Основные методы получения наночастиц



Основные теоретические сведения

Нанотехнология и наноматериалы

Нанотехнология – совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществить их интеграцию в полноценно функционирующие системы большого масштаба.

Наноматериалы – материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками.

 

Классификация нанообъектов

Размерность нанообъекта - основа классификации нанообъектов.

В соответствии с размерностью различают:

1) 0-D нанообъекты - те, у которых все 3 пространственных размера лежат в нанометровом диапазоне (грубо: все 3 размера <100нм).

Такой объект в макроскопическом смысле является нульмерным и поэтому, с точки зрения электронных свойств, такие объекты называются квантовыми точками. В них волна де Бройля больше, чем любой пространственный размер. Квантовые точки используют в лазеростроении, оптоэлектронике, фотонике, сенсорике и др.

2) 1-D нанообъекты - те объекты, которые имеют нанометровые размеры в двух измерениях, а в третьем - макроскопический размер. К ним относят: нанопроволоки, нановолокна, одностенные и многостенные нанотрубки, органические макромолекулы, в т.ч. двойные спирали ДНК.

3) 2-D нанообъекты - те, которые имеют нанометровый размер только в одном измерении, а в двух остальных этот размер будет макроскопическим. К таким объектам относят: тонкие приповерхностные слои однородного материала: плёнки, покрытия, мембраны, многослойные гетероструктуры. Их квазидвумерность дает возможность изменить свойства электронного газа, характеристики электронных переходов (p-n переходов) и т.д. Именно 2-D нанообъекты позволяют придумать основу для разработки принципиально новой элементной базы радиоэлектроники. Это будет уже наноэлектроника, нанооптика и т.д.

В настоящее время 2-D нанообъекты чаще всего служат в качестве всевозможного рода покрытий антифразионных, антикоррозионных и т.д. Большое значение они имеют и для создания различного рода мембран в молекулярных фильтрах, сорбентах и т.д.

 

Физические основы специфического поведения веществ при уменьшении размеров до наномасштабного уровня

Итак, что же сейчас понимают под нанотехнологиями? Сама десятичная приставка “нано-” происходит от греческого слова “nanos”, что переводится как “карлик” и означает одну миллиардную часть чего-либо. Таким образом, чисто формально в сферу этой деятельности попадают объекты с размерами R (хотя бы вдоль одной координаты), измеряемыми нанометрами. Реально диапазон рассматриваемых объектов гораздо шире - от отдельных атомов (R < 0.1 нм) до их конгломератов и органических молекул, содержащих свыше 109 атомов и имеющих размеры гораздо более 1 мкм в одном или двух измерениях. Принципиально важно, что они состоят из счетного числа атомов, и, следовательно, в них уже в значительной степени проявляются дискретная атомно-молекулярная структура вещества и/или квантовые закономерности его поведения. Удовлетворяя наше стремление к миниатюризации, к снижению энергоемкости и материалоемкости, такие системы обладают еще одним козырем. В силу действия различных причин (как чисто геометрических, так и физических) вместе с уменьшением размеров падает и характерное время протекания разнообразных процессов в системе, т.е. возрастает ее потенциальное быстродействие. Пока в серийно производимых компьютерах достигнуто быстродействие (время, затрачиваемое на одну элементарную операцию) около 1 нс, и его можно уменьшить на несколько порядков величины в ряде наноструктур. Но существующие сейчас массовые технологии производства практически достигли своих теоретических пределов и нуждаются в кардинальном обновлении.

Новая парадигма в технологии - “снизу вверх”, вытесняющая и дополняющая старую - “сверху вниз” (т.е. от большой заготовки - к готовому изделию путем отсечения лишнего материала), - базируется на глубоких знаниях свойств каждого атома из таблицы Менделеева и использует силы притяжения между ними при нанометровых расстояниях. В результате действия этих сил могут образовываться атомные конфигурации, стабильность которых определяется типом и прочностью внутренних связей, абсолютной температурой и характером окружения. Чем меньше частица и ниже температура, тем сильнее проявляются ее квантовые качества. Свойства наночастиц сильно изменяются по сравнению с макрочастицами того же вещества, как правило, уже при размерах Rc Ј 10-100 нм. Для различных характеристик (механических, электрических, магнитных, химических) этот критический размер может быть разным, как и характер их изменений (монотонный-немонотонный) при R < Rc. Ввиду резкой зависимости свойств вещества от числа одинаковых атомов в кластере ее иногда аллегорически называют даже третьей координатой таблицы Менделеева.

Среди причин размерных эффектов в наномасштабных объектах есть как вполне очевидные, так и заслуживающие дополнительных комментариев. Например, ясно, что доля атомов a, находящихся в тонком приповерхностном слое (~1 нм), растет с уменьшением размера частички вещества R, поскольку a ~ S/V ~ R2/R3 ~ 1/R (здесь S - поверхность частички, V - ее объем). Также общеизвестно, что поверхностные атомы обладают свойствами, отличающимися от “объемных”, поскольку они связаны с соседями по-иному, нежели в объеме. В результате на поверхности может произойти атомная реконструкция и возникнет другой порядок расположения атомов. Для атомов, оказавшихся на краях моноатомных террас, уступов и впадин на них, где координационные числа значительно ниже, чем в объеме, возникают совершенно особые условия. Взаимодействие электронов со свободной поверхностью порождает специфические приповерхностные состояния (уровни Тамма). Все это вместе взятое заставляет рассматривать приповерхностный слой как некое новое состояние вещества.

Рассматривая любой процесс переноса (протекание электрического тока, теплопроводность, пластическую деформацию и т.п.), мы приписываем носителям некоторую эффективную длину свободного пробега Rf. При R >> Rf рассеяние (или захват и гибель) носителей происходит в объеме и слабо зависит от геометрии объекта. При R < Rf ситуация радикально меняется и все характеристики переноса начинают сильно зависеть от размеров образца.

 

Основные методы получения наночастиц

Наночастицы представляют собой мельчайшие, не более одной миллионной метра, структуры. В зависимости от условий получения они могут иметь сферическую, гексагональную, хлопьевидную, игольчатую формы, аморфную или мелкокристаллическую структуру. За счет того, что состоят из 106 или еще меньшего количества атомов (как правило, такие материалы состоят из зерен или являются монокристаллами), их свойства отличаются от свойств тех же атомов, связанных в объемном веществе. В литературе еще не сформулированы точные различия между терминами «кластер», «наночастица» и «квантовая точка». Термин «кластер» чаще используется для частиц, включающих небольшое число атомов, термин «наночастица» - для более крупных агрегатов атомов, обычно используется при описании свойств металлов и углерода. «Квантовой точкой», как правило, называют частицы проводников и островков, где квантовые ограничения носителей зарядов, или экситонов влияют на их свойства.

Существует достаточно условная классификация атомных кластеров на основании их размеров и связь между размерами частиц и количеством составляющих ее атомов. Принято считать, что неорганическая молекула включает в себя до 10 атомных кластеров, наночастицы – до 105 атомных кластеров, а объемный материал – свыше 105 . Данное определение на основе размеров не совсем удовлетворительно, поскольку оно не учитывает различия между молекулами и наночастицами. Множество молекул состоит из более чем 25 атомов, особенно молекулы биологического происхождения. На самом деле не возможно провести четкую грань между ними. Они могут быть построены как посредством сборки атомов, так и дроблением объемного материала. Размеры наночастиц, меньшие, чем критические длины, характеризующие многие физические явления, и придают им уникальные свойства. Многие физические свойства определяются некоторой критической длиной, например, характерным расстоянием тепловой диффузии, или длиной рассеяния.

Процессы, в результате которых происходит формирование нано структур – это кристаллизация, рекристаллизация, фазовые превращения, высокие механические нагрузки, интенсивная пластическая деформация, полная или частичная кристаллизация аморфных структур. Выбор метода получения наноматериалов определяется областью их применения, жела- 20 тельным набором свойств конечного продукта. Характеристики получаемого продукта - гранулометрический состав, форма частиц, содержание примесей, величина удельной поверхности могут колебаться в зависимости от способа получения в широких пределах. Методы получения наночастиц разделяют на химические, физические и механические.

Как пример механического метода получения наночастиц рассмотрим метод диспергирования.

Способы измельчения материалов механическим путем в мельницах различного типа – шаровых, планетарных, центробежных, вибрационных, гироскопических устройствах, аттриторах и симолойерах. Аттриторы и симолойеры – это высокоэнергетические измельчительные аппараты с неподвижным корпусом- барабаном с мешалками, передающими движение шарам в барабане.

Аттриторы имеют вертикальное расположение барабана, симолойеры – горизонтальное. Измельчение размалываемого материала шарами в отличии от других типов измельчающих устройств происходит главным образом не за счет удара, а по механизму истирания. Емкость барабанов в установках этих двух типов достигает 400-600 л.

Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа – порядка 10-20 нм. Разновидностью механического измельчения является механосинтез, или механическое легирование, когда в процессе измельчения происходит взаимодействие измельчаемых материалов с получением измельченного материала нового состава. Так получают нанопорошки легированных сплавов, интерметаллидов, силицидов и дисперсноупроченных композитов с размером частиц 5-15 нм. Достоинство: возможность получения «сплавов» таких элементов, взаимная растворимость которых при использовании жидкофазных методов пренебрежимо мала. Это происходит за счет взаимодиффузии в твердом со- 21 стоянии. Кроме этого механические способы измельчения отличают сравнительная простота установок и технологии, а также возможность получать материалы в большом количестве. Недостатки: возможность загрязнения измельчающего порошка истирающими материалами, а также трудность получения порошков с узким распределением частиц по размерам, сложности регулирования состава продукта в процессе измельчения.

Как пример физического метода получения наночастиц рассмотрим метод конденсации.

Способы испарения (конденсации), или газофазный синтез получения нанопорошков металлов, основаны на испарении металлов, сплавов или оксидов с последующей их конденсацией в реакторе с контролируемой температурой и атмосферой. Фазовые переходы пар- жидкость - твердое тело или пар - твердое тело происходят в объеме реактора или на поверхности охлаждаемой подложке или стенок. Сущность метода состоит в том, что исходное вещество испаряется путем интенсивного нагрева, с помощью газа- носителя подается в реакционное пространство, где резко охлаждается. Нагрев испаряемого вещества осуществляется с помощью плазмы, лазера, электрической дуги, печей сопротивления, индукционным способом, пропусканием электрического тока через проволоку. Возможно также бестигельное испарение. В зависимости от вида исходных материалов и получаемого продукта, испарение и конденсацию проводят в вакууме, в инертном газе, в потоке газа или плазмы. Размер и форма частиц зависит от температуры процесса, состава атмосферы и давления в реакционном пространстве. В атмосфере гелия частицы будут иметь меньший размер, чем в атмосфере аргона - более плотного газа. Таким методом получают порошки Ni, Mo, Fe, Ti, Al. Размер частиц при этом – десятки нанометров.

Достоинство: высокопроизводительный метод.

Недостатки: процессы требуют сложного оборудования, а порошки имеют относительно широкое распределение частиц по размерам и содержат большое количество газообразных веществ. Это может привести к невоспроизводимости процессов получения керамических материалов и сложности управления их микроструктурой.

 

Дисперсные системы

Ультрадисперсные системы характеризуются значительной долей атомов на поверхности (проценты и даже десятки процентов), которая растет при увеличении степени дисперсности. Вследствие размерного эффекта материалам в ультрадисперсном состоянии могут быть присущи уникальные сочетания химических, электрических, магнитных, тепловых, механических, сорбционных, радиопоглощающих и других свойств, не встречающихся у макроскопических объектов.

Разработано достаточно большое число методов получения ультрадисперсных систем, позволяющих весьма тонко регулировать размеры частиц, их форму и строение. Эти методы могут быть разделены на две группы: диспергационные (механическое, термическое, электрическое измельчение или распыление макроскопической фазы) и конденсационные (химическая или физическая конденсация). Примерами ультрадисперсных систем являются нанопорошки, многие коллоидные системы, микроэмульсии и т. п.

Размерные границы ультрадисперсности строго не определены, и в разных областях знания в это понятие вкладывается несколько различное количественное содержание. Два наиболее распространенных подхода приведены в определении. Согласно второму из них, к субмикронным материалам относятся сплавы и порошки с размером зерна (кристаллитов) от 500 нм до 1,2 мкм, к наноструктурированным — с размером зерна менее 200 нм, а ультрадисперсные материалы занимают промежуточное положение между ними.

Истинные растворы (высокодисперсные системы) характеризуются полной гомогенностью и благодаря небольшой разнице между размерами молекул растворенного вещества и растворителя, а также отсутствию пограничных поверхностей раздела между ними представляют собой однофазные дисперсные системы.

Для истинных растворов характерна большая прочность связи между растворенным веществом и растворителем. Растворенное вещество в дальнейшем не отделяется от раствора и, находясь под непрерывным воздействием теплового движения, остается равномерно распределенным в жидкости. Раствор сохраняет гомогенность неопределенно долгое время, если только в нем не происходит никаких самопроизвольных вторичных процессов, изменяющих химическую природу (состав) растворенного вещества (гидролиз, окисление, действие света и т. п.). В дальнейшем будем рассматривать только истинные растворы.

Грубодисперсными называют дисперсные системы, в которых частицы дисперсной фазы видимы в оптический микроскоп и часто даже различимы простым глазом. Например, коллоидной системе "золь" соответствует грубодисперсная система суспензия. Всегда практически грубодисперсны системы "газ в жидкости" (пены), "жидкость в жидкости" (эмульсии), аэрозоли с жидкой дисперсной фазой. Аэрозоли с твердой дисперсной фазой при конденсационном способе получения могут быть сначала коллоидными, но с течением времени вследствие коагуляционных процессов переходят в грубодисперсные системы. Порошки при обычном способе получения измельчением (диспергированием) также представляют собой грубодисперсные системы.

 


Дата добавления: 2018-11-24; просмотров: 5250; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!