Получение готовой формы продукта



На завершающей стадии производства продукт приобретает товарную форму за счет проведения процессов гранулирования (формирование гранул из порошка или прямо из раствора), дражирования, таблетирования (формирование драже, таблеток), розлива или фасовки, ампулирования (затаривания в ампулы).

Очистка стоков и выбросов

Мы рассмотрели схему основного биотехнологического производства, которое на некоторых стадиях, если не на всех, имеет определенные стоки и выбросы в атмосферу. Очистка этих стоков и выбросов — специальная задача, которая обязательно должна решаться в наше экологически неблагополучное время. По существу очистка стоков — это отдельное биотехнологическое производство, имеющее свои подготовительные стадии, биотехнологическую стадию, стадию отстаивания биомассы активного ила и стадию дополнительной очистки стоков и переработки осадка. Очищенная вода иногда может быть возвращена в основное производство. Так организована, например, безотходная технология получения кормового белка из парафинов нефти.

 

18. Подготовительные операции при использовании в производстве биообъектов микроуровня.

Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии.

На стадии подготовки могут быть использованы следующие процессы.

Приготовление среды, обычно жидкой, включающей необходимые компоненты питания для биотехнологической стадии.

Стерилизация среды— для асептических биотехнологических процессов, где нежелательно попадание посторонней микрофлоры.

Подготовка и стерилизация газов(обычно воздуха), необходимых для протекания биотехнологического процесса. Чаще всего подготовка воздуха заключается в очистке его от пыли и влаги, обеспечении требуемой температуры и очистке от присутствующих в воздухе микроорганизмов, включая споры.

Подготовка посевного материала.Очевидно, что для проведения микробиологического процесса или процесса культивирования изолированных клеток растений или животных необходимо подготовить и посевной материал — предварительно выращенное малое по сравнению с основной стадией количество биологического агента.

Подготовка биокатализатора.Для процессов биотрансформации или биокатализа необходимо предварительно подготовить биокатализатор — либо фермент в свободном или закрепленном на носителе виде, либо биомассу микроорганизмов, выращенную предварительно до состояния, в котором проявляется ее ферментативная активность.

Предварительная обработка сырья.Если сырье поступает в производство в виде, непригодном для непосредственного использования в биотехнологическом процессе, то проводят операцию по предварительной подготовке сырья. Например, при получении спирта пшеницу сначала дробят, а затем подвергают ферментативному процессу «осахаривания», после чего осахаренное сусло на биотехнологической стадии путем ферментации превращается в спирт.

Другой пример — использование древесины для получения дрожжей. Древесину сначала измельчают, а затем подвергают нагреву до 200°С в кислой среде. В результате такого процесса частичного гидролиза происходит превращение древесины в раствор глюкозы и лигнин. Раствор глюкозы (гидролизат) как раз и используется в биотехнологическом процессе для получения кормовых дрожжей.

 

19. Питательные среды. Классификация. Компоненты питательных сред. Методы стерилизации.

Питательные среды по своему составу подразделяются на две группы: натуральные (естественные) и синтетические.

Натуральными называются среды, имеющие неопреде ленный химический состав, так как в них входят продукты растительного или животного происхождения, отходы различных производств. На натуральных средах хорошо развиваются многие микроорганизмы, так как в этих средах имеются, как правило, все компоненты, необходимые для их роста и развития.

Синтетическими называются среды, в состав которых входят только определенные химически чистые соединения, взятые в точно указанных концентрациях. Такие среды широко используются для исследований, связанных с изучением обмена веществ микроорганизмов.

По физическому состоянию среды подразделяются на жидкие, плотные и сыпучие.

Жидкие среды используются для накопления биомассы или продуктов метаболизма. Плотные среды готовят из жидких, добавляя агар-агар иди кремнекислый гель (силикагель). Агар-агар удобен тем, что большинство микроорганизмов не может использовать его в качестве субстрата и поэтому он является лишь уплотняющим средством. В холодной воде полисахарид нерастворим, но растворяется в ней при нагревании до высокой температуры (90-100° С). При охлаждении агаровая среда застывает в виде студня с гладкой поверхностью. Такие среды используются для выделения чистых культур, для хранения культур, количественного учета микроорганизмов и в ряде других случаев.

Сыпучие среды - разваренное пшено, перловая крупа, Отруби, пропитанные питательным раствором - используют в промышленной микробиологии для получения некоторых БАВ, например, ферментов.

В промышленности микробного синтеза широко используются чистые углеводы, а также природные и технические продукты, богатые углеводами. К ним относятся глюкоза, сахароза, лактоза, крахмал, кукурузная мука, меласса, зеленая патока.

Для приготовления питательных сред используются техническая глюкоза. Она содержит не менее 99,5% редуцирующих веществ (в пересчете на сухой остаток) и фактически представляет собой чистый углевод,

Сахароза - свекловичный или тростниковый сахар. Техническая сахароза, используемая в промышленности, содержит не менее 99,75% сахарозы, которая представляет собой дисахарид, состоящий из глюкозы и фруктозы.

Лактоза - молочный сахар. Она содержится только в молоке и в других природных продуктах не обнаружена. Получают лактозу из молочной сыворотки, которая образуется при производстве сыров, творогов, казеина. Лактоза представляет собой дисахарид состоящий из глюкозы и галактозы.

Крахмал - на 96-97% состоит из полисахаридов, кроме того, в нем присутствуют минеральные вещества и жирные кислоты. Полисахариды крахмала представлены двумя типами - амилазой (10-20%) и амилопектином (80-90%).

Крахмал получают из картофеля или кукурузы. Крахмалы разного происхождения значительно различаются по разветвленности цепей, степени полимеризации и некоторым другим свойствам. Под действием амилолитических ферментов крахмал расщепляется до глюкозы, которая в дальнейшем утилизируется продуцентом по гликолитическому или пентозофосфатному путям,

Кукурузную муку получают при разматывании зерен кукурузы. В промышленных средах кукурузная мука часто заменяет крахмал, являясь более дешевым сырьем. Кукурузная мука содержит: крахмал - 67-70%; другие углеводы (клетчатка, пептозаны, растворимые углеводы) - 10%; белки - 12%; зола - 0,9%.

Среди зольных элементов в небольшом количестве присутствуют ионы фосфора, калия, магния. Состав кукурузной муки может колебаться в значительных пределах в зависимости от сорта кукурузы, условий ее выращивания и хранения.

Меласса - отход сахарного производства. Она представляет собой маточный раствор, образующийся при отделении кристаллов сахарозы на центрифуге после третьей кристаллизации. По внешнему виду меласса - густая вязкая жидкость темно-коричневого цвета. Состав непостоянен и может колебаться в зависимости от почвенных и климатических условий выращивания свеклы, технологии ее переработки, условий транспортировки и хранении мелассы.

Нормальная меласса в среднем содержит: сухие вещества - 75-82%, сахароза - 45-50%, общий азот - 1,2-2,2%, зола 6-10%. В мелассной золе присутствует много калия, магния, кальция, железа, но сравнительно мало фосфора. Кроме того в мелассе содержится ряд аминокислот, витаминов группы В и органических кислот.

Зеленая патока - отход производства глюкозы их крахмала. Она содержит не менее 76% редуцирующих веществ, золы - не более 3,5%, сухих веществ - не менее 50%. Сахара зеленой патоки состоят в основном из глюкозы. Основная часть зольных элементов - хлористый натрий, образующийся при нейтрализации соляной кислоты, применяемой для гидролиза крахмала содой.

Азотное питание микроорганизмов по своему значению приближается к углеродному, хотя уступает последнему по объему. Азот входит в состав клеточных компонентов, которые обеспечивают жизнеспособность организмов. Источниками азотного питания для продуцентов БАВ служат различные азотсодержащие вещества неорганического и органического происхождения. Источниками минерального азота чаще всего являются соли аммония и азотной кислоты. В качестве органических источников азота в промышленности наиболее широко применяются кукурузный экстракт и соевая мука.

Кукурузный экстракт - это отход производства крахмала из кукурузы. По внешнему виду это густая жидкость темно-коричневого цвета с хлопьевидной взвесью или почти однородная. В состав кукурузного экстракта входят: азот общий - 6-8%; азот шинный - 1-3%; азот белковый - 0.8-2%; углеводы - 0-10%; органические кислоты - 15-20%; зола - не более 24%.

Основными элементами золы являются фосфор, калий, магний Кукурузный экстракт также содержит витамины группы В, некоторые ростовые вещества, биостимуляторы.

Соевую муку получают при размалывании соевых бобов, а также соевого жмыха и шрота, образующихся после извлечения соевого масла Соевая мука подразделяется на необезжиренную, полуобезжиренную и обезжиренную. Кроме того, соевая мука бывает дезодорированная (обработанная паром) и недезодорированная. Обработка паром позволяет увеличить срок хранения, и дезодорированная мука может храниться в течение года, а недезодорированная - 1,5 - 3 месяца.

Из основных компонентов соевой муки особое значение для процессов ферментации имеют азотсодержащие вещества. Азот соевой муки находится главным образом в составе белков, на долю которых приходится 40,5%. Кроме белков в соевой муке содержатся углеводы - до 25%; органические кислоты - 1,5%; зола 4,5-6,5%. В необезжиренной муке присутствует 19,5% жира. В состав золы входят ионы калия, фосфора, магния, кальция, а также ряд микроэлементов.

Минеральные компоненты играют важную роль в жизнедеятельности микроорганизмов. Содержание их в клетке относительно не велико, но функции чрезвычайно важны. Минеральные элементы в клетках микроорганизмов необходимы для регулирования осмотического давления, окислительно-восстановительных условий и величины рН. Они изменяют гидрофильность протоплазмы, а также играют и пластическую роль, входя в состав конструктивного материала клеток.

Минеральные элементы участвуют в формировании пространственной структуры биополимеров - белков и нуклеиновых кислот.

Одна из основных функций минеральных элементов - участие в ферментативном катализе. В настоящее время действие четвертой части всех ферментов в клетки связано с металлами. Минеральных состав питательной среды формирует распределение электрических зарядов на поверхности клетки. Обычно клетки микроорганизмов имеют отрицательный заряд. При добавлении в среду электролитов он снижается и тем сильнее, чем выше валентность добавляемого противоиона. Изменение электрического потенциала клеток может изменить их физиологическую деятельность, воздействовать на селективность клеточной мембраны, вызвать флокуляцию или флотацию клеток.

Конструкция и механизм действия системы стерилизации зависят от метода стерилизации биореактора, вспомогательного оборудования, питательных сред и воздуха.

Наибольшее значение имеют термический метод для стерилизации оборудования и сред и фильтрационный — для удаления микроорганизмов из вводимого в биореактор воздуха или другого газа. Как правило, для стерилизации сред и аппаратуры используют влажную термическую обработку с применением воды и пара. Такая обработка дает больший эффект, чем нагревание сухого биореактора. Чаще всего используют стерилизацию перегретым паром, вводимым под давлением непосредственно в аппарат или генерируемым в самом биореакторе. Однако в последнем случае среда, содержащая белки, пригорает к электронагревателю, размешенному в аппарате, поэтому реактор стерилизуют с нагретой дистиллированной водой, а среду стерилизуют отдельно.

Эффективность и быстрота уничтожения микрофлоры возрастают но мере повышения температуры: имеет место температурная зависимость, аналогичная уравнению Аррениуса для химических реакций. Высокая температура нагревающего агента (пара, витков спирали электронагревателя) обеспечивает быструю гибель термоустойчивых бактериальных спор, которые часто попадают в «островки теплоизоляции» — глыбки твердых субстратов, густые суспензии высокомолекулярных соединений и т. д.

В то же время по мере повышения температуры ощутимо возрастают энергозатраты на стерилизацию, усиливается отрицательное влияние нагревания на качество сред. Следовательно, необходимо найти оптимальную температуру, при которой достигается высокая надежность стерилизации и в то же время сводятся до минимума энергозатраты и порча стерилизуемого материала. Применение пара, подаваемого через змеевики без прямого контакта со средой, ограничивает эффективность стерилизации. Этот метод используется при стерилизации неводных сред, например масляных.

Нагревание вызывает химические превращения компонентов питательных сред. При 100°С и выше карбонильные группы сахаров вступают во взаимодействие с ионами аммония или с аминогруппами аминокислот и белков. При этом образуются неусваиваемые клетками продукты. Этот пример говорит о необходимости в некоторых случаях раздельной стерилизации компонентов питательной среды.

Разложение ряда веществ, например витаминов, вынуждает ограничить время и температуру для термической стерилизации соответствующих сред, а иногда — вовсе отказаться от нее, поэтому применяют химические дезинфицирующие средства или фильтрацию жидкостей. Фильтры, однако, быстро забиваются клетками микрооорганизмов и другими взвешенными частицами, чем обусловлено неудобство фильтрационного метода стерилизации жидких сред.

Иногда химические изменения субстратов в процессе термической стерилизации положительно влияют на качество сред. При стерилизации раствора, содержащего глюкозу, аминокислоты и фосфаты, путем фильтрации или путем раздельной термической обработки растворов перечисленных компонентов получается среда, малоподходящая для роста пропионовых бактерий. Напротив, совместная стерилизация аминокислот, фосфатов и глюкозы путем нагревания способствует росту этих бактерий.

Фильтрация воздуха или другого газа обычно обходится без частой смены фильтров, поскольку в них содержание взвешенных частиц меньше, чем в жидких средах. Из фильтров различных типов наиболее перспективны .мембранные фильтры из тефлона с диаметром пор около 0,2 мкм. Такие фильтры эффективно задерживают частицы с размерами, в 100 раз меньшими указанного диаметра пор. Это связано в основном с броуновским движением частиц в воздухе, отклоняющим их от прямолинейной траектории, что обусловливает высокую вероятность столкновения частиц со стенками пор и их адсорбцию. Вследствие этого фильтрация приводит к освобождению воздуха не только от бактерий и их спор, но и от бактериофагов и других вирусов (R. S. Conway, 1984, Т. Leahy, R. Gabler, 1984). На второй план отступает применение фильтров других видов, сложенных из гранул активированного угля или волокон стеклянной ваты, вискозы, целлюлозы.

 

 

20. Очистка и стерилизация технологического воздуха. Схема подготовки потока воздуха, подаваемого в ферментатор.

Система производства сжатого, очищенного от микроорганизмов, воздуха, имеющего определенную температуру, является сложой технологической системой.

Она состоит из трех последовательно соединенных подсистем:очистки от пыли и сжатия; приведения воздуха к; термодинамическому состоянию, благоприятному по влажности и температуре для разделения аэрозоля; разделение аэрозоля в фильтрах грубой и тонкой очистки.

Первая подсистема. Атмосферный воздух забирают турбокомпрессором через заборную шахту высотой 20-30 м, где концентрация микроорганизмов стабилизирована. Прежде всего воздух попадает в предфильтры, где он освобождается от грубого аэрозоля - пыли. Првдфильтры не только предохраняют комлрессоры от затрязнения. но и существенно снижают количество контаминантов. которые могди бы попасть во 2-ю подсистему.

За рубежом в настоящее время в предфидьтрах применяют рулонные пористые материалы. В нашей стране успешно испыган пенополиуретан, который обеспыливается пьшесосом или теплой водой с мылом. Срок службы материала 1,5-2 года. Однако до сих пор на болыгшнстве заводов исполъзуют масляные фильтры (см. рис). После этого воздух сжимают в турбокомпрессоре до 0,35-0,5 Мпа. Давление сжатия воздуха в компрессоре определяют из расчета давления на преодоление сопротивления в системе воздухоподготовки, давления столба жидкости в ферментаторе и создания в нем давления 0,13-0,14 Мпа. Сжатие воздуха в компрессоре приводит к повышению его температуры до 120-250°С и увеличению влагосодержания в единице объема.

Вторая подсистема. В случае высокого содержания влаги в исходном атмосферном воздухе конденсируется еще большее количество влаги при его охлаждении. Выпадение влаги на фильтрах недопустимо, так как это прнводит к слипанию волокон и образованию каналов, и тогда эффекты, осаждения частиц на волокне не проявляются. Кроме того, на увлажненных волокнах фильтров возможно размножение осевших микроорганизмов, что приводит к дополнительному обсеменению воздуха.

Чтобы обеспечить выпадение влаги в каплеуловителе, воздух «переохлаждают» до температуры 25-40°С в теплообменном аппарате. Затем, для обеспечения надежной работы фильтров 2-й и 3-й ступеней, воздух нагревают до температуры 70-90°С. При таких температурах, исключается конденсация паров воды на волокнах фильтра. С этой нелью воздух после брызгоуловителя подогревают в теплообменнике, при этом допускается частичное подмешивание горячего воздуха после компрессора. Количество подмешиваемого воздуха определяется условиями относительной влажности, которая не должна быть больше 40%.

Третья подсистема состоит из двух фильтров второй и третьей ступеней очистки. Фильтр второй ступени, или головной фильтр обычно расположен на территории завода рядом с цехом. На головном фильтре очищают воздух для всех ферментаторов цеха. Из головного фильтра воздух по кодлектору подается в индивидуальные фильтры третьей ступени, установленные у каждого ферментатора, независимо от его вместимости.

Конструкция индивидуатьного фильтра зависит от типа используемого фильтрующего материала. Для ткани Петрянова применяют конструкцию, представленную на рис. В цилиндрический корпус монтируют прямоугольный пакет, собранный из П-образных алюмшшевых рамок, между которыми зажимается лента из ткани Петрянова.

Для фильтрующего материала, сложенного в виде матов, используют конструкцию, представденную на рис. Изображена конструкция, предназначенная для установки фторопластовых фильтрующих элементов.

При эксплуатации фильтров необходима ихстерилизация.

Наиболее эффективным методом является нагревание влажным паром и выдержка в течение определенного времени при температуре 125-130°С, Применение более высокой температуры вызывает деструкцию герметизирующих прокладок в фильтрах. После стерилизации фильтрующий материал высушивают горячим воздухом.

В зарубежных системах очистки воздуха значительно повышена надежность работы за счет установки дополнительной ступени очистки и дублирования основного оборудования. Кроме того, для крупных ферментаторов применяют автономные системы очистки воздуха, что облегчает задачу поддерживания термодинамического режима, так как не требуется большой протяженности трубопроводов; наконец, в фильтрах используют стандартные фильтрующие элементы, изготовленные промышленным способом.

Очистка отработанного воздуха. В процессе ферментации в качестве отхода производства образуется большое количество отработанного воздуха, выбрасываемого в атмосферу. Установлено, что такой воздух на заводах антибиотиков содержит от 2 до 4 мг/м3 вещеетв с неприятным запахом.

С отработанным воздухом выбрасывается в атмосферу несколько десятков органических соединений: амины, альдегиды, жирные кислоты, кетоны, спирты, эфиры и т.д. Относительная влажность воздуха, выходяшего из ферментатора, приближается к 100%; кроме того он включает культуральную жидкость в виде мелких брызг; а со-держание клеток продуцента зависит от вида его, времени ферментации, и составляет от 1 х 105 до 1 х 105 клеток в 1 м3.

В настоящее время применяют несколько принципиально различающихся методов очистки отработанного воздуха. Метод каталитического дожигания относится к разряду энергоемких. Суть его состоит в том, что отработанный воздух прокачивают при температуре 320-3500С через комбинированный катализатор, состоящий из слоя пиролюзита и слоя палладиевого катадизатора, Степень обезвреживания воздуха 87-98,5%.

Менее энергоемким является метод жидкофазного окисления с применением в качестве окислителей перманганата калия или гипохлорита натрия. Отработанный воздух по мере прохождения скруббера орошается раствором натрия гипохлорита,20% раствором едкого натра, водой и выбрасывается в атмосферу. Орошающие растворы обращаются в замкнутом цикле. Смену отработанных растворов проводят в 1 раз в неделю. Эффективность очистки 90-95%. Недостатком метода является то, что при его реализации накапливаются в небольшом количестве сточные воды, которые нужно утилизировать. Такие установки успешно работают, например, в Италии в производстве пенициллина, цефатоспорина С и других антибиотиков.

Известен также метод с применением сетчатых фильтров (ФС); конструкция ФС разработана по ВНИИ проектно-конструкторском институте прикладной биохимии. Фильтр состоит из цилиндрического корпуса с крьппкой и днищем, внутри помещен фильтрующий элемент, изготовленный из металлических сеток трикотажного плетения с диаметром проволоки 0,28 мм из нержавеющей стали(рис. ).

Воздух, проходя через фильтр, освобождаегся от капелек культуральной жидкости с микроорганизмами. Эффективность очистки 99.6%. Для повышения эффективности очистки на ряде заводов осуществлена схема, состоящая из циклона и сетчатого фильтра «Ц-ФС». Эффективность зтой системы составляет 99,97%.

 

21.Критерии подбора ферментаторов. Характеристика и классификация биореакторов в зависимости от вида протекающих в них процессов и от конструкционных особенностей (способы потребления энергии, способы смешивания и ввода энергии и др.).

Промышленное производство биопрепаратов представляет собой сложный комплекс взаимосвязанных физических, химических, биофизических, биохимических, физикохимических процессов и предполагает использование большого количества разнотипного оборудования, которое связано между собой материальными, энергетическими потоками, образующими технологические линии.

Основным аппаратурным элементом биотехнологического процесса является биореактор ферментер (рис.). Биореакторы предназначены для культивирования микроорганизмов, накопления биомассы, синтеза целевого продукта. Биореакторы изготавливают из высоколигированных марок стали, иногда из титана. Внутренняя поверхность биореактора должна быть отполирована.

Типовые ферментеры представляют собой вертикальные ёмкости различной вместимости (малые от 1 до 10 л, многотоннажные более 1000 л) с минимальным числом штуцеров и передающих устройств. В биореакторах должны быть обеспечены оптимальные гидродинамические и массообменные условия.

Ферментеры снабжены паровой рубашкой, мешалками, барботерами, стерилизующими воздушными филырами, отбойниками, обеспечивающими необходимые температурный, газовый режим, гидродинамическую обстановку в биореакторе (т.е. процессы массо и теплообмена). В биореакторах имеются пробоотборники для отбора проб культуральной жидкости в процессе биосинтеза. Могут быть и другие конструктивные особенности, учитывающие специфику биотехнологического процесса. Работа отдельных узлов контролируется измерительными приборами, фиксирующими как параметры технологического процесса, так и отдельные физикохимические показатели культивирования (температуру стерилизации и культивирования, скорость вращения мешалки, давление, расход воздуха или газов на аэрацию, пенообразование, рН, еН, р02, рС02 среды).

Тип биореактора, чистота обработки внутренних стенок аппарата и отдельных его узлов, ёмкость, коэффициент заполнения, поверхность теплоотдачи, способ отвода тепла, тип перемешивающих, аэрирующих устройств, арматура и запорные приспособления, способ пеногашения, далеко не полный перечень отдельных элементов, которые, в отдельности и во взаимосвязи, влияют напроцесс культивирования микроорганизмов и клеток.

Биореакторы подразделяют на три основные группы:

- реакторы с механическим перемешиванием;

- барботажные колонны, через которые для перемешивания содержимого пропускают воздух;

- эрлифтные реакторы с внутренней или внешней циркуляцией; перемешивание и циркуляция культуральной среды в них обеспечивается потоком воздуха, за счет которого между верхним и нижним слоями культуральной среды возникает градиент плотности.

Биореакторы первого типа используют чаще всего, так катс они позволяют легко изменять технологические условия и эффективно доставлять к растущим клеткам воздух, определяющий характер развития микроорганизмов и их биосинтетическую активность. В таких реакторах воздух подают в культуральную среду под давлением через разбрызгиватель кольцо с множеством маленьких отверстий. При этом образуются мелкие пузырьки воздуха и за счет механического перемешивания обеспечивается их равномерное распределение. Для этой же цели используют мешалки одну или несколько. Мешалки, разбивая крупные пузырьки воздуха, разносят их по всему реактору и увеличивают время пребывания в культуральной среде. Эффективность распределения воздуха зависит от типа мешалки, числа оборотов, физикохимических свойств среды.

При интенсивном перемешивании культуральной среды происходит ее вспенивание, поэтому рабочий объем биореактора не превышает 70% от общего объема. Свободное пространство над поверхностью раствора используется как буферное, где накапливается пена, и таким образом предотвращается потеря культуральной жидкости. В пенящейся жидкости условия аэрации лучше, чем в плотных растворах (при условии непрерывного перемешивания и циркуляции слоя пены, т.е. при исключении нахождения микроорганизмов вне культуральной жидкости). Вместе с тем вспенивание может привести к переувлажнению фильтров в отверстиях, через которые воздух выходит из биореактора, уменьшению потока воздуха и к попаданию в ферментер посторонних микроорганизмов.

Консгпруктивные особенности барботажных колонн и эрлифтных биореакторов дают этим типам ферментеров некоторые преимущества перед реакторами с механическим перемешиванием. Барботажные колонны более экономичны, так как перемешивание в них происходит восходящими потоками воздуха равномерно по всему объему. Отсутствие механической мешалки исключает один из путей проникновения в биореактор посторонних микроорганизмов. В барботажных биореакторах не возникает сильных гидродинамических возмущений (сдвигов слоев жидкости культуральной среды относительно друг друга).

Уменьшение сдвиговых факторов важно по следующим причинам: клетки рекомбинантных микроорганизмов менее прочны, чем нетрансформированные; клетка отвечает на внешние воздействие уменьшением количества синтезируемых белков, в том числе рекомбинантных; под влиянием сдвиговых эффектов могут изменяться физические и химические свойства клеток, что затрудняет дальнейшую работу с ними (ухудшаются условия выделения, очистка рекомбинантных белков). В барботажных колоннах воздух подают под высоким давлением в нижнюю часть биореактора; по мере подъема мелкие пузьфьки воздуха объединяются, что влечет неравномерное его распределение. Кроме того, подача воздуха под высоким давлением приводит к сильному пенообразованию.

В эрлифтных биореакторах воздух подают в нижнюю часть вертикального канала. Поднимаясь, воздух увлекает за собой жидкость к верхней части канала, где расположен газожидкостный сепаратор (здесь частично выходит воздух). Более плотная деаэрированная жидкость опускается по другому вертикальному каналу ко дну реактора и процесс повторяется. Таким образом, в эрлифтном биореакторе культуральная среда вместе с клетками непрерывно циркулирует в биореакторе.

Эрлифтные биореакторы выпускаются в двух конструктивных вариантах. В первом реактор представляет емкость с центральной трубой, которая обеспечивает циркуляцию жидкости (реакторы с внутренней циркуляцией). У эрлифтного биореактора второго типа культуральная среда проходит через отдельные независимые каналы (реактор с внешней системой циркуляции).

Эрлифтные биореакторы более эффективны, чем барботажные колонны, особенно в суспензиях микроорганизмов с большей плотностью или вязкостью. Перемешивание в эрлифтных ферментерах более интенсивно и вероятность слипания пузырьков минимальна.

 

22.Аппаратурное оснащение биотехнологических процессов. Особенности проведения процессов нестерильных и стерильных производств. Аэробные и анаэробные процессы.

По основной фазе, в которой протекает процесс ферментации, различаются:

1) поверхностная (твердофазная) ферментация (культивирование на агаровых средах, на зерне, производство сыра и колбас, биокомпостирование и др.);

2) глубинная (жидкофазная) ферментация, где биомасса микроорганизмов суспендирована в жидкой питательной среде, через которую при необходимости продувается воздух или другие газы;

3) газофазная ферментация, в которой процесс протекает на твердом носителе, где закрепляются микроорганизмы, но сами частицы носителя взвешены в потоке газа, насыщенном аэрозолем питательной среды. Надо сказать, что подобный способ ферментации используется довольно редко, в основном при очистке газов от вредных и одорирующих примесей,

По отношению к кислороду различают аэробную, анаэробную и факультативно-анаэробную ферментацию — по аналогии с классификацией самих микроорганизмов.

Анаэробные процессы. Реакторы для анаэробных процессов не имеют приспособлений для аэрирования среды. Однако некоторые из этих процессов протекают с потреблением газообразных субстратов — водорода, метана, поэтому приходится применять барботер и другие приспособления для подачи газа в жидкость. Например, установка для бактериальной денитрификации воды (ее очистки от нитратов и нитритов), функционирующая в анаэробных условиях, включает приспособление для обеспечения водородом. Перемешивание среды в ходе анаэробных процессов осуществляется низкоскоростной механической мешалкой или созданием тока жидкости по циркуляционному контуру. В зависимости от того, насколько строго следует придерживаться анаэробных условий, применяют конструкционные детали, предохраняющие среду культивирования от контакта с кислородом.

Упрощение конструкции аппаратов при ведении процессов в анаэробных условиях, естественно, ведет к их удешевлению — фактор, побуждающий отказываться от аэробных процессов в пользу анаэробных, в частности, при очистке сточных вод. В то время как аэробное расщепление органических субстратов ведет к их полному «сжиганию» до СО2 и Н2О, в анаэробных условиях микроорганизмы образуют ценные низкомолекулярные продукты — спирты, ацетон, органические кислоты. Внимание биотехнологов к анаэробным процессам повышается в связи с дефицитом нефти и природного газа.

Поверхностное культивирование биообъектов в жидкой питательной среде вблизи раздела фаз газ — жидкость — распространенный метод, хотя и уступающий по эффективности синтеза целевого продукта глубинному методу культивирования. Однако метод остается в ходу применительно к процессам, сопровождающимся накоплением внеклеточных продуктов в культуральной среде или зависящих от контакта между организмом и воздушной средой. Такой контакт требуется для мицелиальных грибов при переходе к определенным стадиям развития. Экономический выигрыш связан с относительной простотой изготовления и эксплуатации биореакторов.

 

 

23.Характеристика биопроцессов в зависимости от целевых продуктов: первичные и вторичные метаболиты, биомасса как целевой продукт.

Чаще всего целевой продукт находится либо в самой биомассе, либо в жидкости. В обоих случаях необходимо сначала разделить эти две фазы. В зависимости от свойств биомассы и жидкости для них целей могут быть использованы различные процессы.

Отстаивание — разделение под действием гравитационных сил (обычно при очистке сточных вод).

Фильтрация— пропускание суспензии через фильтрующий материал, на котором задерживаются частицы твердой фазы — биомасса. Такой способ применяют в производстве антибиотиков, особенно в тех случаях, когда микроорганизм-продуцент имеет мицелиальный характер.

Сепарация, центрифугированиеразделение под действием центробежных сил. Наиболее часто используется для отделения дрожжей или бактерий в производстве кормовой биомассы.

Микрофильтрация, ультрафильтрация - через мембраны с весьма малым размером пор, удержание клеток микроорганизмов на мембране и получение створа, свободного от взвешенных клеток. Ультрафильтрация задерживает уже не только клетки, но и крупные молекулы.

Коагуляция - добавление в суспензию реагентов, способствующих образованию и осаждению более крупных клеточных агломератов и отделению их от жидкости путем отстаивания.

Флотация - захват биомассы микроорганизмов пузырьками пены и выделение ее из пенной фракции.

ВЫДЕЛЕНИЕ ПРОДУКТОВ БИОСИНТЕЗА. Эта стадия имеет определенные отличия, связанные с тем, являются продукты внеклеточными или внутриклеточными.

Так, для внутриклеточных продуктов сначала необходимо разрушить клеточную оболочку одним из методов, среди которых можно назвать следующие.

Дезинтеграция клеток. Этот процесс разрушения клеточной оболочки может осуществляться физическими методами (с помощью мелющих тел, путем замораживания и продавливания, воздействием ультразвуком, методом декомпрессии — резкого сброса давления, или химическими и биотехнологическими методами.

Пиролиз — разрушение клеточных оболочек пол действием химических реагентов и температуры.

Ферментолиз — разрушение клеточных оболочек под действием ферментов при повышенной температуре.

Автолиз — разновидность ферментолиза, когда используют собственные ферменты клетки.

После проведения предварительной операции разрушения клеток, выделение целевого продукта осуществляется из раствора методам и, которые являются общими для внеклеточных и внутриклеточных продуктов.

Экстракция — переход целевого продукта из водной фазы в несмешивающуюся с водой органическую жидкость (экстрагент). Наиболее известно выделение жироподобных веществ жидкими углеводородами (типа бензина), но применяются и многие другие виды экстрагентов (хлороформ, эфир, бутилацетат). Экстракция прямо из твердой фазы (в том числе и биомассы микроорганизмов) называется экстрагированием.

Осаждение — выделение целевого продукта путем добавления к жидкости реагента, взаимодействующего с растворенным продуктом и переводящего его в твердую фазу.

Адсорбция — перевод растворенного в жидкости продукта в твердую фазу путем его сорбции па специальных твердых носителях (сорбентах).

Ионный обмен - то же, что адсорбция, но в этом случае в твердую фазу переходят ионы (катионы или анионы), а не целиком молекула целевого продукта или примеси.

Отгонка, ректификация — эти методы используют для выделения растворенных в культуральной жидкости легкокипящих продуктов. Пример — этиловый спирт.

Ультрафильтрация, нанофильтрация и обратный осмос применяются для выделения высокомолекулярных соединений (белков, полипептидов, полинуклеотидов). Обратный осмос и нанофильтрация позволяют отделять даже небольшие по размеру молекулы.

Центрифугирование, ультрацентрифугирование используют для выделения вирусов, клеточных органелл, высокомолекулярных соединений.

 

24.3начение асептики в биотехнологических процессах. Методы стерилизации, используемые в биотехнологическом производстве.

Асептика (от греч. А - не, нет, septos - гниение) - это комплекс мероприятий, направленных на предотвращение попадания в среду (объект) посторонних микроорганизмов, включая болезнетворные. Следовательно, асептика в биологической технологии и. например, в хирургии - это не одно и то же понятие. В первом случае предполагают использование какого-либо биообъекта (в том числе - микроба) и полное исключение попадания других микроорганизмов, являющихся загрязнителями. Во втором случае стремятся исключить любую возможность попадания патогенных микробов и микробов-контаминантов на операционное поле или в рану.

Каждый из материальных потоков в биотехнологических процессах - потенциальный источник микробов - контаминантов.

Асептика может включать влажную уборку помещений, обработку их ультрафиолетовыми лучами, антисептическими средствами, использование стерильных инструментов, сред, технологической одежды, подачу стерильного воздуха (столы с ламинарным потоком стерильного воздуха в боксированных помещениях, поступление в ферментатор стерильного воздуха через барботер - от франц. barbotage - перемешивание) и пр. Следовательно, комплекс мер, обеспечивающих асептику биотехнологических процессов, включает: механическую, физическую, химическую защиту биообъекта и среды его обитания, а при необходимости - и конечный продукт. К механической защите относятся: удаление механических примесей, например, из воздуха, культиваторов, герметизация оборудования, изоляция узлов и соединений; к физической - обработка воздуха и поверхностей приборов и аппаратов ультрафиолетовыми лучами, кипячение, стерилизация паром под давлением, обработка ультразвуком; к химической - обработка поверхностей химическими антисептиками.

В производственных условиях источниками микробов-контаминантов могут быть почва, вода, окружающий воздух, люди. Из почвы в сферу биотехнологических процессов попадают спорообразующие палочки-бациллы, конидии грибов, актиномицеты; эти же микроорганизмы с пылью могут попасть в воздух, через посредство которого они способны проникнуть в среду выращивания биообъекта или в конечный продукт производства.

Качественный состав и размеры частиц в воздушной пыли колеблются в широких пределах, В производственных помещениях это зависит от конструкционных особенностей здания, розы ветров, географической зоны расположения города и предприятия, наличия или отсутствия потоков автомобильного и другого транспорта, количества непосредственно занятых в технологическом процессе людей, характера и локализации складских помещений и т.д.

Образующиеся пыль и капельки влаги в воздухе, как правило, содержат на своей поверхности слой адсорбированного воздуха и большее или меньшее количество микроорганизмов. Газовая оболочка предохраняет частицы от смачивания. Такие частицы представляют собой дисперсную фазу аэрозоля. устойчивость которой зависит от размеров (величины) частиц, их электрического заряда и поверхностной энергии. Необходимо помнить, что в случае нахождения на частицах аэрозоля микробных клеток их отрицательный электрический заряд будет приносить свою долю в общий заряд частицы. Опираясь лишь на величину аэрозоля, содержащего микроорганизмы, можно выделить три фазы его: крупноядерную (диаметр частиц более 100 мкм), мелкоядерную (диаметр частиц менее 100 мкм) и фазу бактериальной пыли (диаметр частиц от 1 мкм до 100 мкм). Частицы крупноядерной фазы в течение нескольких секунд оседают из воздуха, тогда как частицы двух других фаз могут длительно находиться в воздухе, образуя устойчивую коллоидную систему.

Бактериальная пыль может формироваться из первых двух фаз после их высыхания и повторного попадания в воздух. В разряд частиц с диаметром от 0,001 мкм до 1 мкм подпадают вирусы и некоторые бактерии. Аэрозоли могут быть вредными и для человека не только из-за микробов, находящихся на частицах пыли или капельках жидкости, но и сами по себе вследствие проникновения в альвеолы дыхательной системы с последующим расстройством ее функций. В таком понимании вредными являются следующие аэрозольные частицы: асбеста, алебастра, абразивного порошка, графита, гипса, диоксида титана, дорожной пыли, извести, каолина, корунда, карбида кремния, мрамора, оксида олова, стекловолокна. В альвеолы проникают частицы размером менее 3 мкм при скорости потока вдыхаемого воздуха уже около 1 см/с.

По степени загрязненности воздуха микробами и механическими частицами в расчете на 1м3 производственные помещения, в которых асептично изготавливают лекарственные средства, классифицируют по классам следующим образом:

1-й класс чистоты с ламинарным потоком стерильного воздуха - для изготовления стерильных лекарств - не должно быть микробов, а механических частиц размером до 0.5 мкм - не более 3500;

2-й класс чистоты - до 50 микробных клеток, до 2500 частиц размером 5 мкм и до 350000 частиц размером 0.5 мкм;

3-й класс чистоты - до 100 микробных клеток (ЗА класс - до 200 и ЗБ класс - до 500 клеток), до 25000 частиц размером 5 мкм и до 3500000 частиц размером 0,5 мкм;

4-й класс чистоты - по ГОСТ 12.1.005 - 86.

Для помещений 2-го и 3-го классов чистоты, в которых изготавливают нестерильные лекарственные средства, нормирование воздуха по содержанию механических частиц не предусматривается.

Лекарственные средства по «микробной чистоте» разделяют на 4 категории:

1) стерильные препараты для инъекций, приготовленные на апирогенной воде;

2) глазные лекарства, препараты для введения в закрытые полости тела, средства для лечения обширных ожогов и открытых ран не должны содержать живых микроорганизмов - они также относятся к разряду стерильных;

3) лекарственные средства для наружного применения и для введения в открытые полости не должны содержать более 100 живых микробныхклеток в 1 г (мл) препарата и при безусловном отсутствии в них бактерий, относящихся к семейству Enterobacteriaceae, а также Pseudomonas aeruginosae и Staphylococcus aureus;

4) все прочие лекарственные средства должны содержать в 1 г (1мл) не более 1000 жизнеспособных бактериальных клеток сапрофитов и не более 100 клеток непатогенных грибов при отсутствии болезнетворных и условно патогенных микроорганизмов, включая энтеробактерии, Pseudomonas aeruginosae и Staphylococcus aureus, аспорогенные дрожжи рода Candida.

Работающие в помещениях различной степени чистоты должны одевать рекомендуемую и пригодную для таких целей технологическую одежду (согласно требованиям системы GMP). Так, в помещениях первого класса, где кратность обмена воздуха в час 600-200, надевают стерильный костюм, головной убор должен полностью закрывать волосы, включая бороду, и заворачиваться под ворот костюма, на лицо одевается маска во избежание попадания частиц и капель в окружающую среду; на руки одевают стерилизованные без сыпучих материалов перчатки из каучука или пластичных материалов, на ступни - стерилизованную или продезинфицированную обувь, включая бахилы. Низ брюк подворачивают в обувь (как и рукава костюма - в перчатки). От защитной одежды не должны попадать в воздух частицы и волокна, а сама она должна задерживать частицы, исходящие с тела оператора. Указанная одежда должна быть разового использования или использоваться в течение одного дня, если результаты проверки подтверждают такую возможность. Перчатки рекомендуется постоянно дезинфицировать во время операций, маски и перчатки необходимо менять перед каждой рабочей процедурой. Стерильную зону желательно проектировать таким образом, чтобы все операции можно было наблюдать извне. В рабочих зонах таких помещений все открытые поверхности должны быть гладкими, непроницаемыми, неразбитыми, удобными для очистки и дезинфекции, где и когда это необходимо, без труднодоступных выступов и углублений, полок, шкафов, излишнего оборудования, раздвижные двери здесь нежелательны из-за возможности скопления пыли в пазах; сточные и канализационные трубы не должны проходить в стерильных зонах. Комнаты для смены одежды необходимо спроектировать встроить с воздушными шлюзами, снабжающимися стерильным воздухом. Двери с воздушными шлюзами не должны открываться одновременно; между шлюзами должна быть система для визуального или аудиоконтроля (от лат. visis - зрение, audio - слух, слышание). Мытье рук и средства для этого должны быть только в комнате для смены одежды.

В рабочие помещения должен подаваться стерильный воздух под положительным давлением.

В помещениях второго класса чистоты с кратностью обмена воздуха 20-60 следует одевать гладкий (без складок), не отделяющий ворса, комбинезон, стянутый на поясе, с манжетами, плотно облегающими щиколотки ног, на голову необходимо надевать шлем-капюшон, полностью закрывающий волосы, нос и подбородок; на лицо - маску, не отделяющую ворса; на руки - резиновые (или из эластичных полимеров) перчатки: на ноги - стерильную или продезинфицированную обувь, поверх которой рекомендуется надевать бахилы, полностью закрывающие ступню. Нижняя часть брюк должна заправляться в бахилы, а рукава комбинезона - в перчатки. Ни одна часть тела или разрешенного для использования нижнего белья не должна быть открыта.

В помещениях третьего класса чистоты с кратностью обмена воздуха 1-15 рекомендуется одевать не отделяющий ворса комбинезон или куртку с собранными рукавами на запястьях и воротником-стойкой, шапочку или косынку, брюки, бахилы и маску.

В помещениях четвертого класса чистоты рекомендуется надевать комбинезон, или куртку и брюки, или халат, шапочку или косынку из хлопчатобумажных или льняных тканей.

Вот почему важно глубокопродумывать размещение помещений в производственных зданиях (особенно - для стерильных лекарств).

С водой в сферу технологического процесса могут попасть грамотрипателыше бактерии из групп Enterobacter, Pseudomonas и некоторых других. В природных открытых водоемах обнаруживаются целлюлозоразрушающие, нитрифицирующие и денитрифицирующие бактерии, цианобактерии, аммонификаторы, железобактерии и многие другие. Лишь вода артезианских колодцев, глубоких скважин и родников отличается высокой чистотой. Следует помнить, что чем больше вода загрязнена органическими веществами, тем больше в ней содержится микробов.

По степени загрязненности открытых водоемов различают 3 зоны сапробности (от лат. sapros - гниль, гниение): полисапробная - сильно загрязненная, содержащая в 1 мл несколько миллионов микробных клеток, включая гнилостные и кишечные бактерии: мезосапробная - умеренно загрязненная, содержащая в 1 мл до 100000 микробных клеток с преобладанием аэробных видов; сапробная- зона чистой воды, содержащей в 1 мл не более 1000 -микробных клеток из представителей железо-, серобактерий и некоторых других видав, Полисапробные зоны характерны для рек, протекающих по населенным пунктам или вблизи них, и где в воду попадают жидкие отходы из крупных свиноводческих ферм, канализационные стоки и стоки промышленных предприятий. В такой воде могут быть санитарно-показательные (Е. coli, Streptococcus faecalis), условно патогенные Pseudomonas, Proteus и другие виды, а также болезнетворные микроорганизмы из группы энтеробактерий.

 

25.Аппаратурное оснащение процессов выделения и очистки продуктов микробного синтеза.

На стадии выделения продукта главная задача — отделить основную часть продукта, пусть даже и с некоторыми примесями. Получается как бы неочищенный продукт. Поэтому, когда необходимо получать биопродукты высокой кондиции, добавляют еще стадию очистки продукта. Задача этой стадии — убрать примеси и сделать продукт максимально чистым.

Эта задача решается с помощью разнообразных процессов, в которых многие из тех, что уже были рассмотрены ранее (экстракция и экстрагирование, адсорбция, ионный обмен, ультрафильтрация и обратный осмос, ректификация и ферментолнз). Кроме этих процессов используют и следующие.

Хроматография— процесс, напоминающий адсорбцию. На твердом сорбенте собираются растворенные вещества, но не одно, а несколько, часто близких по структуре. Например, смеси белков, нуклеотидов, сахаров, антибиотиков. При адсорбции они и абсорбируются вместе. А вот при хроматографии они выходят из сорбента как бы по очереди, что и позволяет их разделять и, значит, очищать друг от друга.

Диализ— процесс, в котором через полупроницаемую перегородку могут проходить низкомолекулярные вещества, а высокомолекулярные остаются. Путем диализа осуществляют очистку вакцин и ферментов от солей и низкомолекулярных растворимых примесей.

Кристаллизация.Этот процесс базируется на различной растворимости веществ при разных температурах. Медленное охлаждение позволяет формировать кристаллы из растворов целевых продуктов, причем чистота их обычно очень высока. Вся «грязь» остаётся в маточном растворе. Таким образом, например, получают кристаллы пенициллина.

Можно даже получить еще более чистый продукт, если кристаллы растворить в воде или растворителе, а потом снова кристаллизовать (т. е. провести процесс перекристаллизации).

 

26. Основные технологические схемы выделения целевого продукта в зависимости от его локализации. Примеры.

26.Схемы выделения целевого продукта в биотехнологическом производстве существенно различаются в зависимости от того, накапливается продукт в клетке или он выделяется в культуральную жидкость, или же продуктом является сама клеточная масса (общая схема выделения на рис 1). Наиболее сложно выделение продукта, накапливающегося в клетках. Для этого клетки необходимо отделить от культуральной жидкости, разрушить (дезинтегрировать) и далее целевой продукт очистить от массы компонентов разрушенных клеток. Выделение продукта облегчается, если он высвобождается (экскретируется) продуцентом в культуральную жидкость.

Предварительная обработка

сепарация

дезинтеграция

экстракция

экстракция, хроматограция, центрифугирование

хроматограция, центрифугирование,

электрофорез

Рисунок 1. Общая схема выделения БАС на заключительной стадии биотехнологического производства.

Одним из первых этапов на пути к очистке целевого продукта является разделение культуральной жидкости и биомассы - сепарация. Иногда сепарации предшествует специальная обработка культуры - изменение рН, нагревание, добавление коагулянтов белков. Существуют различные методы сепарации (флотация, центрафугирование, фильтрование), которые будут подробно рассмотрены в соответствующих разделах.

В данном разделе остановимся на методах гомогенизации (дезинтеграции) клеток или других образцов животного и растительного происхождения.

 

27. Основные принципы культивирования микроорганизмов. Характеристика.

Принципы культивирования микроорганнзмов. С момента внесения микробов (засева) в питательную среду имеет место индукция их физиологической активности, особенно — в логарифмическую и/или стационарную фазы размножения. При этом одновременно сопряженно протекают многие реакции, катализи-руемые иммобилизованными или свободными ферментами. В реакции, особенно — на первых зтапах, нередко вовлекаются высокомолокулярные вещества с определенной конфигурацией молекул (сравнить такие источники утлерода как глюкоза и крахмал или источники азота—аммония сульфат, какая-либо аминокислота и нативный белок). Поэтому следует учитывать специфику выращивания микроорганизмов.

Главные особеиности культивирования микробов в целях получения большинства первичиых и вторичных метаболитов следующие;

1) необходимость применения специальных биореакторов вместимостью 63, 200, 1000 и более м3, в которых возможно поддержание асептических условий в течение сравнительно длительного времени;

2) видовые различия биообъектов, с которыми связаны специфические характеристики питательных сред, кардииальные точки (минимальные, оптимальные и максимальные) температуры и рН;

3) невозможность одновременного поддержания постоянства критериев химического, теплового, диффузионного и гидродинамического подобия, с чем связаны трудности масштабирования биотехнологических процессов;

4) различия в массообмеиных процессах у аэробов и анаэробов — культивирование аэробов осуществляют в трехфазных системах ["твердое тело (клетки)-жидкость-газ"], анаэробы выращивают в виде двухфазных систем ["твердое тело (клетки)-жидкость"];

5)необходимость неремешивания культуральньгх жидкостей в целях улучшения массообмена (кислорода воздуха для аэробов — прежде всего), а это, в свою очередь, индуцирует пенообразование и, как следствие, диктуетнеобходимость прибегать к пеногашению;

6) микроорганизмы чувствительны к воздействию механических, физических и химических факторов;

7) при микробном синтезе целевых лродуктов имеют место индукция, активация, ингибирование, репрессви и некоторые дру-гие регуляториые процессы, усложняющие в целом регуляцию размножения продуцсита и биосинтез им конечного продукта;

8) скорость биосинтеза целевых продуктов более медлеиная по сравнению со скоростями химического синтеза;

9) отдельные виды микроорганизмов, используемых в биотех-нологических процессах, являются болезиетворными и работа с ними должна проводиться с особой тщательностью (дифтерийные и столбнячные палочки, микобактерии туберкулеза, холерный вибрион и др.);

10) некоторыс представители микробного мира должны культивироваться только на (в) живых тканях/клетках (куриные эмбрионы, клетки человека и животных и т. д.); к таким представителям можно отнести вирусы, риккетсии.

Любой биотехнологический процесс реализуют условно в два этапа. Первый из них — предферментация, когда необходимо выполнить все подготовительные работы для реализации второго зтала — ферментации, то есть накопить и выделить целевой продукт.

Предферментация

Это этап включает подготовку питательных сред, биообъекта, воздуха для аэробов и биореактора. Компоненты питательных сред подбирают на основании расчета материального баланса, связанного с трансформацией того или иного источника питания в клеточную биомассу и/или метаболит при учете расхо-дуемой (выделяемой) энергии. Обычно качественный и количественный составы питательных сред указаны в регламентной документации.

Питательные среды, испольэуемые на подготовительном этапе, могут несколько отличаться от среды, применяемой на втором этапе. Так, например, при пересеве лиофильно высушенной ма-точной культуры обычно рекомендуют обогащенные питательными ингредиентами жидкие среды. Последующие пересевы осуще-ствляют вначале на агаризованную ферментационную среду, а затем — на жидкую.

На всех этапах подготовки биообъекта питательные среды перед их засевом должны быть сгерильными. Биообъект, или промышленный штамм в идеале должен удовлетворять основным требованиям:

1) стабильность структурно–морфологических признаков и физиологической активности при длительных хранении и эксплуатацйи в производстве;

2) повышенные скорости роста и биосинтеза целевого(-ых)продукта(-ов) в лабораторных и проигтодственных условиях;

3) достаточно широкий диапазон устойчивости к воздействию неблагоприятных внешних факторов (колебания температуры, рН, аэрация, перемешивание, вязхость срсды);

4) умереиная требовательность к ограниченному числу источников питания; чем более широкий набор источников углерода, азота и других элементов может использовать проиэводственный штамм, тем легче его культивировать и с большей экономической выгодой.

В действительности каждыЙ штамм имеет свои особенности и не по всем показателям отвечает вышелеречисленным требованиям. Как правило, чем богаче усвояемыми ингредиентэми питательная среда, тем лучше растет и метаболизирует на(в) ней микроорганизм. Уже многие годы используют кукурузный экстракт в качестве добавки к питательным средам, поскольку он богат не только источниками углерода и азота, но также микроэлемеитами и витаминами. Сухие вешества в нем составляют 45—55%, в их состав входят зольные вещества —. 1,5—4,5%.

Не менее часто применяют дрожжевой экстракт из клеток Saccharomyces cerevisiae, богатый различными веществами —аминокислотами (аргинином — 5%, валином — 5,5%, гистидином — 4%, изолейцином — 5,5%, лейцином — 7,9%, лизшюм — 8,2%, метионином — 2,5%, тирозином — 5%, треонином — 4,8%, трипто-фаном — 1,2%, фенилаланином — 4,5%, цистином — 1,5%) и витаминами (биотином — 0,06%, инозитом — 0,3%, кальция пантотенатом — 0,01%, кислотой р-аминобензойной — 0,016%, кислотой никотиновой — 0,059%, кислотой фолиевой — 0,001%, пиридоксина монохлоридом — 0,002%, рибофлавином — 0,01%, тиамина монохлоридом - 0,017%, холянхлоридом — 0,27%) в расчете на сухое вещество. К тому же в биомассе клеток дрожжей содер-жится до 50% белков.

Вместо экстракта можно лобавлять автолизат или гидролизат дрожжей.

Объемное и дозирующее оборудование для измерения, транспортировки и загрузки биореакторов аналогично оборудованию, применяемому, например, в пищевой (или вхимической) промыш-ленности: различных типов весы, насосы (например, вакуумные), транспортеры (ленточные, шнековые), элеваторы, контейнеры и др. Газообразные и жидкие продукты обычно подают в биореакторы по системам стерильных трубопроводов. В крупномасштаб-ном производстве питательиыс среды и некоторые их компоненты стерилизуют нагреванием и/или фильтрованием чсрсз пористые мембраны. Тепловая стерилизация может быть периодической и непрерывной; в биотехнологии применяют оба вида стерилизации.

В случае получения лекарствениых средств, например, антибиотиков для парентерального введения, необходима исключительно высокая степень стерильиости питательных сред и целевых про-луктов. При этом необходимо стремиться снизнть, например, вероятность выживания бактериальиых спор до всличииы менее 10–12, исходя из уравнения:

Понятно, что перед засевом биообъекта стерильными должны быть и питательная среда и биореакторы. Стерилизацию биореакторов часто проводят одновременно со стерилизацией питательной среды в них.

Подготовку биообъектов проводят согласно прилагаемым к регламентам инструкциям. В заводской или цеховой лаборатории должна быть подготовлена культура для последующей наработки инокулюма (инокулята), или поссвного материала. В этих целях исходный штамм микроорганизма, сохраняемый в условиях, близ-ких к анабиозу или анабиоза (высушенным в стерильной почве, песке, на пшене, путем лиофилизации, или сублимационной суш-ки) оживляют прсле добавления стерильной жидкой питательной среды с последующим высевом на уплотненную питательную среду. Убедившись в подлинности и чистоте культуры (культура называется чисток, если родительские и дочерние клетки в ней практически неразличимы и между ними нельзя установить род-ственные связи), операции по пересеву штамма на среду возраста-ющих объемов (площади) повторяют нссколько раз и проводят в асептических условиях, переходя от пробирок к колбам, помещаемым на качалочные устройства (шотгель-аппараты).

Последующую подготовку биооб-ьекта осуществляют в цсхе, используя неболыиие ферментаторы-инокуляторы, в которых наращивают посевной материал ддя промышленных ферментаций. При этом одноклеточные культуры чаще доводят до середины — окончания Log-фазы, то есть когда клетки делятся синхронно. Известно понятие степень синхронизации, то есть степень участия клеток популяции в синхронном делении (О.Шербаум, 1959—1960), выражающаяся в индексе синхронизации (Is):

При необходимости синхронизацию деления можно индуцировать, например, метаболическим шоком (предварительный посев культуры на голодные среды), температурным шоком (смена температур, в частности, пониженных в начале на оптимальные в последующем), или используя одинаковые ио размеру клеткн, механически разделенные, например, фильтрованием (селективные методы) и т. п.

В зависимости от плотности суспензии ее необходимое количество может достигать 1—20% объема производственного ферментатора. Для аэробных микроорганизмов в инокулятор доставляют очищенный стерильный воздух.

Ферментация

Второй зтап биотехнологического процесса, называемый ферментацией. проводят в производственных биореакторах. По биохимической сущности он во многом имитирует предферментацию и поэтому названный термин является условным. Тем не менее, он принят на практике и в специальной литературе и не нуждается в каких-либо дополнительных пояснениях.

В процессе ферментации также необходимо использование стерильных питательных сред, воздуха и биореакторов, выбор которых обусловлен особенностями культивируемых микроорганизмов.

Микроорганизм в виде суспензии определенной плотности подают из инокулятора(-ов) в промышленный биореактор, или ферментатор, в котором содержится стерильная жидкая питательная среда. При этом не должно произойти попадания каких-либо посторонних микробов в питательную среду вместе с продуцентом — все соединения системы должны бьпъ герметично закрытыми.

Общий объем ферментатора заполняют инокулированной средой на 70—80%, 20—30% объема заполняют газами (инертным — для анаэробов, воздухом — для аэробов).

Аэрация жидкости способствует пенообразованию, снижающему качестяо ферментации, поэтому используют пеногашение либо механическое (установка в верхнеи части ферментатора специальной дополнительной мешалки), либо физико-химическое (использование ПАВ для снижения поверхностного натяжения на границе раздела фаз "газ-жидкость'').

Длительность ферментаций колеблетея в пределах от 4—5 до 14 суток и дольше, что зависит от особенностей физиологической активности биообъектов. Применительво к биосинтезу антибиотиков и экзогликанов периодические ферментации проводят обычно в течение 4—5 суток.

 

28. Брожение как разновидность биологического окисления. Спиртовое брожение

Броженне — это одна из разновидностей биологического окисления субстрата у гетеротрофных микробов в целях получения энергии, когда акцептором электронов или атомов водорода является органическое вещество. Биотехнологические бродильные процессы изучеиы давно в сравнении, например, с биотехнологией антибиотиков, аминокислот и друтих продуктов. Однако некоторые брожения реализованы на практике относительно недавно, например, брожения с участием Zymomonas spp.

В основе многих бродилъных процессов лежит универсалъная реакция превращения глюкозы (источник углерода) в ключевой промежуточный продукт (интермедиат) — пировиноградную кислоту, или пируват, из которого синтезируются различные конечные продукты. По метаболиту, образующемуся в наибольшем количестве, называют соответствующее брожение: сннртовос, масляно-кислое, молочнокислое, и т. д.

Спиртовое брожение лежит в основе получения этилового спирта, кормовых и пищевых дрожжей, пивоварения и виноделия. Возбудителями спиртового брожения могут быть дрожжи — сахаромицеты, некоторые мицелиальные грибы (Aspergillus oryzae) и бактерии (Erwinia amylovora, Sarcina ventricula, Zymomonas mobilis, Z. anaerobia). Среди названных организмов дрожжи занимают ведущее место, а получение с их помощью этанола относят к разряду наикрупнейших в мире. Эганол используют в различных отраслях народного хозяйства: то как растворитель, то как сырье для химического синтсза, широко используют в медицине, и т. Д.

Специальные штаммы Saccharomycos cerevisiae рекомендованы как биообъекты в производстве этанола (на африканском континенте чаще применяют Schizosaccharomyces pombe и S. octospoms). Штаммы подразделяют в свою очередь на расы верхового и низового брожений, а по способности к флокуляции — на хлопьевидные и пылевидные. Расами верхового брожения являются спиртовые, хлебопекарные и некоторые пивные дрожжи, расами низового брожения — большинство винных и пивных дрожжей. Клетки обеих рас могут быть подвержены флокуляции. При этом следует помнить, что пылевидные дрожжи находятся в диспергированном состоянии в течение бродильного процесса. Они менее стойки к автолизу, но более полно сбраживают сусло; хлопьевидные — оседают на дно или всплывают на поверхность, они более выраженные ароматизаторы.

В отличие от S. cerevisiae аэротолерантные бактерии Z. mobilis меньше чувствительны к этанолу, у них отсутствует катаболитная репрессия, а удельная скорость потребления глюкозы и образования этанола в 2—3 раза выше (qC2H5OH= 1,87 г/г»ч). Катаболизм глюкозы протекает по Энтнеру-Дудорову. Однако скорость размножения зтой бактерии низка и продуктивность по спирту не столь высока. Здесь остается резерв надежд на позитивные результаты генетико-селекционной работы с продуцентом.

Значительный интерес представляет S. sosei, Эги дрожжи способпы образовывать этанол при использовании топинамбура (земляная груша), в котором из углеводов содержится преимуществен-но инулин, сбраживаемый после гидролиза до этанола. Топинамбур хорошо растет даже в северных регионах на бедных супесчаных почвах.

 

 

29. Получение спирта и других продуктов брожения с использованием микробиотехнологическихпроцессов.

В качестве сырья для производства этанола в рааличш jx странах исполідуют доступные растительные источники: зерновые, карто-фель и свекловичная меласса — в России, Украине, Беларуси; сахарозу и тростниковую мелассу — в США, рис — в Японии и т. д. Вприндипелюбой источникгексозановможетбытьиспользован в качестве сырья для получения этилового сгшрта, например, целлюлоза в древесине хвойных, соломе, торфе и пр. Поэтому сульфитные щелока — отходы целлюлозно-бумажной промышлен-ности нашли широкое применение в производстве этилового спирта.

Первым делом необходимо трансформиро-вать крахмал в глюкозу, чего добиваются при обработке сырья амилолитическими ферментами. На практике обычно применяют грибную амилазу (Aspergillusniger, A.oryzae и др.) или пророщенное зерно (солод).

Крахмал для получения этилового спирта может быть различ-ного ироисхожАения (картофельный, кукурузный, пшеничный, рисовый). Крахмалистое сырье предварительио дробят (измельча-ют), применяя для этого вальцовые, молотковые или друтио дро-билки. Крахмал необходимо клейстеризовать при разваривании. Например, пшеница и пшеничная круичатка способны полностью клейстеризоваться при 68*С в течение 30 мин. Крахмал затем должен быть гидролизован до низших сахаров (моноз, биоз), поскольку более высоко полимеризованные углеводы не сбражи-ваются дрожжевыми организмами. В качестве гидролизующих агентов применяют соответствующие ферментиые препараты из нитчатых грибов или солода. Крахмал состоит из амилозы и амилопектина. Неразветвленная амилоза почти полностью гидро-лизуется до биозы — мальтоэы, тогда как разветвленный амило-иектин і-идролизуется лишь частично — до декстринов, медленно разлагаемых дрожжами до мальтозы в процессе брожения.

Кроме сахаров и декстринов в заторах обычно содержатся аминокислоты, пептиды, макро- и микроэлементы в виде неорга-ннческих солей (фосфор — еще и в виде фосфорорганических соединений).

Сбраживание затора рсуществляется с помощью чистых куль-•гур либо периодическим, либо непрерывным способом. Огноси-тельно высокие началыіые коііцентрации сахаров и декстринов в заторах неблагоприятны для бактерий — контамииантов из-за повышснного осмотического давления. Позже, когда осмотическое давление снижается, образующийся этанол и естественно возра-стающая или искусственио создаваемая подкислением серной кислотой) кислотность средьі (рН 3,8—4,0) выступают основными факторами, предотвращающими развитие контаминирующихбак-терий.

В период брожения поллсрживают темпрературу от 30"С до 38°С, (в зависимости от расы дрожжей).

На сбраживание затора влияют не только вид и раса дрожжей, температура и рН, но и конструктивные особенности фермента-ционных аішаратов (система охлаждения/нагрева, способ и интен-сивность перемешивания). Длительность сбраживания составляот в среднем от 1,5 до 3 суток.

В бражке наканливается от 1—-1,5% до 6,5—8,5% этанола; его перегоняют и ректифицируют до 96%. Кроме того, в бражке содержатся так называемые "сивушные масла" (высококипящая фракция;—90"—150"С) и5—10%альдегидовсэфирами. Сивушные масла прслставляют собой смесь изопроиилового и н-пропилового, изобутилового и н-бутилового, изоамиловых (2-метил- и 3-метил-бутанолы) спиртов. Доля последних двух обычно составляет 50%; в сивушных маслах находят также В -фенил- и р-оксифенилэтило-вые спирты.

Исходя из расчетов по содержанию крахмала на сухое веще-ство, различные сорта кукурузы, пшеницы, риса, сорго накапли-вают в среднем 65—75% крахмала, из которого можно получить до 45 дкл этанола.

Отходамн пронзводства являются барда и диокснд углерода. Барду используют для откорма скота и птиц, диоксид углерода — в пищевой промышленности, например, в виде "сухого льда".

Этанол можно получать также при сбраживании гндролизатов древесных н травянистых растений, содержащих целлюлозу. В таких гидролизатах обычио содержится 2—3,5% редуцирующих сахаров (преимущественно — гексозы и, меньше, пентозы, в большем количестве присутствующие в гидролизатах древесины лиственных растений).

Применив методы генетической инженерии, удалось включить в дрожжи Schizosaccharomycos pombe іен, кодирующий биосинтез фермента ксилозоизомеразы. Этот фермент катализирует реакцию превращения D-ксилозы в D-ксилулезу. Векторной системой при этом была "ксилозоизомеразная" плазьшда Escherichia coli.

В качестве сырья для производства этанола в рааличш jx странах исполідуют доступные растительные источники: зерновые, карто-фель и свекловичная меласса — в России, Украине, Беларуси; сахарозу и тростниковую мелассу — в США, рис — в Японии и т. д. В приндипе любой источникгексозановможетбытьиспользован в качестве сырья для получения этилового сгшрта, например, целлюлоза в древесине хвойных, соломе, торфе и пр. Поэтому сульфитные щелока — отходы целлюлозно-бумажной промышлен-ности нашли широкое применение в производстве этилового спирта.

Первым делом необходимо трансформиро-вать крахмал в глюкозу, чего добиваются при обработке сырья амилолитическими ферментами. На практике обычно применяют грибную амилазу (Aspergillusniger, A.oryzae и др.) или пророщенное зерно (солод).

Крахмал для получения этилового спирта может быть различ-ного ироисхожАения (картофельный, кукурузный, пшеничный, рисовый). Крахмалистое сырье предварительио дробят (измельча-ют), применяя для этого вальцовые, молотковые или друтио дро-билки. Крахмал необходимо клейстеризовать при разваривании. Например, пшеница и пшеничная круичатка способны полностью клейстеризоваться при 68*С в течение 30 мин. Крахмал затем должен быть гидролизован до низших сахаров (моноз, биоз), поскольку более высоко полимеризованные углеводы не сбражи-ваются дрожжевыми организмами. В качестве гидролизующих агентов применяют соответствующие ферментиые препараты из нитчатых грибов или солода. Крахмал состоит из амилозы и амилопектина. Неразветвленная амилоза почти полностью гидро-лизуется до биозы — мальтоэы, тогда как разветвленный амило-иектин і-идролизуется лишь частично — до декстринов, медленно разлагаемых дрожжами до мальтозы в процессе брожения.

Кроме сахаров и декстринов в заторах обычно содержатся аминокислоты, пептиды, макро- и микроэлементы в виде неорга-ннческих солей (фосфор — еще и в виде фосфорорганических соединений).

Сбраживание затора рсуществляется с помощью чистых куль-•гур либо периодическим, либо непрерывным способом. Огноси-тельно высокие началыіые коііцентрации сахаров и декстринов в заторах неблагоприятны для бактерий — контамииантов из-за повышснного осмотического давления. Позже, когда осмотическое давление снижается, образующийся этанол и естественно возра-стающая или искусственио создаваемая подкислением серной кислотой) кислотность средьі (рН 3,8—4,0) выступают основными

Прежде чем рассмот-реть конкретные биотехнологические процессы получения орга-нических кислот, необходимо оговориться, что.под рубрику "бро-жения" должно быть отнесено образование в анаэробных условиях только молочной и пропионовой кислот с помощью соответствуЮ-щих бактерий, тогда как биосинтез лимонной, глюконовой, итако-новой и некоторых других органических кислот определенными микромицетами представляет собой разновидность того или иного окислительного (аэробного) процесеа и поэтому отнессние их к брожениям является условным.

Получепие молочной кислопш. Образование молочной кислоты (СНзСНОНСООН) лактобактриями происходит в естественньтх условиях при скисании молока и молочных продуктов, а также прй ее целенаправленном получении в производственных условиях-Молочнокислые бактерии относят к 4 родам: Lactobacilius, Leuconostoc, Streptococcus и Pedicoccus. Род Lactobacillus включает 3 подрода — Thermobacterium, Streptobacterium и Betabacterium. Представители первого из них не растут при 15°С, но могут выдерживать температуры выше 50"С. Стрептобактерии не явля-ются термофилами. Бетабактерии образуют DL-молочную кислоту из глюкозы. Одни из них (термобактерии, стрептобактерии, стреп-тококки и педикокки) являются гомоферментативными, образую-щими при сбраживании гексоз преимущественно молочную кис-лоту, другие (бетабактерии и лейконостоки) — гетерофермента-тивными, образующими молочную и уксусную кислоты, диоксид утлерода, возможно — этанол; молочнокислые бактерии могут использовать мальтоэу, глюкозу, лактозу, осахаренный крахмал и пр. В целом, лактобактерии — требовательны к питательным средам — многие из них нуждаются в ряде витаминов из грутшы В, некоторых аминокислотах, пуринах и пиримидинах, отдельных органических кислотах алифатического ряда (уксусной, лимонной, олеиноиой). Для сбраживания глюкоэы и гидролизатов крахмала на практике применяют обычно Lactobacillus delbrueckii, L. bulgarieus, L. leichmanii (одни или в смеси между собой или со Streptococcus lactis), для сбраживания мальтозы иногда используют L. casei.

В промышленном производстве молочной кислоты обычно используют термофильные гомоферментативные виды, активно синтезцрующие целевой продукт, например, при 50°С. Таким видом яляется L. delbruecku штамм Л-3, отличаюшийся высокими стабильностыо и активностью кислотообразоваиия (выход молоч-ной кислоты составляет 95—98% от потребленной сахарозы). Зтот вид внедрен в промышленность еще в 1923 г. под руководством В. Н. Шапошникова.

Полученце пропионовой кислоты. Пропионовокислое броже-ние характерно для пропионовых бактерий, культивируемих в средах, где глюкоза является источником углерода. Из трех молекул глюкозы образуется 4 молекулы лропионовой кислоты, 2 молекулы ухсусной кислоты, 2 молекулы диоксида углерода и 2 молекулы водьг.

 

30. Ацетонобутиловое брожение представляет собой превращения углеводов бактериями с образованием ацетона и бутилового спирта. При этом брожении, кроме ацетона и бутилового спирта, вырабатываются также масляная и уксусная кислоты, водород и углекислый газ.

В ацетонобутиловом брожении наблюдаются две фазы: первая - кислотная, во время которой усиленно размножаются бактерии, а в среде накапливаются масляная и уксусная кислоты, и вторая - ацетонобутиловая, в ней уменьшается кислотность и происходит усиленное накопление ацетона, бутилового и этилового спиртов. В зависимости от условий брожения, т. е. подавляя какую – либо фазу брожения, можно получить усиленное накопление тех или иных продуктов. Следовательно, ацетонобутиловое брожение отличается от маслянокислого: при маслянокислом брожении накапливающиеся кислоты постепенно замедляют процесс кислотообразования и даже останавливают его, а при ацетонобутиловом – образовавшиеся кислоты потребляются бактериями и превращаются в другие вещества.

 

32.Единая система GLР, GСР и GМР в производстве лекарственных препаратов. Особенности СМР в биотехнологическом производстве.

В целях организации качественного проведения доклинических испытаний лекарственных и других биологически активных веществ (пищевых добавок, агрохимикатов и др.) в промышленно развитых странах (Англия, Германия, США, Фран-ция, Япония и др.) утверждены единые правила системы GLP (Good Laboratory Practice). Существует группа GLP в Европейском Центре по экологии и токсикологии химической промышленности; в США система GLP действует с июня 1979 г. Главными в такой системе являются следующие основные действия:

1) заблаговременная разработка стандартной методики проведения испытаний, или SOP (Standard Operating Procedure) применительно ко всем ее эталам;

2) назначение руководителя и ответственных за каждьгй вид испытаний;

3) каждому ответственному исполнителю поручается строго выполнять все операции в отведенных ему пределах;

4) результаты вьшолнения операций должны быть внесены в специальный протокол, датированы и подписаны;

5) в случае выполнения сложных операций, во избежание ошибок, рекомендуется прибегать к двойной проверке;

6) в установленном порядке исполнитель докладывает руководителю о ходе испытаний. Руководитель должен быть компетентным во всех делах, связанных с испытанием;

7) фактические данные, записи и препараты (вещества) должны храниться в полном порядке таким образом, чтобы всегда можно было отыскать требуемое (необходимое);

8) окончательный отчет по своему содержанию должен отражать свежие и еще не обработанные данные, а также сопровож-даться обсуждением, составленным ответственным исполнителем; на отчете ггоохтавлятбтся дата и подписи (подтверждающие содержание отчета);

9) должна быть служба качественной оценки испытаний —QAU (Quality Assuarance Unit). Лица, занятые в этой службе, обязаны стремиться к тому, чтобы свою внутреннюю инспекцию проводить в установленном порядке и по необходимости выдавать рекомендации направленные на совершенствование процессов проведе-ния испытаний.

На систему GLP опираются в случаях испытания веществ: на микробную обсемененность, на пирогенность; острую, подострую и хроническую токсичность, на специфическую токсичность (кан-церогенность, антигенность, лекарственную зависимйсть, повреждение зародышевых клеток; раздражение слизистых оболочек, кожи и в месте введения вещества; мутагенность, тератогенность — от греч. teratos — чудовище, урод; цитотоксичность), на безопасность ддя макроорганизма при введении in vivo (абсорбция, распределение, скорость выведения, метаболизм); проводят фармако-логические испытания с оценкой фармакокинетики (действие изучаемого лекарственного вещества на организм) и фармакодинамики (изучение силы действия лекарственного вещества).

В связи с необходимостью проведения названных испытаний создают специальные группы: общую (в том числе ддя контроля за гигиеной и санитарией личного состава), микробиологическую, метаболизма, общефармакологаческих испытаний, общих клинн-ческих исследований, патологоанатомическую, проведения экспе-риментов на животных, обработки данных (с включением управления ЭВМ), по приготовлению проб, аналитическую, по управле-нию исследованием и, при необходимости, другие. Во главе каждой группы утверждается руководитель, который не должен совмещать свои прямые обязанности с работой в группе инспекций.

Соблюдение требований системы GLP должно быть подкреп-лено совершенством организации всех вспомогательных служб и достаточным материальным обеспечением. Желательно иметь от-дельное здание для проведения биологических испытаний, где экспериментальные животные размещались бы в помещениях соответствующих классов: ддя гнотобионтов, зараженных, контрольных, предназначенных для работы с радиоизотопами, для карантинизации и т. д.

В работе с животными должны учитываться вее инфекционные заболевания, которые могут сказаться на результатах экспериментов. При этом необходимо иметь в виду и тот факт, что отдельные возбудителй инфекционных заболеваний могут передаваться от человека к животным и наоборот. К их числу относятся вирусы бешенства, лимфоцитарного хориоменингита, шигеллы, некоторые бруцеллы (Brucella canis), сальмонеллы, микобактериитуберкулеза, токсоплазмы (Toxoplazma gondii), дизентерийная амеба.

Одобренный препарат (вещество) после лабораторных пред-клинических испытаний по системе GLP и последующей клинической проверки разрешается к выпуску в условиях промышленного производства. Для обеспечения изготовления высокого качества продукта Всемирная Организация Здравоохранения (ВОЗ) еще в 1968 г. утвердила "Требования для практики качественного производства при изготовлении и контроле качества лекарств и к специалистам в области фармации". Годом позже эти требования, вошедшие. (с небольшими уточнениями и изменениями) в правила системы GMP (Good Manufacturing Practice) были рекомендованы Ассамблеей ВОЗ для международной торговли, а в 1971 г. они были изданы в качестве приложения ко второму изданию Международной Фармакопеи.

GMP — это единая система требований пo контролю качества лекарственных средств с начала переработки сырья до производ-ства готовых препаратов, включая общие требования к помещениям, оборудованию и персоналу. С 1975 г. правила GMP расширены, и они касаются различных химических и биологических веществ в индивидуальном видё, ветеринарных препаратов, применяемъгх в животноводстве; исходных материалов ддя использования в дозированных формах, если они включены в законодательства стран-экспортеров и стран-импортеров; и, наконец, информации о безопасности и эффективности перечисленных веществ, мате-риалов и препаратов.

С учетом издания в 1987 г. руководств Международной Организации Стандартизации (ISO) серии ISO 9000—9004 по системам качества возникла необходимость пересмотреть существовавшие требования GMP. В сентябре 1991 г. на специальной конференции по GMP в г. Москве представлен пересмотренный проект требо-ваний GMP, включающий три части:

1) "Управление качеством в промышленном производстве ле-карственных средств: философия и основные составляющие";

2)"Практика качественного производства и контроль качества";

3) "Дополнительные и вспомогательные направлениян.

Первая часть содержит 12 разделов, касающихся организации контроля за качеством производства, санитарии и гигиены, заклю-чения контрактов, стандартных рабочих методик, оформления необходимой документации и др.

Вторая часть содержит два раздела — производство и контроль качества. Применительно к производству лекарственных средств указано, что оно должно опираться на принцип четкого соблюдения методов ведения технологического процесса согласно норматив-но-технической документации с целью получения продукта требу-емого качества и в соответствии с разрешением на его изготовле-ние и продажу. По возможности избегать любых отклонений от методик или инструкций. При наличии таких отклонений необходимо согласование, разрешение, утверждение и подпись назначен-ногр ответственного лица, а при необходимости — привлечение службы отдела контроля качества.

Операции с различными продуктами не должны выполняться одновременно и последовательно в одном и том же помещения пока не устранен риск перемешивания или перекрестного загряз-нения.

Доступ в производственные помещения должен бытьограничен лишь определенным крутом лиц, занятых в производстве. Избегать изготовления немедицинской продукции в зонах и на оборудова-нии, предназначенных ддя изготовления фармацевтической про-дукции. При работе с сухими материалами и продуктами необхо-димы меры предосторожности ддя предупреждения возникнове-ния, накопления и распространения пылиг что может привести к перекрестному загрязнению изготавливаемых продуктов или к их микробному загрязиению. Микробы могут попадать в воздух и на частицы пыли из обсемененных ими материалов и продуктов при изготовлении, с загрязненных оборудования и одежды, кожн работающих людей. Перекрестное загрязнение может быть пред-отвращено изготовлением каждого целевого продукта в раздельных зонах (пенициллины, живые вакцины и другие БАВ) или, по крайней мере, разделением изготовления их по времени; обеспе-чением соответствующих воздушных шлюзов; ношением защитной технологической одежды; использованием средств эффективной деконтаминации оборудования, стен, и пр.; использованием "закрытых систем" производства и т. д.

Необходимо проверять правильность и надежность сочленения трубопроводов и другое оборудование, используемое для транспортировки продуктов (материалов) из одной зоны в другую. Дистиллированная или деионизированная вода, поступающая по трубам, должна соответствовать санитарно-микробиологическим нормативам. Операции по техническому обслуживанию или ре-монту не должны сказываться на качестве продукции.

Контроль качества продукции касается процесса забора проб, проведения исследований, документации и пр. Все исследования должны проводиться согласно утвержденным инструкциям ддя каждого материала или продукта.

Забор проб осуществляют таким образом, чтобы не загрязнить их или не подвергнуть нежелательному воздействию, сказывающемуся на качестве продукта или, напротив, чтобы отбираемый материал не был токсичным (вредным) для здоровья оператора.

Для каждой партии продукта до выпуска должна иметься лабораторная документация с подтверждением соответствия конечного продукта спецификациям.

Из каждой партии целевого продукта оставляют пробы на хранение при рекомендуемых условиях сроком не менее года, превышающего срок годности. Пробы должны храниться в таком количестве, чтобы можно было при необходимости провести как минимум два повторных исследования.

Третья часть требований GMP включает разделы о стерильных фармацевтических продуктах и практике качественного производства основной массы лекарственных субстанций.

Необходимо помнить о том, что лицаг обладающие повышенной чувствительностью к конкретному веществу — действующему или вспомогательному, не должны включаться в группу исполнителей. Для них допустима работа в отделении или цехе упаковки, где исключен контакт с аллергеном.

В 1991 г. правила GMP утверждены и в нашей стране применительно к производству и контролю качества лекарственных средств. Эти правила соответствуют Международной Системе GMP и включают следующие разделы: введение, терминология, персонал, здания и помещения, оборудование, процесс производ-ства, отдел технического контроля, аттестация и контроль произ-водства; вьеделены требования к стерильным лекарственным сред-ствам и описаны особенности их производства.

Соблюдение правил GMP обеспечивает вьшуск качественных продуктов и гарантирует благополучие потребителей. В 1995 г. ВОЗ утвердилъ GPP (Gооd Pharmacy Practice) по предложению Международной Фармацевтической Федерации (FIP).

 

33. Механизмы регуляции биосинтеза первичных метаболитов.

Разработка технологической схемы получения отдельной аминокислоты полностью базируется на знании путей и механизмов регуляции биосинтеза конкретной аминокислоты. Необходимого дисбаланса метаболизма, обеспечивающего сверхсинтез целевого продукта, добиваются путем строго контролируемых изменений состава и условий среды.

Известно, что в регуляции и управлении метаболическими процессами используется принцип обратной связи. Существуют два уровня (механизма) регуляции биосинтеза конечного (целевого) продукта — ретроингибирование и репрессия. На первом уровне образующаяся в цепи последовательных реакций аминокислота ингибирует активность одного из начальных ферментов собственного синтеза. Если этого механизма недостаточно и конечный продукт (аминокислота) все равно присутствует в избытке, то включается второй механизм регуляции и в результате подавляется (репрессируется) образование всего комплекса ферментов соответствующей биосинтетической цепи на примере биосинтеза аминокислоты лизина:

Производство лизина: По содержанию лизина наименее сбалансированы белки злаковых культур, у которых его дефицит составляет от 20 до 50 %. На территории России недостаток лизина в кормах не может быть восполнен за счет сои, поэтому в нашей стране производство этой аминокислоты было организовано первым.

В клетках микроорганизмов лизин синтезируется из аспараги-новой кислоты и служит конечным продуктом разветвленного метаболического пути биосинтеза, общего для трех аминокислот — лизина, метионина и треонина (рис).

В промышленном производстве лизина в настоящее время используется штамм-суперпродуцент коринебактерий (Corynebacterium glitamicum). Продолжительность ферментации 2 — 3 сут. Уровень накопления целевого продукта составляет 50—100 г/л.

Коринебактерии являются грамположительными, более древними в эволюционном отношении микроорганизмами, отличаются от грамотрицательной кишечной палочки также тем, что у них очень низкая активность внутриклеточных протеиназ, поэтому синтезированные клеткой белки-ферменты долго остаются в активном состоянии.

В процессе новообразования аминокислот из общего предшественника одновременно с лизином возникают две другие аминокислоты — метионин и треонин. В этом случае эффекта накопления в среде всего одной целевой аминокислоты добиваются путем блокирования процессов, ведущих к синтезу побочных аминокислот, возникающих в связи с разветвлением метаболического пути.

Образование лизина в клетке бактерии находится под строгим метаболическим контролем. У типичных продуцентов L-лизина — Brevibacterium flavum и Corynebacterium glutamicum — фермент аспартаткиназа, открывающий метаболический путь, является аллостерическим белком, чувствительным к ингибированию по принципу обратной связи при совместном и согласованном действии побочных продуктов L-треонина и L-лизина. При накоплении треонина и лизина в избыточной концентрации ингибируется аспартаткиназа и их синтез останавливается, при пониженной концентрации любой из двух аминокислот процесс активизируется.

Чтобы добиться образования лизина в больших количествах, \ получают мутанты двух типов. Такие мутанты получают либо воздействием различных мутагенов физической и химической природы на исходную культуру микроорганизма с последующей селекцией штамма по заранее заданным признакам, либо методами генной инженерии.

У мутантов первого типа не синтезируется или не функционирует гомосериндегидрогеназа, в результате чего блокируется синтез метионина и треонина. Такие мутанты являются ауксотрофами по гомосерину или треонину (метионину); внутриклеточная концентрация треонина у них существенно снижена, что снимает блокаду с аспартаткиназы. Поэтому при выращивании мутантных штаммов в среде, где присутствуют лимитирующие концентрации метионина и треонина, они способны образовывать избыточные количества лизина. Мутанты второго типа дефектны по структурному гену, детерминирующему конформа-цию аспартаткиназы. В итоге фермент теряет чувствительность к высоким концентрациям аллостерического ингибитора — лизина.

Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2 — 4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеа-раты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает выделение аминокислот в среду.

Для культивирования штаммов микроорганизмов при производстве аминокислот как источники углерода наиболее доступны углеводы — глюкоза, сахароза и реже фруктоза и мальтоза. Для снижения стоимости питательной среды в качестве источников углерода используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала, сульфитные щелока. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты (до 1,5%), пропионовой кислоты, метанола, этанола (до 1 %) и н-парафинов. В качестве источников азота применяют мочевину и соли аммония (сульфаты и фосфаты). Для успешного развития микроорганизмы нуждаются в стимуляторах роста, в качестве которых выступают экстракты кукурузы, дрожжей и солодовых ростков, гидролизаты отрубей и дрожжей, витамины группы В. Кроме того, в питательную среду добавляют необходимые для жизнедеятельности макро- и микроэлементы (Р, Са, Mg, Mn, Fe и др.). На процесс биосинтеза аминокислот существенное влияние оказывает снабжение воздухом, при этом степень аэрации индивидуальна для производства каждой конкретной аминокислоты. Стерильный воздух подается специальными турбинными мешалками (рис.). Опыты показали, что лизин появляется в культуральной среде начиная с середины экспоненциальной фазы роста культуры клеток микроорганизма и достигает максимума к ее концу. Поэтому на первой стадии технологического процесса формируют биомассу продуцента, которую выращивают в специальных посевных аппаратах в течение суток (рН 7,0 — 7,2; температура 28 — 30 °С), а затем подают в производственный ферментер, заполненный питательной средой. Лизин начинает поступать в культуральную жидкость через 25—30 ч после начала ферментации. По завершении процесса ферментации (через 55 — 72 ч) жидкую фазу отделяют от культуры клеток микроорганизма фильтрованием и используют для выделения из нее лизина.

Высокоочищенные препараты лизина получают после фракционирования фильтрата культуральной жидкости методом ионообменной хроматографии на катионите. С этой целью лизин переводят в форму катиона:

Для данного процесса фильтрат обрабатывают соляной кислотой до рН 1,6 — 2,0 (рН < pKj). Обладая двумя положительно заряженными ионогенными группировками, лизин прочно сорбируется на смоле и элюируется с нее в виде индивидуального соединения 0,5 — 5%-м раствором гидроксида аммония после выхода всех других катионов. Элюат концентрируют в вакууме при температуре 60 °С, переводят в форму монохлоргидрата, после чего высушивают и дополнительно чистят с помощью перекристаллизации.

В результате получают препараты кристаллического лизина 97 — 98 %-й чистоты, которые используют для повышения питательной ценности пищевых продуктов и в медицинской промышленности.

Кроме высокоочищенных препаратов лизина получают иные виды его товарной формы: жидкий концентрат лизина (ЖКЛ), сухой кормовой концентрат лизина (ККЛ) и высококонцентрированные кормовые препараты, характеризующиеся относительно меньшей степенью очистки в сравнении с первым препаратом.

Второй по значимости незаменимой аминокислотой для питания человека и животных является метионин, который получают преимущественно путем химического синтеза, что экономически более выгодно в сравнении с микробиологическим способом.

 

 

34. Механизмы регуляции вторичных метаболитов.

34. Метаболиты вторичные – соединения, часто сложного состава, не являющиеся основными промежуточными соединениями метаболизма клетки, образуются в его тупиковых ветвях. Метаболиты вторичные растений являются, например, алкалоиды. Микроорганизмы образуют вторичные метаболиты, как правило, в период замедления или прекращения активного роста и размножения культур. В качестве вторичных метаболитов микроорганизмы образуют некоторые пигменты, антибиотики, витамины. Большое значение имеет синтез вторичных метаболитов микроорганизмами в процессе формирования гумуса почвы[1].

Каким бы путем ни осуществлялся фотосинтез, в конечном итоге он завершается накоплением энергетически богатых запасных веществ, составляющих основу для поддержания жизнедеятельности клетки и в конечном итоге всего многоклеточного организма. Эти вещества являются продуктами первичного метаболизма. Помимо главнейшей своей функции первичные метаболиты - основа для биосинтеза соединений, которые принято называть продуктами вторичного метаболизма. Последние, часто называемые условно "вторичными метаболитами", целиком "обязаны" своим существованием в природе продуктам, образующимся в итоге фотосинтеза. Следует заметить, что синтез вторичных метаболитов осуществляется за счет энергии, освобождающейся в митохондриях в процессе клеточного дыхания.

Вторичные метаболиты - предмет изучения биохимии растений, но небезынтересно ознакомиться со схемой ( рис. 1 ), на которой показана их биогенетическая связь с прямыми продуктами фотосинтеза.

 

35. Биотехнология и проблемы экологии. Переработка жидких отходов.

Важнейшая проблема экологической биотехнологии — очистка сточных вод. Потребность в воде в связи с ростом городов, бурным развитием промышленности, интенсификацией сельского хозяйства огромна. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300 — 3500 км3, при этом в сельском хозяйстве — 70 % всего водопотребления. Для производств химической, целлюлознобумажной, энергетической промышленности, черной и цветной металлургии и бытовых нужд населения требуется также значительное количество воды. Большая часть этой воды после ее использования возвращается в реки и озера в виде сточных вод.

На современном этапе выделяются следующие направления рационального расхода водных ресурсов: более полное использование и расширение воспроизводства ресурсов пресных вод; разработка новых биотехнологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.

Загрязнение поверхностных и подземных вод можно подразделить на несколько типов:*механическое, сопровождающееся повышением содержания механических примесей и относящееся в основном к поверхностным видам загрязнений; химическое, обусловленное присутствием в воде органических и неорганических веществ токсического и нетоксического действия; биологическое, связанное с наличием в воде разнообразных патогенных микроорганизмов, грибов и мелких водорослей; радиоактивное; тепловое.

Основные источники загрязнения и засорения водоемов — недостаточно очищенные сточные воды промышленных и коммунальных предприятий, крупных животноводческих комплексов, отходы производства при разработке рудных ископаемых (воды шахт, рудников); сбросы водного и железнодорожного транспорта; пестициды и т.д. Загрязняющие вещества, попадая в природные водоемы, качественно изменяют их состав.

Сточные воды содовых, сульфатных, азотнотуковых заводов, обогатительных фабрик свинцовых, цинковых, никелевых руд, содержащие кислоты, щелочи, ионы тяжелых металлов, меняют физические свойства воды (появление неприятных запахов, привкусов и т.д.). Сточные воды нефтеперерабатывающих, нефтехимических заводов, предприятий органического синтеза содержат различные нефтепродукты, аммиак, альдегиды, смолы, фенолы и другие вредные вещества. Вследствие окислительных процессов уменьшается содержание в воде кислорода, ухудшаются ее органические показатели.

Нефть и нефтепродукты — основные загрязнители внутренних водоемов, вод и морей Мирового океана — создают разные формы загрязнения: плавающую на воде нефтяную пленку, осевшие на дно водоемов тяжелые фракции. Вода приобретает токсичеекие свойства и представляет собой угрозу для всего живого: 12 г нефти делают непригодной для употребления 1 т воды. Вредным загрязнителем промышленных вод является фенол, содержащийся в сточных водах многих нефтехимических предприятий. На жизнь населения водоемов пагубно влияют сточные воды целлюлознобумажной промышленности. Окисление древесной массы сопровождается поглощением значительного количества кислорода, что приводит к гибели икры, мальков и взрослых рыб. Сточные вбды, имеющие повышенную радиоактивность (100 кюри на 1 л и более), подлежат захоронению в подземные бессточные бассейны и специальные резервуары.

В значительной степени загрязняют водоемы моющие синтетические средства, широко используемые в быту, промышленности и сельском хозяйстве и парализующие жизнедеятельность бактерий. Пестициды, попадая в водоемы, накапливаются в планктоне, бентосе, рыбе и по цепочке питания попадают в организм человека, действуя отрицательно как на отдельные органы, так и на организм в целом. Сточные воды, содержащие отходы кожевенной и целлюлознобумажной промышленности, сахарных и пивоваренных заводов, предприятий мясомолочной, консервной и кондитерской промышленности, служат причиной органических загрязнений водоемов. Нагретые сточные воды тепловых электростанций вызывают тепловое загрязнение, которое резко изменяет термический режим, отрицательно влияет на флору и фауну водоемов. Возникают благоприятные условия для массового развития в водохранилищах синезеленых водорослей (так называемое «цветение воды»).

Методы очистки сточных вод (механические, химические, физикохимические и биологические). Применение того или иного метода в каждом конкретном случае определяется характером и степенью вредности примесей.

1. Механические методы. Сущность этих методов состоит в том, что из сточных вод путем отстаивания и фильтрации удаляют механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, навозоуловителями, нефтеловушками и т.д. Механическая очистка позволяет выделять из бытовых сточных вод до 60 — 75% нерастворимых примесей, а из промышленных — до 95 %, многие из которых как ценные примеси используются в производстве.

2. Химический метод. В сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химическая очистка уменьшает количество нерастворимых примесей до 95%, а растворимых — до 25 %.

3. Физикохимические методы используют для удаления тонкодисперсных и растворенных неорганических примесей, а также разрушения органических и плохо окисляемых веществ. В арсенал этих методов входят электролиз, окисление, сорбция, экстракция, ионообменная хроматография, ультразвук, высокое давление и др.

4. Биологический метод основан на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов. Для очистки сточных вод используют биофильтры, биологические пруды и аэротенки.

В биофильтрах сточные воды пропускают через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой, благодаря которой интенсивно протекают процессы биологического окисления. В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.

Аэротенки — огромные резервуары из железобетона, в которых очистка происходит с помощью активного ила из бактерий и микроскопических животных, которые бурно развиваются в этих сооружениях, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего с потоком подаваемого воздуха. Бактерии, склеивающиеся в хлопья, выделяют в среду ферменты, разрушающие органические загрязнения. Ил с хлопьями оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, не слипшиеся в хлопья, тем самым омолаживают бактериальную массу ила. Сточные воды сначала подвергают механической, а после химической очистке для удаления болезнетворных бактерий путем хлорирования жидким хлором или хлорной известью. Для дезинфекции используют также ультразвук, озонирование, электролиз и другие методы.

Биологический метрд дает существенные результаты при очистке коммунальнобытовых стоков, а также отходов предприятий нефтеперерабатывающей, целлюлознобумажной промышленности и производства искусственного волокна. Однако он разрушает только относительно простые органические и аммонийные соединения.

Отстой сточных вод и его использование. В зависимости от степени обработки отстой городских сточных вод обычно делят на первичный (необработанный), состоящий из твердых веществ; вторичный — твердые вещества, выделяющиеся после вторичного отстоя, или отстой с биофильтров очистных сооружений; третичный — результат третичного отстоя сточных вод (известь и глина); отстой, перегнивший в анаэробных условиях.

До осушки отстой содержит болыпое количество влаги (до 95 %). После некоторой стабилизации отстоя, которая достигается путем его сбраживания, содержание твердых веществ составляет 30 %.

Доля содержания органической части в городских сточных водах колеблется от 50 % в перегнившем отстое до 70 % в необработанном отстое. Химический состав типичных отстоев составляет: азот (N) — ДО 2 %; фосфсГр (Р205) — 4 %; калий — до 0,5 %. В небольших количествах обнаружены Cd, Cu, Ni, Zn, Hg и Pb. Энергосодержание необработанного отстоя составляет около 16 284 кДж/год. Однако практическое использование отстоя в качестве топлива связано с рядом трудностей: высокое содержание влаги не позволяет использовать отстой без высушивания, на которое расходуется фактически вся выделяемая в процессе его горения энергия. При очистке сточных вод применяют и метановое брожение, которое осуществляется в реакторах (метантенках) в основном двух типов: в реакторах без фиксации биомассы и в реакторах с прикрепленной (фиксированной) биомассой. В качестве подложки, к которой прикрепляется биомасса, используют мелкий песок, окись алюминия и другие носители. В последнее время анаэробное метановое брожение применяют и для детоксикации стоков. Анаэробные бактерии помимо деградации углеводов, липидов, белков, нуклеиновых кислот способны разрушать и многие отходы нефтехимической промышленности, например бензойную кислоту:

6Н5СООН — 15СН4 + 13С02

Адаптированные ассоциации анаэробов деградируют ацетальдегид, ацетон, бутанол, этилацетат, этилакрилат, глицерол, нитробензол, фенол, пропанол, пропиленгликоль, кротоновую, фумаровую и валериановую кислоты, винилацетат, парафины, синтетические полимеры и многие другие вещества.'

 

36. Биотехнология в решении проблем охраны окружающей среды. Переработка твердых отходов.

Твердые отходы вбиотехнологических производствах представляют собой: микробную массу, отделяемую от культурального фильтрата, поступающего на последующие стадии выделения целевого продукта; шламы (от нем. Schlamm — грязь); раститель-ную биомассу после экстракции из нее действующих веществ (а в случае суспензионной культуры, продуцирующей метаболит в питательную среду, отходом являются клетки); остатки куриных эмбрионов при культивировании, налример, вируса гриппа; некоторые тканевые культуры млекопитающих; осадки из сточных вод (ил). Подсчитано, что в коммунальных очистных сооружениях сточные воды от одного горожанина образуют за год около 500 литров ила со средней влажностью 5%. Если городское население в стране составляет 100 млн. человек, то за год накопится 47,5 млн. м3 такого ила. Если сюда приплюсовать почти такое же количество промышленных осадков, включая твердые отходы биотехнологических производств, то необходимо приложить большие усилия и средства для обезвреживания их или утилизации.

Давно освоенными биотехнологическими производствами во многих странах мира являются промышленные способы получения пива, дрожжей, вин и др. На примере лишь пивоварения можно указать, что плотными отходами здесь являются дрожжевые клетки (0,25—0,40 кг на 1 гл. пива), солодовая и хмелевая дробины, белковый осадок из сепараторов. Остатки хмеля (хмелевая дробина) и белка содержат горечи, из-за которых они не употребляются в качестве добавок к рационам кормов для животных. Поэтому такие остатки либо сжигаются (что нерентабельно), либо передаются на биологическое обезвреживание.

При оптимальных средах и аэрации биомасса клеток нитчатых грибов и дрожжей может составить 2,5% в пересчете на сухую массу, причем, около 50% в ней приходится на белки.

В спиртовом производстве отходом является барда, состав которой зависит от качества используемого сырья (зерно, карто-фель). Сугубо усредненные данные по основному составу зерно-картофельной барды представляются следующими: вода — 91— 93%, сухой остаток — 1—9%, в составе которого зольность состав-ляет от 6 до 12%, общий азот 21—23%, липиды — 2—8%, целлюлоза — 9—10%, безазотистые экстрактивные вещества — 50—59%. Отжатая или высушенная барда используется в качестве добавок к корму для сельскохозяйственных животных.

В производстве этанола, пива, хлебного кваса используют солод – пророщенное зерно (ячмень, овес, просо, пшеница, рожь — на спиртовых заводах; ячмень — на пивоваренных заводах; рожь и ячмень — в производстве кваса). В процессах получения солода образуются отходы в форме очисток, сплава, солодовых ростков, которые с успехом используются в животноводстве, а также в целях получения ряда биологически активных веществ (прежде всего — ферментов из солодовых ростков).

Качество плотных отходов в определенной мере диктует выбор метода их обеззараживания. Так, патогенные микробы — продуценты сильных ядов (токсинов) должны быть обезврежены полностью,. и, очевидно, наиболее эффективный способ для этого — сжигание. Если отходом является биомасса клеток стрептомицетов, то их достаточно убить нагреванием с последующим вывозом на фермы, где она может добавляться в корм скоту (например, уплотненный отход в производстве тетрациклиновых антибиотиков, содержащий белки и витамин В12), вноситься в почву в качестве органического удобрения; можно передавать на общего-родские очистные сооружения, а также на метановое брожение.

Если по технологической схеме твердые и жидкие отходы подаются в виде смешанного стока, то вначале осуществляют грубое разделение первых от вторыхг затем производят отжим влаги с последующей передачей уплотненной биомассы клеток на обезвреживание вышеуказанными путями.

Аналогичным образом подходят к плотным отходам растительного или животного происхождения — токсичные из них сжигают, не токсичные, по возможности, отправляют на утилизацию.

При обезвреживании плотных отходов в микробиологических производствах лишь убиванием необходимо иметь в виду антиген-ные особенности такой микробной биомассы (способность вызы-вать образование антител in vivo) — в любом случае необходимо исключить сенсибилизирующее (от лат. sensibilis — чувствитель-ный) действие ее на макроорганизм во избежание возникновения аллергических заболеваний.

В аэротенках очистных сооружений, где происходит обезвре-живание отходов, лимитирующими фахторами выступаютглавным образом качество и площадь биологической пленки, состоящей из микро- и макрофлоры, микро- и макрофауны. В этой связи необ-ходимо быть убежденным, что привносимые твердые отходы, богатые органическими веществами, не приведут к ухудшению работы аэротенков.

При анаэробном метановом брожении практически любые органические вещества (заисключениемлигнина) могутвыступать субстратами, трансформирующимися до метана и диоксида угле-рода. Метан используют в качестве топлива, углекислоту — в пищевой промышленности в виде "сухого льда". Остающийся плотный остаток после метанового брожения (примерно 40% от первоначального количества) представляет собой гумус, который используют в качестве удобрения при возделывании сельскохозяйственных культур растений. По ориентировочным расчетам, переработка органических отходов в нашей стране могла бы дать 37 млн. т условного топлива в год. На крупнейшей в стране Московской очистной станции ежесуточно перерабатывается 28 тыс. м3 актив-ного ила с получением 700 тыс. м3 биогаза.

 

37. Биологические, физико-химические и другие методы рекуперации и обезвреживания выбросов в атмосферу.

На некоторых стадиях биотехнологического производства, если не на всех, имеет определенные стоки и выбросы в атмосферу. Очистка этих стоков и выбросов — специальная задача, которая обязательно должна решаться в наше экологически неблагополучное время. По существу очистка стоков — это отдельное биотехнологическое производство, имеющее свои подготовительные стадии, биотехнологическую стадию, стадию отстаивания биомассы активного ила и стадию дополнительной очистки стоков и переработки осадка. Очищенная вода иногда может быть возвращена в основное производство. Так организована, например, безотходная технология получения кормового белка из парафинов нефти. На заводе в г. Кириши после создания такой схемы удалось полностью ликвидировать технологические стоки в реку Волхов, а реально — просто заглушить трубопровод большого диаметра. И свежая вода стала забираться из реки Волхов только для компенсации потерь воды за счет испарения из градирен и с готовым продуктом (кормовой белок имеет влажность до 10%).

 

38. Инсулин. Источники получения. Рекомбинантный инсулин человека. Синтез А- и В- цепей. Биотехнологическое производство рекомбинантного инсулина.

Инсулин синтезируется β-клетками островков Лангерганса поджелудочной железы; 70% мРНК, выделенных из этих клеток, кодируют именно этот белок.

Человеческий инсулин - полипептид с м.м. 5808, состоящий из 51-й аминокислоты, которые образуют две соединенные дисульфидными мостиками полипептидные цепи (одна цепь состоит из 21 аминокислоты, так называемая цепь А; другая - из 30 аминокислотных остатков, так называемая цепь В). Аминокислотный состав цепей видоспецифичен. Предшественник инсулина продуцируется внутри Р-клеток посредством ДНК- и РНК-управляемого синтеза. Длинная цепь проинсулина в аппарате Гольджи упаковывается в гранулы, где в результате гидролиза удаляются четыре аминокислоты с образованием инсулина и связывающего пигмента, называемого С-пептидом. Инсулин и С-пептид в эквивалентных концентрациях секретируются в ответ на все стимуляторы секреции инсулина (глюкозу, маннозу и некоторые аминокислоты - лейцин, аргинин). Выделяется также небольшое количество нативного или частично гидролизованного проинсулина, который оказывает некоторое гипогликемическое действие. В гранулах β-клеток инсулин депонируется в виде кристаллов, состоящих из двух атомов цинка и шести молекул инсулина. В целом, человеческая поджелудочная железа содержит до 8 мг инсулина, что со-ставляет приблизительно 200 биологических «единиц» (количество единиц определяют по массе препарата; существующий инсулиновый стандарт, используемый в аналитических целях, составляет 28 ЕД/мг).

Инсулин обладает мощным действием, охватывающим биосинтез нуклеиновых кислот, белков, обмен углеводов, липидов, продукцию высокоэнергетических соединений. Инсулин регулирует углеводный обмен, усиливает усвоение тканями глюкозы и способствует превращению ее в гликоген, облегчает проникновение глюкозы в клетки тканей. Будучи специфическим средством терапии сахарного диабета, инсулин снижает гипергликемию и глюкозурию, пополняет депо гликогена в мышцах и печени, уменьшает образование глюкозы, снимает диабетическую липемию, улучшает общее состояние больного. Единственное отличие больного человека от здорового в том, что здоровые получают этот гормон благодаря собственной поджелудочной железе, больные - из рук государства.

Сахарным диабетом I типа - инсулинзависимым диабетом (ИЗСД) -официально больны свыше 3 млн российских граждан, «неофициально» - до 10 млн. Известно, что ИЗСД (тяжелая форма, при отсутствии лечения приводящая к кетозу), наряду с сердечно-сосудистыми и онкологическими заболеваниями занимает одно из ведущих мест по медико-социальной значимости и является причиной ранней инвалидности и высокой смертности. Диабет II типа - инсулиннезависимый (ИНЗСД) включает более легкие формы диабета. Диабетом этого типа чаще болеют тучные люди.

История открытия инсулина связана с именем русского врача И.М. Соболева (вторая половина 19 в.), доказавшего, что уровень сахара в крови человека регулируется специальным гормоном поджелудочной железы.

В 1922 г. инсулин, выделенный из поджелудочной железы животного, был впервые введён 10-летнему мальчику (Торонто), больному диабетом. Результат превзошёл все ожидания, и уже через год американская фирма «Еіі Lilly» выпустила первый препарат животного инсулина. Поджелудочная железа крупного рогатого скота (КРС) и свиней поставляется бойнями, где опытный персонал по разработанной методике извлекает железы из туш, их быстро замораживают (оптимальная температура -70 °С) и в вагонах-рефрежераторах направляют на фармацевтические предприятия, где экстрагируют гормон. Масса поджелудочной железы КРС составляет в среднем 200-250 г, для получения 100 г кристаллического инсулина требуется 1000-1200 кг исходного сырья. Бычий (говяжий) гормон, в отличие от свиного, обладает несколько большей антигенностью для человека. После получения первой промышленной партии инсулина в последующие несколько лет пройден огромный путь его выделения и очистки, в результате гормон стал доступен для лечения больных сахарным диабетом 1 типа. Для адекватного контроля уровня глюкозы в крови инсулин нужно было вводить подкожно 4 раза в сутки.

В 1935 г. датский исследователь Хагедорн оптимизировал действие инсулина в организме, предложив пролонгированный препарат - протамин-цинк-инсулин (вводили один раз в сутки).

Первые кристаллы инсулина были получены в 1952 г.; развитие методов очистки гормона (иммуноэлектрофорез, ВЭЖХ) от других гормональных веществ (глюкагона - антагониста инсулина и соматостатина, последний подавляет выделение инсулина и глюкагона) и продуктов деградации инсулина позволили получить гомогенный инсулин, назьіт ваемый однокомпонентным.

В 1954 г. английский биохимик Г. Сенджер получил Нобелевскую премию за расшифровку структуры инсулина.

Синтез обеих цепей инсулина и соединение их дисульфидными связями был проведён в 1963-1965 гг. В начале 70-х гг. советскими учёными А. Юдаевым и С. Швачкиным был предложен химический синтез инсулина. Осуществить в промышленном масштабе столь дорогостоящий и сложный синтез полипептидного гормона, состоящего из десятков аминокислотных остатков, нерентабельно, в том числе и по причине малого выхода.

В 70-е гг. 20 в. шло прогрессирующее улучшение степени очистки инсулинов, что уменьшило проблемы, обусловленные инсулиновой аллергией, нарушениями работы почек, расстройством зрения и иммунной резистентностью к инсулину. Со времени открытия и до начала 80-х гг. использовали инсулин, получаемый из поджелудочной железы КРС и свиней. Инсулин КРС отличается тремя аминокислотами, свиной - одной аминокислотой от инсулина человека. Наиболее эффективный гормон для заместительной терапии при сахарном диабете - гомологичный инсулин, т.е. инсулин человека.

В 1980 г. датская фармацевтическая компания «Novo» разработала метод превращения инсулина свиньи в инсулин человека ферментативным замещением аланина, последний является 30-й аминокислотой в цепи В, на остаток треонина с последующей хроматографической очисткой продукта, в результате был получен однокомпонентный инсулин человека 99% чистоты.

Достижения молекулярной биологии позволили установить, что биосинтез инсулина в β-клетках островковой ткани происходит по следующим основным этапам:

– Закодированная информация о структуре гормона содержится в инсулиновом гене (участок ДНК) 11-й хромосомы;

– в результате стимулирующего действия, прежде всего глюкозы и некоторых других веществ, эта информация списывается РНК-полимеразой с инсулинового гена в виде мРНК на рибосомах, в которых осуществляется соединение аминокислот с образованием белков. На рибосомах происходит сборка полипептидной цепи из 109 аминокислот с образованием препроинсулина под влиянием рестриктаз, в результате образуются фрагменты от нескольких сотен до нескольких тысяч нуклеотидов;

– при синтезе препроинсулина в β-клетках поджелудочной железы первые 23 аминокислоты «проводят» молекулу через мембрану клетки. Эти аминокислоты отщепляются рестриктазами и образуется пептид проинсулин, состоящий из 86 аминокислот. Молекула проинсулина сворачивается таким образом, что начальный и конечный её сегменты сближаются, а центральная часть молекулы удаляется под влиянием ферментов рестрикции; роль центральной части сводится к правильному взаимному расположению двух цепей инсулина.

В Великобритании с помощью Е. соlі синтезированы обе цепи человеческого инсулина, которые затем были соединены в молекулу биологически активного гормона. Чтобы одноклеточный организм мог синтезировать на своих рибосомах молекулы инсулина, необходимо снабдить его нужной программой, т.е. ввести ему ген гормона. Химическим способом (операцию проводят специалисты биохимики) получают ген, программирующий биосинтез предшественника инсулина или два гена, программирующие в отдельности биосинтез цепей А и В инсулина. Следующий этап - включение гена предшественника инсулина (или гены цепей инсулина порознь) в геном Е. соlі - особого штамма кишечной палочки, выращенного в лабораторных условиях; эту задачу выполняет генная инженерия. Из Е. соlі вычленяют плазмиду соответствующей рестриктазой. Синтетический ген встраивается в плазмиду (клонированием с функционально активной С-концевой частью р-галактозидазы Е. соlі). В результате Е. соlі приобретает способность синтезировать белковую цепь, состоящую из галактозидазы и инсулина. Синтезированные полипептиды отщепляют от фермента химическим путём, затем проводят их очистку. В бактериях синтезируется около 100000 молекул инсулина на бактериальную клетку.

Природа гормонального вещества, продуцируемого Е. соlі, обусловлена тем, какой ген встраивается в геном одноклеточного организма. Если клонирован ген предшественника инсулина, бактерия синтезирует предшественник инсулина, который подвергается затем обработке рестриктазами для отщепления препептида с вычленением С-пептида, вследствие чего получается биологически активный инсулин. Для получения очищенного инсулина человека выделенный из биомассы гибридный белок подвергают химико-ферментативной трансформации и соответствующей хроматографической очистке (фронтальной, гель-проникающей, анионообменной).

В Институте биоорганической химии РАН получен рекомбинантный инсулин с использованием генноинженерных штаммов Е. соlі. Из выращенной биомассы выделяется предшественник, гибридный белок, экспрессируемый в количестве 40% от всего клеточного белка, содержащий препроинсулин. Превращение его в инсулин in vitro осуществляется в той же последовательности, что и іn ѵіѵо - отщепляется лидирующий полипептид, препроинсулин превращается в инсулин через стадии окислительного сульфитолиза с последующим восстановительным замыканием трёх дисульфидных связей и ферментативным вычленением связывающего С-пептида. После ряда хроматографических очисток, включающих ионообменные, гелевые и ВЭЖХ, получают человеческий инсулин высокой чистоты и природной активности.

Использование аффинной хроматографии значительно снизило содержание в препарате загрязняющих белков с более высокой м.м., чем у инсулина. К таким белкам относятся проинсулин и частично расщепленные проинсулины, которые способны индуцировать выработку антиинсулиновых антител. Стандартизация инсулина по загрязнению классифицирует препараты, на обычные, содержащие проинсулина более 1%, монопиковые - менее 0,3% п, улучшенные монопиковые - менее 0,005% и монокомпонентные, содержащие менее 0,001% проинсулина.

Использование человеческого инсулина с самого начала терапии сводит к минимуму возникновение аллергических реакций. Наиболее частые осложнения инсулиновой терапии - гипогликемические состояния, основными признаками избытка инсулина являются нарушения функции ЦНС (спутанность сознания, странное поведение, кома).

Компания «Eli Lilly» в массовом производстве человеческого инсулина использует технологию рекомбинантных ДНК, помещая кДНК гена человеческого проинсулина в Е. соlі или S. serevisae и гидролизуя наработанный проинсулин до молекулы инсулина. Человеческие инсулины этой фирмы носят название «Хумулин». В медицинской практике используют рекомбинатные человеческие инсулины из серии Хумулин («Eli Lilly») - регулярный, НПХ, ленте, ультраленте и их комбинированные составы. Человеческий инсулин быстрее абсорбируется и независимо от формы препарата имеет более короткую длительность действия, чем животные инсулины. Человеческие инсулины менее иммуногенны, чем свиные, особенно смешанные бычьи и свиные инсулины.

В молекуле инсулина обнаружены области, играющие повышенную роль в его физико-химических и биологических свойствах. При внесении мутационных изменений в аминокислотную последовательность этих областей, существенным образом изменяются свойства молекулы в целом. Удалось получить аналоги с модификацией В-цепи, что привело к значительному увеличению гормональной активности по сравнению с природным инсулином.

Контроль качества генноинженерного инсулина предполагает кон-троль дополнительных показателей, характеризующих стабильность рекомбинантного штамма и плазмиды, отсутствие постороннего генетического материала в препарате, идентичность экспрессируемого гена и др. (всего 22 показателя).

В настоящее время в медицинской практике используют инсулины трех типов:

– короткодействующие с быстрым началом эффекта;

– средней продолжительности действия;

– длительного действия с медленным проявлением эффекта.

Инсулин короткого действия - регулярный инсулин - представляет собой короткодействующий растворимый при нейтральном значении рН кристаллический цинк-инсулин, эффект которого развивается в течение 15 мин после подкожного введения и продолжается 5-7 ч.

С целью увеличения длительности действия все другие препараты инсулина модифицированы и при растворении в нейтральной среде образуют суспензию. Они содержат протамин в фосфатном буфере - протамин-цинк-инсулин и НПХ (нейтральный протамин Хагедорна) - НПХ-инсулин или различные концентрации цинка в ацетатном буфере - инсулины ультраленте, ленте, семиленте.

Препараты инсулина средней длительности действия содержат протамин, представляющий белок средней м.м. 4400, богатый аргинином и получаемый из молок радужной форели. Для образования комплекса требуется соотношение протамина и инсулина 1:10. После подкожного введения протеолитические ферменты разрушают протамин, позволяя инсулину всасываться.

НПХ-инсулин не изменяет фармакокинетический профиль смешиваемого с ним регулярного инсулина. НПХ-инсулин предпочтительнее инсулина ленте в качестве компонента средней длительности действия в терапевтических смесях, содержащих регулярный инсулин.

В фосфатном буфере все инсулины (свиной, бычий, человеческий) легко образуют кристаллы с цинком, но только кристаллы бычьего инсулина обладают достаточной гидрофобностью, чтобы обеспечить замедленное и стабильное высвобождение инсулина, характерного для ультраленте. Цинковые кристаллы свиного инсулина растворяются бы-стрее, эффект наступает раньше, длительность действия короче. Поэтому не существует препарата ультраленте, содержащего только свиной инсулин. Монокомпонентный свиной инсулин выпускают под названием инсулин-суспензия, инсулан-нейтрал, инсулин-изофан, инсулин-аминохинурид.

Инсулин ленте - это смесь 30% инсулина семиленте (аморфный преципитат инсулина с ионами цинка в ацетатном буфере, эффект которого развеивается относительно быстро) с 70% инсулина ультраленте (плохо растворимый кристаллический цинк-инсулин, имеющий замедленное начало и пролонгированное действие). Эти два компонента обеспечивают комбинацию с относительно быстрой абсорбцией и стабильным длительным действием, делая инсулин-ленте удобным терапевтическим средством.

При введении инсулина в виде аэрозоля на слизистую оболочку носа эффективный уровень препарата в плазме достигается быстро, однако, длительное интраназальное введение инсулина оказывает токсическое действие на слизистую оболочку.

 

40.Интерфероны. Классификация. Видоспецифичность интерферонов. Синтез различных классов интерферона человека. Производство рекомбинантных образцов интерферона.

Интерферон открыт А: Айзексом и Дж. Линдеманом в 1957 г. в клетках цыпленка, зараженных вирусом гриппа. Это видоспецифическое белковое вещество, синтезируемое лейкоцитами в ответ на воздействие интерфероногенов. Применительно к млекопитаюпщм и, прежде всего, человеку под названием "лейкоциты" объединяют все белые клетки крови (от греч. leikos —. белыйг kytos —L ячейка, клетка) — сегментоядерные лейкоциты (нейтрофильные, зозинофильные, базофильные), или микрофаги, лимфоциты и В) и моноциты. Все эти клетки являются ядерными и участвуют в обеспечении постоянства внутренней среды макроорганизма (гомеостаза), включая неспецифическую и специфическую загциту, или иммунитет. Однако сегментоядерные лейкоциты относят к разряду полинуклеарных, тогда как моноциты — к разряду мононуклеарных. Мононуклеарными фагоцитами (наравне с моноцитами) являются также гистиоциты, или макрофаги. К ним относят макрофаги соединительной ткани, звездчатые клетки Купфера в печени, альвеолярные макрофаги в легких, свободные и фиксированные макрофаги в лимфоузлах и селезенке, гистиоциты в коже, остеокласты в костной ткани, фиксированные макрофаги в костном мозге, макрофаги в серозных полостях (плевральной и брюшной); макрофаги в нервной ткани (клетки микроглии).

С учетом топологии и/или функции макрофаги подразделяют еще на резидентные, эксудативные (макрофаги воспалительного эксудата), активированные, индуцированные.

Моноциты, макрофаги и их предшественники объединены в так называемую систему мононуклеарных фагоцитов (СМФ). Генеалогия (от греч. genea — рождение, происхождение, logos — обсуждение) клеток крови изучена достаточно глубоко.

Лейкоциты и другие клетки млекопитающих, в частности, при заражении вирусами продуцируют не один интерферон, а больше, объединяемых в семейство интерферонов, ингибирующих продуктивный цикл репликации вирусов. Вот почему они являются оружием первой линии защиты против вирусных инфекций.

Однако в обычных (неиндуцированных) клетках интерфероны не выявляются. Размеры молекул интерферонов близки по числу аминокислот и молекулярной массе, хотя по другим признакам они различны; интерфероны β и γявляются гликопротеинами, тогда как интерферон α — протеином.

Интерфероны — клеточные белки и поэтому они видоспецифичны, то есть каждому виду животного свойственен свой интерферон, но не являются вирусоспецифическими. При смешанной вирусной инфекции один вирус подавляет другой за счет интерфероногенности первого — феномен вирусной интеференции. Иногда эта видоспецифичность очень узкая, например, для курицы, утки, мыши и крысы, но не перекрестно в группах птиц и грызунов или между группами. Однако есть исключения — человеческий интерферон защищает клетки крупного рогатого скота лучше, чем коровий интерферон.

Человеческие интерфероны α и β продуцируются преимущественно лейкоцитами, В-лимфобластами и соединительноткаными клетками мезенхимного происхождения — фибробластами в ответ на вирусную инфекцию. Интерферон у прежде называли иммунным, или тип 2; он образуется несенсибилизированными лимфоидными клетками Т-лимфобластами в ответ на митогены, и сенсибилизированными лимфоцитами при стимуляции специфическими антигенами.

Можно достичь супериндукции интерферона, если обрабатывать клетки полиЦ: полиЦ вместе с циклогексимидом (ингибитором синтеза белка), а спустя 5 часов — актиномицином Д. Механизмы индукции интерферона до конца еще не изучены и трудно объяснить почему, например, двухнитевые РНК стимулируют образование интерферона, а двухнитевая ДНК не обладает аналогичным действием.

На практике иитерферон-α выделяют из лейкоцитов при низкоскоростном центрифугировании свежевыделенной крови человека. Лейкоциты переносят в культуральную среду, содержащую либо сыворотку крови человека или казеин молока, в среду вносят вирус — интерфероноген (вирус Сендай или вирус ньюкаслской болезни), выдерживают в течение ночи, после чего лейкоциты отделяют центрифугированием, вирус — интерфероноген инактивируют любым из приемлемых способов. Супернатант (от лат. supernatans — плавающий на поверхности), или надосадок представляет собой нативный интерферон. Его лиофильно высушивают и выпускают в ампулах. Это — пористый, серовато-коричневый порошок, легко растворимый в воде. Растворенный препарат имеет розовато-красноватый цвет и слегка опалесцирует. Из нативного интерферона можно получить концентрированный интерферон путем очистки колоночной хроматографией на сефадексах. Полученный препарат после высушивания имеет вид пористого порошка серовато-белого цвета, хорошо растворимый в воде. Тот и друтой интерфероны должны быть стерилъными.

Активность препаратов определяют титрованием на первичных культурах клеток, например, кожно-мышечной ткани эмбриона человека с вирусом везикулярного стоматита. Противовирусная активность (так называемая удельная активность) нативного интерферона должна быть не менее 32 единиц, концентрированного — 100 единиц. Для очистки интерферона можно прибегнуть и к высоко эффективной жидкостной хроматографии.

Интерферрн р получают из фибробластов, выращенных в монослойной культуре, индуцированной полиИ: полиЦ в присутствии циклогексимида и актиномицина Д. Обычно интерфероны продуцируются в малых количествах (около 1 мг на 10 л тканевой культуральной жидкости) и, к тому же, после 48—72 часов клетки-продуценты отмирают. Вот почему производство лейкоцитарных интерферонов относят к разряду дорогостоящих и экономически—мало выгодных.

В молекуле интерферона имеются два консервативных домена — один локализуется на NH 2-конце, а другой — на СООН-конце. Первый, очевидно, помогает связыванию с рецептором на повер-хности клетки, а второй — моделирует это связывание и опосредует другие биологические функции.

Интерфероны α, β, и у иммунологически различны и, например, α-антисыворотка не инактивирует гетерологичные интерфероны.

Интерфероны обладают двумя типами биологической активности — противовирусной и противоклеточной, В отношении вирусов действие трех интерферонов сравнимое по эффективности, но в отношении клеток более активен интерферон у, причем против опухолевых клеток он активнее, нежели против нормальных кле-ток.

На практике интерфероны применяют при вирусных инфекциях, ревматоидном артрите (интерферон, при иммунопатологии и в онкологии).

 

41.Гормон роста человека. Механизм биологической активности и перспективы применения в медицинской практике. Конструирование продуцентов. Получение соматотропина.

Соматотропин (или гормон роста человека ГРЧ) секретируется передней долей гипофиза. Впервые он был выделен и очищен в 1963 г. из гипофиза. Его недостаток приводит к заболеванию — гипофизарной карликовости (1 случай на 5000 человек). Гормон обладает видовой специфичностью. Обычно его получают из гипофиза трупов, но в недостаточном количестве. Гормона хватает лишь для лечения 1/3 случаев гипофизарной карликовости в развитых странах. Основные производители — Швеция, Италия, Швейцария и США. Молекула ГРЧ состоит из 191 аминокислотного остатка.

Препарат из трупного материала представляет собой смесь из нескольких форм, из которых пять имеют 22 кДа, другие являются димерами, а остальные — фрагментами, образующимися при протеолизе. Это приводило к тому, что у 30 % больных, получавших препарат, против гормона вырабатывались антитела, сводившие на нет его биологическую активность.

Принимая во внимание это обстоятельство, в настоящее время ГРЧ синтезируют методами генетической инженерии в специально сконструированных клетках бактерий. Будучи синтезированным в клетках Е. со l і, ГРЧ содержит дополнительный остаток метионина на H2N конце молекулы. Биосинтез ГРЧ из 191 аминокислотного остатка был осуществлен в 1979 г. Д. Гедделем с сотрудниками. Сначала клонировали двунитевую кДНК; далее путем расщепления получали последовательность, кодирующую аминокислотный порядок гормона, за исключением первых 23 аминокислот, — с фен (–NH2) до лей (23), и синтетический полинуклеотид, соответствующий аминокислотам от первой до двадцать третьей со стартовым ATG–кодоном в начале. Затем два фрагмента объединяли и подстраивали к паре lac–промоторов и участку связывания рибосом. Конечнвій выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 100 000 молекул гормона на клетку. Полученный гормон на конце полипептидной цепи содержал дополнительный остаток метионина и обладал значительной биологической активностью. С 1984 г. после серьезных клинических исльітаний на токсичность компанией «Генетек» (Сан–франциско) бьіло начато широкомасштабное производство бактериального соматотропина.

ГРЧ в клетках Е. со l і и в культуре клеток животных был получен в 1982 г. одновременно в Институте Пастера (Париж) и в Институте молекулярной биологии (Москва). Оказалось, что в бактериальных клетках возможен синтез аналогов ГРЧ, с помощью которых изучались участки молекулы, важные для стимулирования роста и процесса неоглюкогенеза на молекулярном уровне.

Огромный интерес представляют вьщеление и синтез полипептида, обладающего полной биологической активностью гипоталамического рилизинг–фактора соматотропина (СТГРФ). Введение этого фактора способно компенсировать недостаток соматотропина. Таким образом, наличие СТГРФ и самого гормона, полученных в генетически сконструированных бактериальных клетках, очень важно для успешного лечения заболеваний, обусловленных недостатком этого гормона, и ряда патологических заболеваний, таких, как некоторые формы диабета, регенерация тканей после ожогов и др. Предполагаем, что СТГРФ можно использовать и для увеличения массы и роста домашних животных, так как он, не обладая видовой специфичностью, способен стимулировать освобождение гормона роста у ряда животных.

β –Эндорфин — опиат мозга, состоящий из 31 аминокислотного остатка, был синтезирован в генетичесіси сконструированных клетках в 1980 г. группой ученых из Австралии и США. β –Эндорфин получен в клетках Е. со l і в виде гибридного белка с β-галактозидазой. Процедура синтеза β–эндорфина включала: получение путем обратной транскрипции мРНК — кДНК, кодирующей белокпредшественник, содержащий помимо последовательности β -эндорфина последовательность АКТГ и β -липотропина (βЛТГ), в дальнейшем удаляемые. β-Эндорфин, полученный из гибридного белка и тщательно очищенный, обладал значительной биологической активностью. Он специфически взаимодействовал с антисывороткой против β-эндорфина. От β-эндорфина человека генноинженерный рэндорфин отличался по двум аминокислотам, и эти отличия можно было легко устранить на нуклеотидном уровне путем замены двух кодонов в ДНК бактериальной плазмиды.

 

42.Производство ферментных препаратов. Ферменты, используемые как лекарственные средства. Традиционные способы получения ферментных препаратов.

Микрокапсулирование открывает интересные перспективы использования ряда лекарственных веществ, по сравнению с их использованием в виде обычных лекарственных форм.

Применение микрокапсул не ограничивается целью только медикаментозной терапии. Перспективным направлением в области технологии является получение микрокапсул с растворами белков, микрокапсулированных ферментов, антидотов. Исследуется применение микрокапсулированных ферментов – уреазы, уриказы, трипсина. Так, микрокапсулы с уреазой при внутрибрюшинном введении вызывают увеличение концентрации аммиака в крови, после чего мочевина начинает диффундировать из крови во внутрибрюшинную полость и затем в микрокапсулы, подвергаясь новому превращению в аммиак. Микрокапсулирование позволяет также предохранять ферменты от инактивации в результате образования антител-иммуноглобулинов при инъекционном введении.

Включение ферментов в микрокапсулы. Микрокапсулирование ферментов состоит во включении их водных растворов в полупроницаемые мембраны толщиной около 20 нм, непроницаемые для ВМС и клеток, но через которые могут проникать низкомолекулярные вещества. Наличие ультратонкой мембраны позволяет создать высокие концентрации фер-мента в малых объемах раствора, находящегося в микрокапсуле, и сохранять стабильность и биологическую активность инкапсулированных ферментов. Использование фермента в высоких концентрациях, а также большие значения отношения площади поверхности микрокапсул к их объему обеспечивают быструю диффузию низкомолекулярного субстрата из внешней среды к ферменту и продукта реакции из внутреннего объема микрокапсулы в межкапсулярное пространство.

Получены и исследованы микрокапсулированные формы ряда ферментоз, катализирующих различные превращения низкомолекулярных субстратов. Так, микрокапсулированная каталаза, введенная внутривенно или внутрибрюшинно мышам с наследственным нарушением синтеза этого фермента, эффективно снижала содержание перборатов в крови и имела более длительный период жизни в оргаинзме, чем свободный фермент. Микрокапсулированная аспарагиназа, введенная мышам с аспарагинзависимыми опухолями, вызывала стойкое и длительное снижение аспарагина в крови, что препятствовало росту злокачественных новообразований. Микрокапсулированная уреаза после введения крысам в желудочно-кишечный тракт вызывала существенное понижение содержания мочевнны в крови. Следует отметить, что все исследования микрокапсулирозанных ферментов проводятся только на животных. Это связано с тем, что при интракорпоральном их введении материал, используемый для создания мембран, накапливается в основном в селезенке и печени и может быть далеко не безразличен для организма.

Идеальным материалом с точки зрения биологической утилизации микрокапсул в организме человека и животных могут быть различные природные мембраны клеток крови. Фермент при относительно мягких условиях (нейтральная среда, небольшая ионная сила и т. д.) может быть заключен в частично гемолизованные клетки крови (эритроциты, тромбоциты) с последующим восстановлением целостности их мембран. Поскольку размер ферментных элементов крови мал, а время жизни их в кровяном русле относительно велико, такие микрокапсулы могут беспрепятственно и длительно циркулировать в крови. В форменные элементы крови включены такие ферменты, как глюкозидаза, галактозидаза, амилаза, пероксидаза, аргиназа, аспарагиназа и некоторые другие. Все иммобилизованные в клетки крови ферменты имеют неизменяемые каталитические параметры и отличаются большей устойчивостью к повышению температуры.

Применение микрокапсул, содержащих ферменты, экстракорпорально через шунты или камеры имеет хорошую перспективу. Одно из преимуществ состоит в том, что не происходит контакта фермента с иммунокомпетентными клетками, тем самым исключается возможность сенсибилизации организма со всеми неблагоприятными последствиями. Кроме того, применение вне организма исключает накопление в нем искусственных клеток и снимает проблему разрушения и утилизации полимерных материалов. Благодаря ультратонкой полупроницаемой мембране и высоким значениям отношения площади поверхности микрокапсул к их объему, скорость диффузии низкомолекулярных веществ через микрокапсулы выше, чем через диализную мембрану в аппарате "искусственная почка". Принцип энзиматического превращения вредных метаболитов с помощью микрокапсулированных ферментов разрабатывается для применения в аппаратах "искусственная почка" и "искусственная печень". Перспективным может оказаться использова-ние микрокапсулированных ферментов для удаления мочевины — одного из самых токсичных метаболитов клетки. Одним из способов является превращение мочевины под действием микрокапсулированной уреазы в аммоний и углерода диоксид. Вторым — использование экстракорпорального шунта, снабженного микрокапсулами с мультиферментными рециклирующими комплексами.

Большой интерес представляет применение микрокапсул с полиуретановой оболочкой, содержащих водные суспензии антидотов: активированного угля, ионообменных смол и других соединений, характеризующихся способностью к связыванию и инактивации токсических веществ, образующихся и циркулирующих в крови в процессе метаболизма. Очистка крови от указанных веществ осуществляется специальными аппаратами, содержащими сосуды с микрокапсулами, при экстракориаральной циркуляции крови. При этом кровь освобождается также от аммиака. Подобная система может быть эффективно использована при лечении ряда заболеваний почек.

Иммобилизованные ферменты имеют огромное значение для медицины. В частности, большой рынок сбыта занимают тромболитические ферменты, предназначенные для борьбы с сердечнососудистыми заболеваниями. Так, в отечественную клиническую практику внедрен препарат «стрептодеказа», содержащий стрептокиназу — активатор предшественника протеиназы плазмина предотвращающий образование тромба в кровеносной системе.

Ферменты, разрушающие некоторые незаменимые аминокислоты (например, аспарагиназа) используют для борьбы со злокачественным ростом опухолей. Протеолитические ферменты (трипсин, химотрипсин, субтилизин, коллагеназа), иммобилизованные на волокнистых материалах (целлюлоза, полиамидные волокна, декстран и др.), применяют для эффективного лечения ран, язв, ожогов, абсцессов, а их белковые ингибиторы — в заместительной терапии для лечения эмфиземы и панкреатитов.

Исключительно важны с практической точки зрения работы, посвященные направленному транспорту лекарственных веществ. В этом отношении особенно выгодны инкапсулированные ферменты типа искусственной клетки. Так, микрокапсулы, стенки которых представлены оболочкой эритроцита («тень эритроцита»), а их содержимое заполнено ферментом аспарагиназой, переносятся кровотоком к зонам скопления аспарагина и поэтому применяются для лечения аспарагинзависимых опухолей, в частности саркомы. Колонки, заполненные микрокапсулами с ферментом, используют для диализа в аппарате «искусственная почка», которая работает в 100 раз эффективнее обычного аппарата.

Таким образом, использование иммобилизованных ферментов во многих жизненно важных отраслях народного хозяйства становится все более массовым. Выгодное сочетание избирательности и эффективности с долговечностью и стабильностью иммобилизованных ферментов способствует созданию новых биотехнологических процессов и методов терапии, совершенствует медицинскую диагностику, анализ, органический синтез и оказывает огромное влияние на образ жизни человека.

 

43.Биотехнология аминокислот. Преимущества микробиологического синтеза перед другими способами получения. Общие принципы конструирования штаммов микроорганизмов - продуцентов аминокислот как первичных метаболитов.

Аминокислоты — главный строительный материал организма, из которого формируютея пептиды и белки. Растения и микроорганизмы способны сами синтезировать все нужные им аминокислоты из более простых химических соединений. Однако человеческий организм способен синтезировать лишь 12 из 20 аминокислот, необходимых ему для жизнедеятельности. Остальные 8 аминокислот получили название незаменимых и должны поступать в организм извне — с пищей. При нехватке хотя бы одной из незаменимых аминокислот замедляется рост организма, проявляется патология. Поэтому важно синтезировать эти аминокислоты в промышленных масштабах для корректировки рационов питания, в лечебных и профилактических целях и т. д. Кроме того, аминокислоты (как заменимые, так и незаменимые) являются важнейшим сырьем для обеспечения многих биотехно-логических процессов.

Производство многих аминокислот, в том числе и незаменимых, — крупнотоннажиая отрасль химической промышленности. Однако с помощью химических методов получается смесь опти-ческих изомеров аминокислот, иначе говоря, смесь L- и D-аминокислот, молекулы которых в L- и D-форме представляют собой зеркальные изомеры. В химических реакциях эти изомеры практически неразличимы, одиако человеческий организм усваивает лишь L-аминокислоты (за исключением метионина). Для большинства биотехнологических процессов D-аминокислоты также не представляют ценности.

Разделение смеси L- и D-аминокислот, так называемой рацемической смеси, на составляющие их изомеры стало первым процессом в мире, осушествленным с помощью иммобилизованных ферментов на промышленном уровне. Этот процесс был реализован в Японии на предприятии, принадлежащем компании «Танабе Сейяку» в 1969 г. В течение 15 предшествующих лет данный процесс проводился с применением растворимого фермента — аминоацилазы, но он был недостаточно экономичен (I. Chibata, 1976). После перехода на иммобилизованную аминоацилазу экономическая эффективность процесса возросла в полтора раза, и в настоящее время компания осуществляет на промышленном уровне производство пяти L-аминокиелот, из них четыре незаменимые (метионин, валин, фенилаланин, триптофан).

В качестве исходного вещества используются ацилированные D, L-аминокислоты, полученные с помощью обычного химического синтеза. Фермент аминоацилаза гидролизует один ацил-L-изомер, отщепляя от него объемную ацильную группу, и тем самым резко увеличивая растворимость образующейся L-аминокислоты по сравнению с присутствующим в реакционной системе ацил-D-изомером. После этого вещества легко отделяются друг от друга путем известных физико-химических методов. Так выделяется чистая L-аминокислота.

Остающаяся ацил-О-аминокислота при нагревании рацемизуется, т. е. переходит опять в смесь ацилированных D, L-амино-кислот, и процесс повторяют сначала. Таким образом, в итоге единственным продуктом является L-аминокислота. Оказалось, что для аминоацилазы не имеет значения, какую аминокислоту ей гидролизовать, важно лишь строение ацильной части, к кото-рой фермент имеет строгую специфичносгь. В результате этого одна и та же реакционная колонна с иммобилизованной аминоацилазой может быть применена в производстве самых различных L-аминокислот.

Иммобилизованный фермент легко готовить, так как он легко адсорбируется ма специальной смоле, которую затем помещают в реакционную колонну. Время полуииактивации иммобилизованного фермента в промышленных условиях составляет 65 сут. Когда активность катализатора падает ниже нормы, в колонну добавляют раствор свежего фермента (раз в несколько месяцев), который опять адсорбируется на носителе. Устойчивость полимерного носителя высокая; так, на предприятии японской ком-пании «Танабе Сейяку» он используется более 8 лет в одной и той же колоине без замены (I. Chibata, I978).

 

 

44.Микроорганизмы прокариоты - продуценты витамина В12 (пропионово-кислые бактерии и др.). Схема биосинтеза. Регуляция биосинтеза.

Получение витамина В12 (Соα[α-(5,6-диметилбензимидазолил)]- Соβ–цианокобамид). Витамин В12 открыт в 1948 г. одновременно в СПІА и Англии. В 1972 г. в Тарвардском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона — структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Витамин ВІ2 регулирует углеводный и липидный обмен, участвует в метаболизме незаменимых аминокислот, пуриновых и пиримидиновых оснований, стимулирует образование предшественников гемоглобина в костном мозге; применяется в медицине для лечения злокачественной анемии, лучевой болезни, заболеваний печени, полиневрита и т. п. Добавление витамина к кормам способствует более полноценному усвоению растительных белков и повышает продуктивность сельскохозяйственных животных на 10—15 %.

Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время — микробиологический синтез. Обнаружение витамина в качестве побочного продукта при производстве антибиотиков в значительной степени стимулировало поиск организмов-продуцентов витамина и изучение путей его образования. Однако механизмы регуляции биосинтеза витамина В12 до настоящего времени полностью не расшифрованы. Известно, что при высоких концентрациях витамин полностью репрессирует синтез ключевых ферментов своего новообразования.

Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. В 70-х годах XX в. интерес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления пре-паратов животноводства. Выделено 14 видов пропионовокислых бактерий, продуцирующих витамин В12; их физиолого-биохимическая характеристика дана Л. И. Воробьевой. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Добавление в среду предшественника 5,6-диметилбензимидазола (способствует переводу неактивных форм в природный продукт) по окончании первой ростовой фазы (5 — 6 суток) стимулирует быстрый (18 —24 ч) синтез витамина с выходом последнего 5,6 — 8,7 мг/л. Путем селекции, оптимизации состава среды и условий культивирования выход витамина В12 в промышленных условиях был значительно повышен. Так, выход витамина на среде с кукурузным экстрактом и глюкозой при поддержании стабильного значения рН близ нейтральных зон достигает 21 — 23 мг/л. Мутант пропионовокислых бактерий продуцирует до 30 мг/л витамина. Бактерии плохо переносят перемешивание. Применение уплотняющих агентов (агар, крахмал), предотвращающих оседание бактерий, а также использование высокоанаэробных условий и автоматического поддержания рН позволяет получить наиболее высокий выход витамина — 58 мг/л.

Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направлении удешевления компонентов питательных сред (замена глюкозы сульфитными щелоками) и перехода с периодического культивирования на непрерывный процесс. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.

Для нужд животноводства сотрудниками Института биохимии I им. А. Н. Баха РАН разработана более простая и дешевая технология получения витамина В12, в создание которой большой вклад внесли работы В.Н. Букина, В.Я. Быховского, И. С.Логоткина, Е. С. Панцхавы и др.

По указанной технологии ферментацию осуществляет сложный биоценоз термофильных микроорганизмов, производящих метановое брожение. Комплекс микроорганизмов включает целлюлозоразлагающие, углеводсбраживающие, аммонифицирующие, сульфитвосстанавливающие и метанообразующие бактерии. На первой фазе процесса (10 — 12 дней) развиваются термофильные углеводсбраживающие и аммонифицирующие бактерии. При этом в слабокислой среде (рН 5,0 — 7,0) органические соединения превращаются в жирные кислоты и аммиак. На второй фазе, когдая среду подщелачивают до рН 8,5, в биоценозе преобладают метанообразующие бактерии, которые сбраживают возникающие на первой фазе продукты до метана и диоксида углерода. Именно метанообразующие бактерии — главные продуценты витамина. Обогащение сред очищенными культурами метанообразующих бактерий увеличивает выход активных форм витамина В12.

Источником углерода в питательной среде служит ацетонобутиловая и спиртовая барда, которую представляют заводы, перерабатывающие зерно и мелассу. Для оптимизации питательной среды в нее добавляют соединения кобальта (хлорид кобальта — 4 г/м3), : который входит в состав молекулы витамина В12, и субстраты для роста метанообразующих бактерий — низшие жирные кислоты и низшие спирты, что позволяет значительно повысить выход витамина.

Подготовленное сырье освобождают в декантаторе от взвешенных частиц и непрерывно подают в нижнюю часть ферментера (метантенка) емкостью 4200 м3. Одновременно в ферментер поступает посевной материал культуры микроорганизмов, предварительно выращенный в специальных аппаратах. Для выращивания продуцента требуются облигатно анаэробные условия, ибо даже следы кислорода подавляют рост бактерий. При создании анаэробных условий в среду подают диоксид углерода или газы, выделяющиеся в процессе ферментации. Ежедневно из метантенка отбирают 25 — 30 % объема среды. Продукт ферментации стабилизируют, подкисляя соляной или фосфорной кислотой до рН 6,3 — 6,5 и добавляя 0,2 — 0,25 % сульфита натрия, что предотвращает разрушение витамина при тепловой обработке, особенно существенное в щелочной среде. В дальнейшем отобранная часть культуральной жидкости дегазируется, упаривается в вакууме; концентрат высушивается в распылительной сушилке до влажности 10 – 15 % и смешивается с наполнителями. Готовый кормовой препарат, имеющий коммерческое название КМВ-12 (концентрат-микробный витамин), содержит, кроме витамина В12 (2,5 %), витамины В1 В2, В6, пантотеновую кислоту, фолиевую кислоту, биотин, незаменимые аминокислоты.

Процесс промышленного получения витамина В12 — пример безотходной и экологически чистой технологии. Сырьем для ее реализации служат массовые отходы, а конечными продуктами — биогаз (65 % метана, 30 % диоксида углерода), использующийся как топливо, и биомасса метановых бактерий — источник биоло-гически активных соединений, активирующих, например, рост молочнокислых бактерий.

 

45. Производство моноклональных антител и использование соматических гибридов животных клеток. Гибридомы. Этапы производства моноклональных антител.

Только благодаря использованию моноклональных антител, полученных в результате иммунизации животных лекарствами, стало возможно определение дозы этих лекарств. Такая «иммунодозировка» надежна и экономична. В 1990х гг. в США «Управление по контролю за качеством пишевых продуктов, медикаментов и косметических средств» (РБА) впервые утвердило к продаже коммерческий набор для диагностического скрининга на основе гибридом, предназначенный для установления аллергена.

С помощью моноклональных антител возможно выделение биологически активных веществ (белков, гормонов, токсинов) из сложных смесей. Например, при использовании иммуноадсорбции для очистки интерферона был получен препарат высочайшей степени очистки (до 99 %). Только после одного пассажа через колонку с иммобилизованными моноклональными антителами препарат очищался в 5 000 раз!

Можно использовать моноклональные антитела и в качестве меток для точной идентификации специализированных клеток, например нейронов. Существует также технология использования моноклональных антител для изучения клеточных мембран, позволяющая выделять мембранные белки в чистом виде и измерять их биологическую активность.


Дата добавления: 2019-02-12; просмотров: 561; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!