Характеристика монооахаридов и дисахаридов. 9 страница



R-С-АМФ + НSКоА -> R-С-SКоА + АМФ В ходе активации высшей жирной кислоты АТФ распадается до АМФ и 2 остатков фосфорной кислоты таким жирные кислоты участвуют в активированной форме.   73. Кетоновые тела. Соединения ацетоуксусные и р-гидроксимасляные кислоты поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон (диметилкетон) В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью. Биосинтез и распад ацетоновых тел. Жирные кислоты поступающие в гепатоциты, активируются и подвергаются р-окислению с образованием ацетилКоА Именно этот ацетилКоА используется для синтеза ацетоновых тел, согласно схеме В ходе первой реакции (в первую реакцию вступают 2 молекулы ацетилКоА, фермент ацетилКоА-ацетилтрансфераза = тиолаза) образуется 4-х углеродная молекула ацетоацетилКоА Эти соединения макроэргические поэтому в этом синтезе не принимает участие АТФ Входе следующей реакции (фермент В-гидрокси-ВметилглюкоилКоА-синтетаза- первые этапы биосинтеза ацетоновых тел и холестерина абсолютно равнозначны Это одна из ключевых реакций синтеза ацетоновых тел) используется еще одна молекула ацетилКоА, вода Образуется б-и углеродная молекула - р-гидроксир-метилглютарилКоА. Последняя реакция - лиазная (катализирует фермент ГМГ-лиаза), происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата. Как образуются два других соединения, относящихся к группе ацетоновых тел? Из ацетоуксусной кислоты спонтанно, чаще всего, или иногда за счет декарбоксилазы происходит отщепление карбоксильной группы в виде углекислого газа и образуется ацетон Ацетоуксусная кислота восстанавливается в ходе реакции катализируемой ферментом р-гидроксибутератдегидрогиназой с использованием НАД+Н+, в итоге образуется р-гидроксимасляная кислота Это третий составной элемент ацетоновых тел Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам Процесс синтеза ацетоновых тел идет постоянно и ацетоновые тела всегда присутствуют в крови в концентрации 30мг/л. При голодании их содержание может увеличиваться до 400-500 мг/л Еще больше концентрация при сахарном диабете в тяжелой форме до 3000-4000 мг/л Ацетоновые тела в норме хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокашш Ске,иетные мыишы и миокаод значительную часть нужной им энергии получают за счет окисления ацетоновых тел Только нервные клетки в обычных условиях не утилизируют ацетоновые тела, однако при голодании даже головной мозг 50-75% соей потребности в энергии удовлетворяет за счет окисления ацетоновых тел. Ацетоацетат, поступающий в клетки различных тканей, прежде всего подвергается активации помощью одного из двух механизмов Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетилКоА Второй путь, является превалирующим в активации, это за счет фермента тиофоразы Реакция, в которой принимают участие сукценнКоА и адетоацетат, приводит к образованию ацетоацетилКоА и образование сукцината, Образующийся ацетоацетилКоА далее дает 2 молекулы ацетилКоА (принимает участие HSKoA, это тиолазная реакция) АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды Ацетоновые тела по значимости - 3 тип топливной энергии В гепатоцитах нет фермента тиофоразы, поэтому образовавшийся в гепатоцитах ацетоацетат не активируется и не окисляется Таким образом печень экспортирует ацетоацетат, другими словами синтезирует этот вид топлива для других клеток р-гидрокснбутерат окисляется путем дегидрироания в ацетоацетат, дальше ацетоацетат в ацетилКоА Что касается ацетона, возможно 2 варианта окисления  Дело в том, что ацетон очень летуч поэтому большое количество выделяется вместе с выдыхаемым воздухом, кроме того ацетон выделяется с водой 1 путь Ацетон расщепляется до ацетильного и формильного остатка 2 путь Через пропандиол он превращается в пируват Ацетоновые тела накапливаясь в крови и тканях оказывают ннгибирующие действие на липолиз, в особенности это касается расщепление триглицеридов в липоцитах Дело в том, что избыточное накопление в крови ацетоновых тел приводит к развитию ацидоза Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока жирных кислот в гепатоцига, к снижению скорости образования ацетоновых тел н следовательно к снижению содержания в крови. 74 Транспортные формы лнпидов Все липиды присутствующие в крови входят в составе смешанных надмолекулярных белок-липидных комплексов. причем ВЖК связаны с альбуминами крови, все другие липиды входят в состав липопротеидов плазмы крови С месь всосавшихся и ресентезированиых в кишечнике липидов поступает в лимфатическую систему а затем через грудной лимфатический проток в кровь и распространяется током крови по клеткам и тканям Поступление липидов в лимфу наблюдается уже через 2 часа после приема пищи Элементарная гиперлипидемия ^повышение концентрации яипидов в крови) достигает максимума через б 8 часов после приема пищи, а через 10 12 часов после приема она полностью исчезает Как же это все происходит ? Трнглицериды фосфолипиды и холестирол Перенос этих соединении осуществляется особым образом организованных надмолекулярных агрегатов получивших название -липопротеидные частицы (ЛП). В состав липопротеидов могут входить молекулы липидов различных классов и молекулы белков Все ЛП имеют общий план структуры Во внешней оболочке или так называемый внешний мономолекулярный слой липопротеидные частицы образуют белки (их называют апобелки или апопротеины) свободный холистерол и фосфолипиды Причем гидрофильные участки этих молекул обращены кнаружи и контактируют с водой, гидрофобные участки располагаются кнутри т е в сторону ядра Ядра гидрофобных липопротеидньгх частиц образуют прежде всего триглицериды далее этерефицированный холистерол, кроме того сюда могут включаться жирорастворимые витамины или другие гидрофобные молекулы Их подразделяют на 1) Хиломикрокы (ХМ) 2) Липопротеиды очень низкой плотности 3) Лкпопротеиды низкой плотности 4) Липопротеиды высокой плотности В транспорте экзогенных липидов те липндоБ поступающих во внутреннюю среду организма из кишечника принимают главным образом два вида липопротеидов ХМ и Липопротеиды очень низкой плотности (лонп) Содержание липидов в ряду от ХМ до ЛПВП снижается, содержание белков нарастает постепенно возрастает содержание фосфолипидов возрастает и только содержание холистерола до липопротеидов низкой плотности увеличивается, но затем при переходе в лпвп оно снижается. Ведущую роль в транспорте экзогенных тлипидов играют хнпомикроны. Матболизм ХМ. Липопротеид липаза расщепляет триглицериды хиломикронов до глицерола и высших жирных кислот. Часть высших жирных кислот поступает в клетки а другая часть связывается с альбуминами и уносится током крови в другие ткани. Глицерин так же может утилизироваться либо в клетках непосредственно данного органа либо уносится током крови. Кроме триглицеринов хиломикронов ЛП липаза расщепляет также триглицериды липидов очень низкой плотности ХМ после атаки липопротеидлигаз потеряв значительную часть липидов превращаются в ремнантные хиломикроны (остаточные ХМ они по размерам меньше) Эти ремнантные ХМ захватываются рецепторами печени где они полностью расщепляются, а часть ХМ превращается путем сложных перестроек в липопротеиды высокой плотности В норме спустя 10-12 часов после приема пищи плазма практически не содержит ХМ. Метаболизм ЛПВП. Общий пул лпвп в циркулирующей крови формируется за счет трех источников 1 Синтез лпвп в печени 2 Образование лпвп нз ремнантных ХМ 3 Синтез в тонком кишечнике 4 Преимущественно теп синтезируются в печени Наиболее популярной точкой зрения в отношении биологической роли лпвп является следующая теп этот холистерол в печень или кишечник . В печени этот холестерол: превращается в желчные кислоты 2 часть секретируется с желчью Поступившый в стенку кишечника холистерол с лпвп используется для синтеза 1) ХМ 2 лпонп и в то же время 3 часть холистерола может секретироваться в просвет кишечника. В любом случае чтановится ясно, чтофункционирование лпвп будет способствовать выведению лишнего холестерола из кишечника. Лпвп - антиатерогенные липопротеидами, в отличии рассмотренные ранее лпонп и лпнп атерогенные липопротеиды (высокая концентрация которых несомненно стимулируют формирование атеросклероза и соотвествующих осложнений.   75. Переваривание белков в желудочно-кишечном тракте. Переваривание белков представляет собой расщепление пищевых белков на составляющие его аминокислоты Расщепление белков в желудочно-кишечном тракте .идет при участи фериетов протеиназ катализир гидролитическое расщепление юс гвптидных связей Все протеиназы к-к тракта могут быть разделены на 2 группы В данном случае эффективность катализа неизмеримо меньше Специфичность действия протеиназ выглядит следующим образом. Пепсин катализ разрыва летпидных связей образованных аминогруппами фенилаланина и тирозина (ароматические аминокислоты) Трипсин - катализ разрыва пептндкых связей образованных карбоксильными группами лизина и аргинина (основные аминокислоты) Хемотрипсин - кмалнз разрыва пептидных связей образованных карбоксильными группами трех аминокислот ароматических фениалаланнана, тирозина и триптофана Карбоксипептидаза А -образованных С концевыми аминокислотами фенилаланнна, тирозина и триптофана Карбоксипептидаза —образованиях С концевыми лизином и аргинином. Аланинаминопептидаза — образованных N концевым аланином В целом протеяшш ж-к тракта в отношении своей специфичности обладают дополнительностью действия т е за счет совокупности их (згаяитического эффекта с большой скоростью идет гидролиз пеПгияиых связей к белковых молекулах. Более того отсутствие одной из протеннвз за исключением трипсина обычно не приводит к существенному нарушению переваривания белков. Переваривание белков в желудке . Переваривание белков начинается в желудке В желудочном соке присутствует несколько протеиназ пепсин, гастриксин и несколько сходных с пепсином протеиназ Одним из таких ферментов является пепсин В У детей юиетея еще одна эндопротеиназа ренин Главной протеиназой желудочного свка пуослих несомненно является пепсин. Клетки слизистой дна Желудка вырабатывают профермент пепсияоген. Его молекулярная масса составляет величину килодальтон Под действием соляной кислоты желудочного сока пепсиноген в результате ограниченного протно виа превращается в пепсин молекуляр масса кот равна 32,7 килодальтон. Оптимальной средой для действия пепсина является среда с рН 1- 2,5 Это значение создается в желудке соляной кислотой. Белки под действием пепсина расщепляются в желудке с образованием смеси пептидов различной длины с очень небольшой примесью свободных аминокислот, причем пепсин обеспечивает 95 % всей переваривающей способности желудочного сока Например действие гасгрикшиа ограничено поскольку оптимум рН для этого фермента составляет величину порядка 5 Важным компонентом желудочного сока является несомненно соляная кислота, которая кроме участия в переводе пепсиногена в пепсин создает оптимум рН для действия пепсина Это так называемое значение соляной кислоты 1 перевод пепсиногена в пепсин 2, создание оптимума рН для пепсина 3. денатурирует белки 4. бактерицидное действие. Переваривание белков в кишечнике. Смесь полипептидов из желудка в 12перстнук> кишку где под действием протеиназ поджелудочного и кишечного сока продолжается расщепление белков и пеетидов до отдельных аминокислот. рН составляет от 7,5-8,2 это слабощелочное значение рН поддерживается за счет бикарбонатов поступающих в кишечник с соком поджелудочной железы. В поджелудочной железе синтезируется протоэнзимы. трипсиноген, хемотрнпсиноген, прокарбоксипептидазы А и В, проэластаза проколлагеназа С соком поджелудочной железы эти проферменты поступают в просвет кищечнкка и в результате избирательного ограниченного протиолиза превращаются в активные ферменты Важнейшую роль в превращении проферментов в ферменты принадлежит 2-м протеиназам 1 Энтерокиназа кишечной стенки 2 Трипсин Как они работают? Энтерокиназа отщепляет от неактивного трипсиногена гексопептид (6 амк остатка). превращая профермент в активный трипсин. В дальнейшем превращение трипсиногена в трипсин может идти параллельно, путем аутокатализа. Образовавшийся трипсин превращает все другие проферменты в активные Ферменты, Хемотрипсиноген А или В под действием трипсина превращается в одну из форм активного Действие протеиназ поджелудочной железы дополняется действием ферментов синтезируемых в стенках кишечника Кишечная стенка синтезирует про аминопептидазу и про-дипептидазу. Перевод в активную форму идет так же за счет трипсина. Механизм перевода единый отщепление различной длины путем ограниченного протиолиза и фо активного центра Под действием этого комплекса ферментов белки и пептиды расщепляются до отдельных аминокислот и в таком виде всасываются в стенку кишечника. Всасывание ди-, три-, тетрапептидов абсолютно невозможно.   76 Дезаминирование, трансаминирование Дезаминирование - процесс отщепления от аминокислот аминогрупп с образованием свободного аммиака Дезанминирование в организме челочка протекает в 2ариантах 1 В виде прямого дезаминирования 2 В виде непрямого дезаминирования (трансдезаминирование) Прямое дезаминировакие аминокислот в свою очередь на разных уровнях организации живых объектов встречается в 4 основных вариантах а) окислительное дезаминирование б) внутримолекулярное дезаминирование в) гидролитическое дезаминирование г) восстановительное дезаминирование В клетках человека работают только 2 из перечисленных окислительное и внутримолекулярное дезаминирование Прямое окислительное дезаминирование аминокислот. При прямом окислительном дезамикирование аминокислот образуются а-кетокислоты и аммиак Процесс идет в 2 этапа На первом зтапе при участии фермента оксидазы от аминокислоты отщепляется 2 атома водорода и аминокислота превращается в нминокислоту На втором этапе образованная иминокислота спонтанно присоединяет воду без участия фермента с образованием кетокислоты и аммиака Дегидрирование, происходящее на первом этапе сопровождается переносом водорода на ФАД или ФМН т е на простетические группы ферментов оксидаз т е вначале образуется восстановленный ФАД или ФМН и эти же восстановленные формы переносят затем водород на кислород (аэробные легилпогннялгы) и образуется токсическая перекись водорода. В организме человека присутствует оксидаза L-аминокислот в качестве кофермента ФМН Эта оксидаза обладает низкой активностью, в то же время в тканях обнаружена оксидаза D-амннокислот, в качестве кофермента она содержит ФАД. Считают, что оксидаза D-аминокислот обеспечивает превращение D-аминокислот, которые образуются в кишечнике. Образуется иминокислота, водород переноситься на ФМН и этот кофермент переносит водород на кислород с, образованием перекиси водорода Перекись водорода немедленно разрушается католазой. т Иминокислота спонтанно присоединяет воду с образованием кетокислоты и отщеплением иминогруппы в виде аммиака Принято считать, что прямое дезаминирование аминокислот L ряда не вносит существенного вклада в метаболизм этих соединений человека В то же время практически во всех тканях организма человека обнаружены высоко активная дегидрогеназа Lглютаминовой кислоты Наибояьщая активность этого фермента обнаружена в почках и печени Этот фермент обладает высокой специфичностью и катализирует прямое окислительное дезаминирование L-пгютамата по схеме В качестве кофермента дегидрогназа содержит НАД На первом этапе водород с участием фермента переноситься на НАД с образованием восстановленного НАД, окисление которого несомненно сопровождается с образованием 3 молекул АТФ Образуется имниоглютамат Далее спонтанное присоединение воды обеспечивает образование 2 оксопиотарата (сс-кетоглютаровая кислота) и отщепляется аммиак. Прямое окислительное дезаминирование. 3 аминокислоты из 20 (гистидин, серии и трионин) в организме человека подвергаться дезаминированию которое может рассматриваться как внутримолекулярное дезаминирование Гистидин под действием фермента гистидазы. превращается в ураканиновую кислоту. Ураканиновая кислота распадается дальше до L-глютомата, аммиака и муравьиной кислоты Гистидаза обнаружена в печени и коже В коже ураканиновая кислота выступает в качестве фактора защищающего кожу от УФ-радиации Фермент превращающий ураканиновую кислоту (урокиназа) оказывается присутствует только в печени Появление этого фермента в крови (в норме он практически отсутствует) наблюдается при развитии опухолевых процессов печени. В связи с этим определение активности (наличия) этого фермента используется в качестве диагностического теста на опухолевые поражения печени Это своеобразный индикаторный фермент Аминокислоты серии и трионин при участии дегидротазы, содержащей ПЛФ (перидоксальфосфат) в качестве кофермента, подвергаются сходным превращениям в результате которых серии превращается в пируват, а трионин в а-кетобутерат. Непрямоедезаминирование или дезаминирование. В связи с малой эффективностью процессов прямого окислительного дезаминирования были предприняты интенсивные поиски более эффективных методов дезаминирования Браунштейнов была предложена концепция трансдезаминирования, которая в настоящее время является общепризнанной Суть ее заключается в следующем Процесс трансдезаминирования это 2-х -этапный процесс На первом этапе различные L-аминокислоты вступают в реакцию трансаминирования с а-кетоппотаровой кислотой В результате образуется кетоаналог аминокислоты и гпютаминовая кислота На втором этапе происходит окислительное дезаминирование глютамата с образованием аммиака и регенерации <х-кетоглютаровой кислоты Обязательным участником этого процесса является а-кетоглутаровая кислота (является промежуточным продуктом цикла Кебса, т е концентрация ее в тканях поддерживается на постоянном уровне) Далее в итоге трансаминирования с участием соответствующей аминотрансферазы образуется кетоаналог соответствующей аминокислоты, а о-кетоглютаровая кислота превращается, за счет трансаминорования в глутомат В правой части изображено прямое окислительное дезаминирование глютомата Здесь вы видите так же 2 этапа Фермент глютоматдегидрогеназа содержит в качестве кофермента НАД, который принимает кислород, образуется имноглюторат. 77. Биогенные амины. Оказывается декарбоксилированию подвергаются не все аминокислоты, а лишь те из них при декарбоксилировании которых образуются биологически активные соединения выполняющие в организме функции или биорегуляторов или нейромедиаторов Вся эта группа соединений получила название - биогенные амины. Необходимо отметить, что в условии клетки декарбоксилировакие является необратимым процессом Биогенные амины обладают высокой биологической активностью и несомненно после выполнения основных функций они должны быть инакгивированы Общим путем инактивации биогенных аминов является их окислительное дезаминирование с участием ферментов моноаминооксидаз или диаминооксидаз R-CH2-NH2 --> R-C(--O)-H + NH3 Биогенный амин, в данном случае моноамин, поэтому фермент моноаминооксидаза (оксидаза способна переносить отщепляемый водород непосредственно на кислород с образованием перекиси водорода), превращается в альдегид, который затем окисляется до жирной кислоты, а перекись водорода расщепятся католазой Некоторые биогенные амины, например гистамин. могут инактивироваться путем метилирования или ацетилирования. Образование этих биологически активных. Из аминокислоты гистидина под действием гистидиндекарбоксилазы образуется биогенный амин - гистамин -клеточный медиатор (медиатор воспаления, аллергии) Антигистаминные препараты используются крайне широко Гистамин обладает выраженным сосудорасширяющим действием, причем это эффект у единственного из биогенных аминов, кроме того 2 Он участвует в развитии воспалительных в том числе аллергических реакциях 3 Наконец он стимулирует выделение желудочного сока и в этом качестве он нашел применение в клиническо-лабораторной диагностике для установления причины нарушения секреции желудочного сока - шстаминовая проба Инактивация гистамина идет либо за счет его дезаминнрования либо путем образования N-метипгистидина, т е путем метилирования. Аминокислота триптофан служит предшественником еще одного очень важного амина - серотонин Вначале триптофан подвергается гидроксилированию с превращением в 5-окситриптофан, а уже затем под действием соответствующей декарбоксилазы происходит образование серотонина Серотонин является нейромедиатором стволовой части головного мозга 1 При нарушении его обмена развивается галлюциногенный синдром (галлюцинации устрашающего характера и зрительные и слуховые) 2 Сегодня считают, что нарушение обмена серотонина вносит весомый вклад в развитие шизофрении 3 Он является так же мощными сосудосуживающим средством Инактивация серотонина идет или путем его окислительного дезаминирования или же путем метилирования по аминогруппе, т е по сути инактивация идет как у гистомина 1 Серотонин играет важную роль в развитии аллергии 2 Серотонин является предшественником гормона эпифиза мелатонина Три биогенных амина (дофамин норадреналин и адреналин = котихоламины) образуются еще из одной циклической аминокислоты - тирозина. Тирозин гидроксилируется с превращением в ДОФА (диоксифениламнин), затем ДОФА декарбоксилируется и превращается в дофамин .Дофамин является промежуточным продуктом при синтезе норадреналина и адреналина, он обладает выраженным сосудосуживающим действием, самое важное то, что он является медиатором стволовой части головного мозга При нарушении его образования в мозговой ткани развивается тяжелое заболевание паркинсонизм Для лечения которого используют подсадку в головной мозг эмбриональных клеток способных синтезировать дофамин При гидроксилировании дофамина образуется норадреналин, который при последующем метилировании дает адреналин В реакции превращения дофамина в норадреналин участвует аскорбат (аскорбат участвует в синтезе гормонов) При переходе норадреналина в адреналин в качестве метилирующего агента используется активный

Дата добавления: 2019-02-12; просмотров: 203; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!