Вектор электрического смещения



Электрическое поле в диэлектриках

Как уже отмечалось ранее, в диэлектриках при обычных условиях свободные заряды практически отсутствуют, и поэтому они являются плохими проводниками электрического тока (изоляторами). Можно было бы думать, что при помещении диэлектрика в электрическое поле вообще ничего не происходит. Однако это не так: эксперименты показали, что отсутствие свободных зарядов в диэлектриках вовсе не мешает им реагировать на внешнее поле.

Рассмотрим плоский конденсатор. Зарядим его и вставим внутрь диэлектрическую пластину (рис. 3.3). Экспериментально установлено, что при помещении внутрь конденсатора диэлектрика емкость конденсатора с диэлектриком увеличивается в раз.

Рис. 3.3. Плоский конденсатор с диэлектрической пластиной между обкладками

Величины, относящиеся к конденсатору без диэлектрика, будем снабжать индексом 0. Так как заряд конденсатора не меняется при помещении в него диэлектрика, записываем соотношения

(3.1)

Здесь мы использовали экспериментальный факт увеличения емкости конденсатора с диэлектриком в раз. Из соотношений (3.1) следует, что при том же заряде на обкладках разность их потенциалов U уменьшается в раз по сравнению с «пустым» конденсатором

Поскольку поле в плоском конденсаторе однородно, получаем следующую связь между напряженностью Е0 поля в вакууме и в диэлектрике Е

Иными словами, присутствие диэлектрика между пластинами приводит к уменьшению напряженности электрического поля в конденсаторе.

В диэлектрике нет зарядов, способных перемещаться по всему его объёму, но идея возникновения на его поверхности каких-то дополнительных зарядов (их называют в этом случае поляризационными или связанными) кажется привлекательной из-за возможности объяснить экспериментальные факты.

Поляризационные заряды создают дополнительное электрическое поле , направленное противоположно полю от зарядов на обкладках (см. рис. 3.3). Это и объясняет меньшую величину результирующего поля Е по сравнению с полем E0. Действительно, для простейшей геометрии плоского конденсатора изменение поля в диэлектрике сводится только к изменению величины его напряженности в раз

(3.2)

Отсюда мы находим, какая часть результирующего поля создается поляризационными зарядами, а какая — зарядами на обкладках

(3.3)

Отрицательный знак указывает на противоположное направление поля поляризационных зарядов. Зная связь поверхностной плотности зарядов с напряженностью создаваемого ими поля

Находим плотность поляризационных зарядов

(3.4)

Заметим, что случаю проводника соответствует предел

 

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай — полное отсутствие зарядов — нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды — в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему — два равных по величине и противоположных по знаку точечных заряда +q и –q, находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем.

Электрический диполь — это система, состоящая из двух точечных равных по величине и противоположных по знаку зарядов, находящихся на расстоянии l друг от друга (рис. 3.6).

Рис. 3.6. Электрический диполь

Основной характеристикой диполя является электрический дипольный момент. Введем вектор l, направленный от отрицательного заряда (–q) к положительному (+q), тогда вектор р, называемый электрическим моментом диполя или просто дипольным моментом, определяется как

(3.5)

Рассмотрим поведение «жесткого» диполя — то есть расстояние которого не меняется — во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F1 = +qE, а на отрицательный — противоположно направленная и равная F2 = –qE. Вращающий момент этой пары сил равен

Так как ql = р, то М = рЕ sin или в векторных обозначениях

Под действием момента сил М диполь поворачивается, при этом совершается работа

(3.7)

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

откуда

или

(3.8)

если положить const = 0.

Очевидно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е. В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым. Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила Fpaвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е. Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x, а положительный заряд расположен в точке с координатой х + l. Представим себе, что величина напряженности поля зависит от координаты х. Тогда равнодействующая сила Fpaвн равна

(3.9)

Поляризация диэлектриков

Любое вещество, вне зависимости от его агрегатного состояния и деталей его атомно-молекулярного устройства, например, атомный, молекулярный или ионный кристалл и т. п., в конечном счете, состоит из положительно заряженных ядер и отрицательно заряженных электронов.

Поэтому механизм поляризации один — это смещение положительных зарядов по поляризующему полю и отрицательных зарядов против поляризующего поля (рис. 3.14). Здесь уместно подчеркнуть, что вещество поляризуется не внешним полем (см., например (3.2) выше), а суммарным полем , созданным как сторонними (не принадлежащими диэлектрику) зарядами, так и самим поляризованным веществом. В дальнейшем мы не будет специально это подчеркивать.

Рис. 3.14. Смещение положительных зарядов по поляризующему полю
и отрицательных зарядов против поляризующего поля

При исследовании поляризационных свойств конкретных веществ разумно и полезно выделять те главные особенности единого механизма перемещения зарядов под действием поляризующего поля, которые и определяют результат: степень и характер поляризованности вещества. Это приводит к рассмотрению целого ряда «частных» механизмов поляризации, таких как:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до с). Потери энергии отсутствуют.
  • Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания с, без потерь.
  • Дипольная (ориентационная) — связана с ориентацией диполей во внешнем электрическом поле. Протекает с потерями энергии на преодоление сил связи и внутреннего трения.

и многие другие.

 

Процессы, происходящие в диэлектрике при его поляризации, можно понять, исходя из представлений о диэлектрике как о среде, состоящей из попарно связанных разноименных зарядов. В отличие от проводников в диэлектриках нет свободных зарядов, которые под действием внешнего поля могут двигаться по всему объему образца. Заряды, входящие в состав молекул диэлектрика, прочно связаны между собой и способны перемещаться только в пределах своей молекулы (или атома), то есть на расстоянии порядка см.

Практически во всех тех случаях, когда диэлектрик состоит из электрически нейтральных частиц (атомов и молекул), независимо от его агрегатного состояния, возможно сведение всех «подмеханизмов» поляризации к двум видам. Для этого принято делить все атомы и молекулы и состоящие из них диэлектрики на два класса:

  • Неполярные атомы и молекулы — не имеющие собственного дипольного момента, то есть их собственный дипольный момент в отсутствие поляризующего поля равен нулю: . Это атомы благородных газов и симметричные молекулы с ковалентной связью типа . Существуют и многоатомные неполярные молекулы. Диэлектрики, состоящие из таких частиц, принято называть неполярными диэлектриками (рис. 3.15);


Рис. 3.15. Поляризация неполярного диэлектрика

  • Полярные атомы и молекулы — имеющие отличный от нуля собственный дипольный момент . Это несимметричные молекулы с ковалентной связью типа , а также молекулы с ионной связью типа . Отметим, что у молекул с ионной связью во много раз больше, чем у молекул с ковалентной связью. Диэлектрики, состоящие из таких частиц, принято называть полярными диэлектриками (рис. 3.16);

Рис. 3.16. Ориентационный механизм поляризации полярного диэлектрика

 

(3.15)

Здесь — вектор дипольного момента одной молекулы, суммирование ведётся по всем молекулам, находящимся внутри физически бесконечно малого объема .

 

При поляризации неполярного диэлектрика электронная оболочка атома или молекулы деформируется — электроны смещаются против поляризующего поля, ядра смещаются по полю. Возникает некоторое расстояние между ранее (в отсутствие поляризующего поля) совпадавшими центрами положительных и отрицательных зарядов. В результате атом или молекула приобретают некоторый наведенный дипольный момент.

Более или менее очевидно, что наведенный дипольный момент будет пропорционален величине внешнего электрического поля. Понять это можно, рассматривая поведение потенциальной энергии П(x) взаимодействия двух частиц, где х — расстояние между ними. Пусть равновесному состоянию соответствует расстояние (частицы находятся в одной точке и дипольный момент отсутствует). При малых отклонениях от положения равновесия в разложении потенциальной энергии в ряд Тейлора можно ограничиться несколькими первыми членами

Учитывая, что первая производная в точке равновесия равна нулю и что вторая производная в этой точке положительна , получаем, что вблизи точки устойчивого равновесия потенциальная энергия ведет себя как

Соответственно, при отклонении от этого положения возникает сила

,

подобная силе упругости при растяжении пружины. Если заряды в молекуле «соединены» такой «пружиной», то при наложении поля Е новое равновесное расстояние между частицами будет определяться соотношением

В результате находим величину возникшего под действием поля дипольного момента

Умножая наведенный дипольный момент на концентрацию поляризованных молекул N/V (N — их полное число в объеме V), получаем поляризованность диэлектрика

(3.16)

Если записать поляризованность (3.16) в виде

где константа (для данного вещества) по определению есть диэлектрическая восприимчивость вещества, то для , то в рамках данной модели диэлектрическую восприимчивость можно вычислить по нижеследующей формуле

 

Рассмотрим полярный диэлектрик. Векторы собственных дипольных моментов отдельных молекул в обычном состоянии из-за теплового движения ориентированы хаотически. Поэтому при отсутствии внешнего электрического поля средний суммарный дипольный момент любого физически бесконечно малого объема диэлектрика равен нулю. Другими словами, диэлектрик не поляризован: его поляризованность равна нулю.

Внешнее электрическое поле стремится ориентировать дипольные моменты молекул параллельно вектору , а тепловое движение этому препятствует, диэлектрик поляризуется, при этом его поляризованность должна зависеть от температуры, а именно: с ростом температуры она должна убывать. Ниже эта зависимость вычисляется, также будет показано, что и в случае полярных диэлектриков их поляризованность пропорциональна напряженности поляризующего поля. Такая поляризация называется ориентационной.

       Расчеты для полярных диэлектриков дают . Так как размерность дипольного момента в СИ

то вектор поляризации в СИ измеряется в Кл/м2. Его размерность совпадает с размерностью поверхностной плотности зарядов. Это наводит на мысль, что вектор поляризованности связан с плотностью поляризационных зарядов, возникающих на поверхности и в объеме диэлектрика, помещенного во внешнее поле (рис. 3.21).

Рис. 3.21. Вектор поляризованности и плотность поляризационных зарядов

 

 

Вектор электрического смещения

Разобравшись с поведением диэлектрика на микроскопическом уровне, вернемся к плоскому конденсатору, изображенному на рис. 3.3. Откуда же взялись поляризационные заряды на поверхности диэлектрической пластины между обкладками?

Теперь мы знаем, что во внешнем поле, создаваемом обкладками, единица объема диэлектрика приобретает дипольный момент Р. Скажем, положительные заряды смещаются по направлению поля (вверх на рис. 3.3), а отрицательные — вниз. При полной однородности поля и диэлектрика объемные нескомпенсированные заряды внутри диэлектрика не появляются. Но такой сдвиг приводит к возникновению нескомпенсированных зарядов на поверхности диэлектрической пластины. Дипольный момент пластины равен
VР, где V = Sd — ее объем. С другой стороны, полный поверхностный заряд на пластине равен

а расстояние между центрами положительных и отрицательных зарядов равно d (см. рис. 3.3). Поэтому дипольный момент пластины можно также записать как

Сравнивая эти два выражения, находим связь поверхностной плотности поляризационных зарядов с вектором поляризации

Напряженность Е суммарного поля внутри диэлектрика меньше напряженности поля E0, создаваемого обкладками. Именно поле Е действует на молекулы диэлектрика, именно его они «чувствуют», и потому для него справедливо соотношение (3.22)

Используя связь (3.3) напряженности поля Е ' поляризационных зарядов с суммарным полем Е

мы находим связь между диэлектрической проницаемостью и диэлектрической восприимчивостью

(3.23)

 

В общем случае вектор поляризации Р не параллелен вектору напряженности суммарного поля Е: в анизотропных диэлектриках вектор поляризации может поворачиваться относительно напряженности поля. Однако всегда мы можем записать соотношение

  (3.24)

Величина

(3.25)

называется вектором электрического смещения (вектором электрической индукции).

 

В частном случае линейной зависимости поляризации от напряженности поля

вектор электрического смещения равен

(3.26)

 

где диэлектрическая проницаемость среды. Соотношение

имеет место для изотропных диэлектриков. В общем случае вектор D не параллелен Е. Поле вектора D можно графически изобразить линиями электрического смещения, которые определяются так же, как и линии напряженности электрического поля (рис 3.23 и 3.24).

 

В СИ единицей измерения электрического смещения является:

 

 

Электростатика диэлектриков

Применим теорему Остроградского — Гаусса к электрическому полю в диэлектрике. Поток вектора напряженности через замкнутую поверхность пропорционален алгебраической сумме зарядов (свободных и поляризационных), находящихся внутри ограниченного этой поверхностью объема

(3.27)

где qi — свободные, а q 'i — поляризационные заряды. Это выражение неудобно, так как в него входят поляризационные заряды, которые, в свою очередь, зависят от напряженности электрического поля в данной точке диэлектрика.

Рассмотрим теперь поток вектора электрического смещения

(3.28)

Так как напряженность поля поляризационных зарядов можно записать в виде

то

(3.29)

Следовательно,

откуда

(3.30)

где qi — свободные заряды. Следует подчеркнуть, что линии вектора D могут начинаться и заканчиваться на свободных зарядах, но не на поляризационных.

Следует обратить внимание на отсутствие в правой части множителя , который имеется в аналогичном выражении для потока вектора напряженности в вакууме.

Из теоремы Остроградского — Гаусса для точечного заряда q внутри диэлектрика следует

(3.31)

Вектор D не определяет силу, действующую на заряд со стороны внешнего электрического поля. Силовой характеристикой, по-прежнему, является , то есть . При линейной зависимости от для вычисления силы следует воспользоваться соотношением

откуда

Получим теперь закон Кулона для таких диэлектриков. Свободный заряд q2 создает в диэлектрике электрическое смещение

откуда следует выражение для силы взаимодействия с другим свободным зарядом q1

(3.32)

Соответственно, изменится выражение для потенциала, создаваемого свободным зарядом q

(3.33)

и, как следствие, формулы для работы по перемещению свободного заряда в поле и энергии взаимодействия свободных зарядов. Мы замечаем, что по сравнению с аналогичными формулами для систем зарядов в вакууме, для диэлектриков надо произвести замену Поскольку приведенные выражения являлись основным источником всех прочих соотношений, выведенных нами для вакуума, мы немедленно получаем, например, выражения для емкостей плоского (2.12), цилиндрического (2.14) и сферического (2.17) конденсаторов, заполненных однородным диэлектриком (рис 3.25, 3.26, 3.27, 3.28)

(3.34)

Для плотности энергии электрического поля (2.57) теперь можно написать выражение

(3.35)

которое может быть представлено в векторной форме:

 

 


Дата добавления: 2020-11-15; просмотров: 331; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!