиянием скоростей изменения измеряемой величины, называются динамическими.

Статическое измерение – это измерение физической величины принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Например, измерение диаметра при нормальной температуре.

Динамическое измерение – это измерение изменяющейся по размеру физической величины и, если необходимо, её изменения во времени. Например, измерение переменного напряжения электрического тока.

4. В зависимости от метрологического назначения измерения делятся на технические и метрологические.

Технические измерения – это измерения с помощью рабочих средств измерений. Применяются с целью контроля и управления. Например, измерения диаметра деталей в ходе технологического процесса.

Метрологические измерения – это измерения с помощью эталонов и образцовых средств измерений с целью воспроизведения единиц физических величин для передачи их размера рабочим средствам измерений.

5. По выражению результатов измерений  подразделяются на абсолютные и относительные.

Абсолютное измерение - это измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Например, измерение силы F основано на измерении основной величины – массы (m) и использования физической постоянной g (в точке измерения массы).

Относительное измерение - это измерение отношения величины к одной величине, играющей роль единицы, или изменения величины по отношению к одноименной величине, принимаемой за исходную.

6. По общим приемам получения результатов измерений, измерения делятся на прямые, косвенные, совместные и совокупные. Целью такого деления является удобство выделения методических погрешностей измерений, возникающих при определении результатов измерений.

 

Прямые измерения - это измерения, проводимые прямым методом, при котором значение величины получают непосредственно. Например, измерение длины штангенциркулем или микрометром, угла – угломером и т.п.

Косвенные измерения – это измерения, проводимые косвенным методом, при котором искомое значение физической величины определяется на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Например, определение твердости (НВ) путем вдавливания стального шарика определенного диаметра с определенной нагрузкой и получение при этом определенной глубины отпечатка.

Совокупные изменения – это проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяются путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.  Например, необходимо определить размеры физических величин А1, А2, А3, но не имеется средств, которые дали бы возможность измерить непосредственно эти величины, а имеются средства, позволяющие определить суммы любых двух из указанных величин, получим:

A1+A2=a; A1+A3= b; A2+A3=c,

где a, b и c – результат измерения соответствующих пар размеров величины. Решив эту систему уравнения, можно определить величины А1, А2, А3.

Совместные измерения – это проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Например, на основании ряда одновременных измерений приращения длины образца в зависимости от изменений его температуры (полученных в результате измерений) определяют коэффициент линейного расширения образца. (По своей сути, совместные измерения ничем не отличаются от косвенных измерений).

 

Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Метод измерений обычно обусловлен устройством средств измерений.

Различают следующие основные методы измерениий

 

Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение размера с помощью штангенциркуля или микрометра, напряжения вольтметром.

Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления, при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод, при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. Пример: определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины.

Нулевой метод, при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример нулевого метола — взвешивание на весах, когда на одном плече находится взвешиваемый груз, а на другом — набор эталонных грузов. Другой пример — измерение сопротивления с помощью уравновешенного моста.

Метод замещения – метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Например, на чашку весов, предназначенную для взвешивания массы, устанавливают полный комплект гирь и уравновешивают весы произвольным грузом. Затем на чашку с гирями помещают взвешиваемую массу и снимают часть гирь для восстановления равновесия. Суммарное значение массы снятых гирь соответствует значению взвешиваемой массы (способ Д.И.Менделеева).

 Метод совпадения, при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.

 

СРЕДСТВА ИЗМЕРЕНИЙ

Средство измерений — это техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени

По метрологическому назначению средства измерений подразделяются на:

- рабочие средства измерений, предназначенные для измерений физических величин, не связанных с передачей размера единицы другим средствам измерений. РСИ являются самыми многочисленными и широко применяемыми. Примеры РСИ: электросчетчик - для измерения электрической энергии; теодолит – для измерения плоских углов; нутромер – для измерения малых длин (диаметров отверстий); термометр – для измерения температуры; измерительная система теплоэлектростанции, получающая получить измерительную информацию о ряде физических величин в разных энергоблоках;

- метрологические (образцовые) средства измерений, предназначенные для обеспечения единства измерений в стране.

По уровню стандартизации - на:

- стандартизованные средства измерений, изготовленные в соответствии с требованиями государственного или отраслевого стандарта.

- нестандартизованные средства измерений – уникальные средства измерений, предназначенные для специальной измерительной задачи, в стандартизации требований к которому нет необходимости. Нестандартизованные средства измерений не подвергаются государственным испытаниям (поверкам), а подлежат метрологическим аттестациям.

По степени автоматизации – на:

- автоматические средства измерений, производящие в автоматическом режиме все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала;

- автоматизированные средства измерений, производящие в автоматическом режиме одну или часть измерительных операций;

- неавтоматические средства измерений, не имеющие устройств для автоматического выполнения измерений и обработки их результатов (рулетка, теодолит и т. д.).

По конструктивному исполнению – на:

- меры;

- измерительные преобразователи;

- измерительные приборы;

- измерительные установки;

- измерительно-информационные системы;

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. Примеры мер: нормальный элемент – мера Э.Д.С. с номинальным напряжением 1В; кварцевый резонатор – мера частоты электрических колебаний.

Измерительный преобразователь – средство измерений для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному наблюдению человеком (оператором). Часто используют термин первичный измерительный преобразователь или датчик. Электрический датчик – это один или несколько измерительных преобразователей, объединенных в единую конструкцию и служащих для преобразования измеряемой неэлектрической величины в электрическую. Например: датчик давления, датчик температуры, датчик скорости и т. д.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком (оператором).

Измерительная установка – совокупность функционально объединенных средств измерений, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного наблюдения человеком и расположенная в одном месте. Измерительная установка может включать в себя меры, измерительные приборы и преобразователей, а также различные вспомогательные устройства.

Измерительно-информационная система - совокупность средств измерений, соединенных между собой каналами связи и предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

 


Дата добавления: 2021-02-10; просмотров: 84; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!