Выбор системы передачи и определение емкости кабеля



Емкость кабеля и система передачи выбираются в зависимости от необходимого числа телефонных каналов и каналов телевидения при использовании серийно выпускаемой аппаратуры для их уплотнения.

Тип кабеля и система передачи выбираются так, чтобы при соблюдении необходимых качественных показателей проектируемая линия была наиболее экономичной как по капитальным затратам, так и по эксплуатационным расходам.

Система связи оптического кабеля предусматривает передачу информации по одному оптическому волокну, а прием по другому, что эквивалентно четырехпроводной, однокабельной схеме организации связи.

Выбор иерархии сети

При выборе цифровой иерархии сети будем отталкиваться от рекомендаций МСЭ-Т, в которых представлено два типа иерархий ЦСП: плезиохронная цифровая иерархия (PDH) и синхронная цифровая иерархия(SDH). Первичным сигналом для всех типов ЦСП является цифровой поток со скоростью передачи 64 кбит/с, называемым основным цифровым каналом(ОЦК). Для объединения сигналов ОЦК в групповые высокоскоростные цифровые сигналы используется принцип временного разделения каналов.

Новые технологии телекоммуникаций стали развиваться в связи с переходом от аналоговых к циф­ровым методам передачи данных, основанных на импульсно-кодовой модуляции (ИКМ) и мультиплексировании с временным разделе­нием каналов. В плезиохронной цифровой иерархии PDH мультиплексор сам выравнивает скорости входных потоков путем добавления нужного числа выравнивающих бит в каналы с меньшими скоростями передачи. Отсюда следовали недостатки PDH - невозможность вывода потока с меньшей скоростью из потока с большей скоростью передачи без полного демультиплексирования этого потока и удаления выравнивающих бит. Недостатки PDH вызвали необходимость в разработке синхронной цифровой иерархии SDH, которая позволила вводить/выводить входные потоки без необходимости проводить их сборку/разборку и систематизировать иерархический ряд скоростей передачи.

SDH имеет следующие преимущества перед PDH:

- упрощение сети,вызванное возможностью вводить/выводить цифровые потоки без их сборки или разборки как в PDH;

- помехозащищенность- сеть ис­пользует волоконно-оптические кабели (BOК), передача по которым практически не подвержена действию электромагнитных помех;

- выделение полосы пропускания по требованию - этот сервис теперь может быть предоставлен в считанные секунды путем переключения на другой (широкополосный) канал;

- прозрачность для передачи любого трафика - факт, обусловленный использованием виртуаль­ных контейнеров для передачи трафика, сформированного другими технологиями, включая самые современные технологии Frame Relay, ISDN и ATM;

- универсальность применения - технология используется для создания глобаль­ных сетей или глобальной магистрали и для корпоративной сети, объединяющей десятки локаль­ных сетей;

- простота наращивания мощности - при наличии универсальной стойки для размещения аппарату­ры переход на следующую более высокую скорость иерархии можно осуществить просто вынув одну группу функциональных блоков и вставив новую (рассчитанную на большую скорость) группу блоков.

SDH позволяет организовать универсальную транспортную систему, охватывающую все участки сети и выполняющую функции как передачи информации, так и контроля и управления. Она рассчитана на транспортирование всех сигналов PDH, а также всех действующих и перспективных служб, в том числе и широкополосной цифровой сети с интеграцией служб (ISDN), использующей асинхронный способ переноса (АТМ).

Исходя из найденного числа каналов и современных тенденций развития волоконно-оптических сетей связи, выберем оборудование синхронной цифровой иерархии SDH, которое позволит обеспечить достаточно высокую пропускную способность.

Выбор топологии сети

Задача выбора топологии сети может быть решена достаточно легко, если знать возможный набор базовых стандартных топологий, из которых может быть составлена топология сети в целом. Ниже рассмотрены такие базовые топологии и их особенности.

Топология "точка-точка". Сегмент сети, связывающий два узла А и В, или топология "точка-точка", является наиболее простым примером базовой топологии SDH сети. Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резервирования канала приема/передачи, так и по схеме со 100% резервированием типа 1+1, использующей основной и резервный электрический или оптический агрегатные выходы (каналы приема/передачи). При выходе из строя основного канала сеть в считанные десятки миллисекунд может автоматически перейти на резервный.

Несмотря на свою простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков данных по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим магистральный цифровой телефонный трафик. Она же используется как составная часть радиально-кольцевой топологии (используется в качестве радиусов кольцевой сети) и является основой для топологии типа "последовательная линейная цепь".

Топология "звезда". В этой топологии один из удаленных узлов сети, связанный с центром коммутации (например, цифровой АТС) или узлом сети SDH на центральном кольце, играет роль концентратора, где часть трафика может быть выведена на терминалы пользователей, тогда как оставшаяся его часть может быть распределена по другим удаленным узлам.

Топология "последовательная линейная цепь". Эта базовая топология используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек на линии, где могут вводится и выводиться каналы доступа.

Она реализуется с использованием как терминальных мультиплексоров на обоих концах цепи, так и мультиплексоров ввода/вывода в точках ответвлений. Эта топология напоминает последовательную линейную цепь, где каждый мультиплексор ввода/вывода является отдельным ее звеном. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, либо более сложной цепью с резервированием типа 1+1. Последний вариант топологии часто называют уплощенным кольцом.

Топология “кольцо”. Эта топология, широко используется для построения сетей SDH первых трех уровней SDH иерархии: 155, 622 и 2500 Мбит/с. Основное преимущество этой топологии - легкость организации защиты типа 1+1, благодаря наличию в мультиплексорах SMUX двух пар (основной и резервный) оптических агрегатных выходов (каналов приема/передачи): восток - запад, дающих возможность формирования двойного кольца со встречными потоками.

Так как перед нами стоит дополнительная задача по выделению цифровых потоков в нескольких населенных пунктах, наилучшим решением будет выбор топологии типа «последовательная линейная цепь». Резервирование производиться не будет, так как это дополнительно требует значительных финансовых затрат и не является обязательным для данной сети.

Разбивка участка на секции

 В сетях SDH для архитектуры линейных сетей большой про­тяженности существует стандартная регламентация. В такой сети расстояние между терминальными мультиплексорами ТМ больше того, что допустимо, т.е. может быть покрыто бюджетом мульти­плексоров. В этом случае на маршруте (тракте) устанавливаются регенераторы. Эту архитектуру можно представить в виде после­довательного соединения ряда секций, специфицированных реко­мендациями ITU-T Rec G.957 и G.958.

            Таблица 2 - Разбивка участка связи на оптические секции

Название участка Длина секции, км
Краснокаменск – Юбилейный 32
Юбилейный – Досатуй 25
Досатуй – Погодаево 9
Погодаево – Молодежный 28
Молодежный – Приаргунск 15

         

 Принято различать три типа стандартизованных участков - секций:

 - Оптическая секция (участок от точки электронно-оптического до точки оптоэлектронного преобразований сигнала), которая, по сути, являются участком волоконно-оптического кабеля между элементами сети SDH;

- регенераторная секция; 

- Мультиплексная секция.

 

Рисунок 3- Линейная архитектура сети большой протяженности

Оптические секции нормируются по длине, при этом выделяют три категории:

I - внутристанционная секция, длиной до 2-х км;

S – короткая межстанционная секция, порядка 15 км;

L -длинная межстанционная секция, порядка 40 км (при длине волны 1310 нм) и 80 км (при длине волны 1550 нм).

Указанные длины секций используются только для классификации и не могут рассматриваться как рекомендуемые значения используемых технических параметров. Общая длина маршрута может составлять при этом сотни или же тысячи километров. Маршрут рассматривается как участок тракта между терминальными мультиплексорами, допускающий автоматическое поддержание функционирования сети с номинальной производительностью.

Мультиплексная секция рассматривается как участок тракта между транспортными узлами (мультиплексорами и коммутаторами), допускающий аналогичное автоматическое поддержание функционирования.

Регенераторная секция рассматривается как участок тракта между двумя регенераторами или между регенератором и другим элементом сети SDH. Для аналогичных определений используются опорные точки вход/выход волокна и вход/выход начала/окончания регенераторной секции RST в схеме представления регенераторной секции.

Регенераторная секция обрабатывает RSOH, который содержит синхросигнал, а также управляющую и контрольную информацию, позволяющую локализовать поврежденную секцию. Этот заголовок, будучи сформированным и введенным во фрейм на входе RST, считывается каждым регенератором и выводится из фрейма на выходе RST.

Классификация секций приведена в таблице 3. Она дает стандартное обозначение секций в зависимости от уровня STM (1, 4) и приведена для указанных трех типов применения:

- внутри станции (код использования I);

- между станциями - короткая секция (код использования S);

- между станциями - длинная секция (код использования L).

В общем случае кодировка типов использования линейных регенераторных секций как оборудования SDH включает три элемента и имеет формат:

<код использований> <уровень STM> <индекс источника>

Здесь код использования и уровни STM приведены выше, а индекс источника имеет следующие значения и смысл:

1 или без индекса - указывает на источник с длиной волны 1310 нм;

2 - указывает на источник с длиной волны 1550 нм для волокна, (секции L);

3 - указывает на источник с длиной волны 1550 нм для волокна.

Например, обозначение L-4.3 расшифровывается как длинная межстанционная регенераторная секция линейного оборудования STM-4, использующая источник света с длиной волны 1550 нм.

       Таблица 3- Классификация стандартных оптических интерфейсов

 

Использование

Между пунктами

Внутри

Короткая секция

Длинная секция

Длина волны, нм

1310 1310 1550 1310 1550

Тип волны

G.652 G.652 G.652 G.652 G.652 G.653 (G.654)

Расстояние, км

~2 ~15 ~15 ~40 ~80

Иерархия STM

1 I-1.1 S-1.1 S-1.2 L-1.1 L-1.3(1.2)
4 I-4.1 S-4.1 S-4.2 L-4.1 L-4.3(4.2)

 

Сопоставляя данные таблиц 2 и 3, получаем типы оптических интерфейсов для проектируемой сети:

Участок «Краснокаменск - Юбилейный» интерфейс  L-1.3(1.2);

Участок «Юбилейный - Досатуй» интерфейс  L-1.3(1.2);

Участок «Досатуй - Погодаево» интерфейс S-1.2;

Участок « Погодаево - Молодежный» интерфейс L-1.3(1.2);

Участок « Молодежный - Приаргунск» интерфейс L-1.3(1.2).


Дата добавления: 2019-07-17; просмотров: 278; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!