Классификация по месту синтеза



Основные механизмы регуляции метаболизма. Роль гормонов в регуляции межклеточной и межорганной координации обмена веществ.

Существуют следующие механизмы регуляции метаболизма: изменение активности ферментов, количества ферментов, проницаемости клеточных мембран.

1. Изменение активности ферментов – самый распространенный способ регуляции метаболизма. Регуляции подвержены «ключевые» ферменты, которые определяют скорость всего полиферментного процесса. Как правило, такие ферменты состоят из субъединиц – олигомерны. Активность фермента зависит от количества, доступности и химического строения субстрата катализируемой реакции, от условий протекания ферментативной реакции в клетке (рН, температуры и др.), от наличия эффекторов (активаторов, ингибиторов), от строения фермента (наличие химической модификации, доступности кофакторов) и др. Изменение активности ферментов играет принципиальную роль в регуляции метаболизма конечными продуктами (ретроингибирование) и реже первыми продуктами (форактивация).

2. Изменение количества фермента в клетке осуществляется путем индукции или репрессии генов, а также его протеолитической деградации в клетке. Ферменты, которые присутствуют в клетке в относительно постоянном количестве, называются конституитивными. Ферменты, количество которых резко изменяется в зависимости от метаболической ситуации, называются адаптивными или индуцибельными. Индуцибельные ферменты и их изоферменты чувствительны к протеолизу. Индукция или репрессия генов регулируется гормонами или другими субстратами.

3. Изменение проницаемости мембран, или точнее – изменение целого комплекса функций мембран (изменение скоростей потоков метаболитов, газов в клетку и из клетки; компартментализация метаболических процессов, изменение электрохимического потенциала, передача нервных импульсов, функционирование рецепторов др.). Эти три основных механизма лежат в основе действия гормонов.

В механизмах саморегуляции можно выделить три уровня.

Первый уровень - внутриклеточные механизмы регуляции. Сиг­налами для изменения состояния клетки служат различные метаболиты. Они могут:

· - изменять активность ферментов путем их ингибирования или активации;

· - изменять количество ферментов путем регулирования их син­теза и распада;

· - изменять скорость трансмембранного перекоса веществ. Межорганная координация этого уровня регуляции обеспечивается пере­дачей сигналов двумя путями: через кровь с помощью гормонов (эндокринная система) и через нервную систему.

Второй уровень регуляции - эндокринная система. Гормоны освобождаются в кровь на специфический стимул, которым может быть нервный импульс или изменение концентрации какого-то метаболита в крови, протекающей через эндокринную железу (например, снижение концентрации глюкозы). Гормон транспортируется с кровью и, достигая клеток мишеней, модифицирует в них обмен веществ через внутриклеточные механизмы. При этом происходит изменение обмена веществ и устраняется стимул, вызвавший освобождение гормона. Выполнивший свою функцию гормон разрушается специальными ферментами.

Третий уровень регуляции - нервная система с рецепторами сиг­налов как внешней среды, так и внутренней. Сигналы трансформируются в нервный импульс, который в синапсе с клеткой-эффектором вызывает освобождение медиатора - химического сигнала. Медиатор через внутри­клеточные механизмы регуляции вызывает изменение обмена веществ. Клетками-эффекторами могут быть и эндокринные клетки, отвечающие на нервный импульс синтезом и выделением гормонов.

2. Общие свойства гормонов. Структура гормональной системы: гормон, рецептор, промежуточный передатчик, клетки и органы-мишени.

Гормоны — это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

1. выделяются из вырабатывающих их клеток во внеклеточное пространство;

2. не являются структурными компонентами клеток и не используются как источник энергии;

3. способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона;

4. обладают очень высокой биологической активностью — эффективно действуют на клетки в очень низких концентрациях (около 10-6-10-11 моль/л).

Попадя в кровь, гормоны с ее током достигают регулируемых клеток, тканей, органов, которые называются мишенями. Можно выделить два основных механизма действия гормонов:

· Первый механизм - гормон связывается на поверхности клеток с комплементарными ему рецепторами и изменяет пространственную ориентацию рецептора. Последние являются трансмембранными белками и состоят из рецепторной и каталитической части. При связывании с гормоном активируется каталитическая субъединица, которая начинает синтез вторичного посредника (мессенджера). Мессенджер активирует целый каскад ферментов, что ведет к изменению внутриклеточных процессов. Например, аденилатциклаза вырабатывает циклический аденозинмонофосфат, регулирующий ряд процессов в клетке. По данному механизму функционируют гормоны белковой природы, молекулы которых гидрофильны и не могут проникать через клеточные мембраны.

· Второй механизм - гормон проникает в клетку, связывается с белком-рецептором и вместе с ним попадает в ядро, где изменяет активность соответствующих генов. Это ведет к изменению метаболизма клетки. Эти же гормоны могут действовать на отдельные органеллы, например, митохондрии. По этому механизму действуют жирорастворимые стероидные и тиреоидные гормоны, которые благодаря липотропным свойствам легко проникают внутрь клетки через ее оболочку.

3. Классификация гормонов: а) по месту синтеза; б) по биологической роли; в) по химическому строению; г) по механизму действия.

Классификация по месту синтеза

Гипоталамус Кортиколиберин, тиреолиберин, гонадолиберин, соматолиберин, меланолиберин, фоллиберин, пролактолиберин. Пролактостатин, соматостатин, меланостатин. АДГ (вазопрессин), окситоцин.
Гипофиз СТГ (соматотропин), АКТГ (кортикотропин), ЛТГ (лактотропин), ТТГ (тиреотропин), МСГ (меланотропин), ФСГ (фоллитропин), ЛГ (лютеотропин).
Периферические железы Инсулин, глюкагон, кортизол, тироксин, адреналин, альдостерон, эстрадиол, эстриол, тестостерон, кальцитонин, паратгормон.
Эпифиз Мелатонин. Серотонин.

 

 

по биологической роли

Регулируемые процессы

 

Гормоны

 

Обмен углеводов, липидов, аминокислот.

 

Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин

 

Водно-солевой обмен.  

 

Альдостерон, вазопрессин.
Обмен кальция и фосфатов.  

 

Паратгормон, кальцитонин, кальцитриол.
Репродуктивная функция.  

 

Эстрогены, андрогены, гонадотропные гормоны.
Синтез и секреция гормонов эндокринных желез. Тропные гормоны гипофиза, либерины и статины гипоталамуса.

 

Классификация по строению

Гормоны – производные аминокислот Адреналин Норадреналин Тироксин Трийодтиронин
Пептидные гормоны Адренокортикотропный гормон (АКТГ) Соматотропный гормон (СТГ) Тиреотропный гормон (ТТГ) Лактотропный гормон (пролактин, ПЛГ) Лютеинизирующий гормон (ЛГ) Фолликулостимулирующий гормон (ФСГ) Меланоцитстимулирующий гормон (МСГ) Антидиуретический гормон (АДГ, вазопрессин) Окситоцин Кальцитонин Паратгормон Инсулин Глюкагон
Стероидные гормоны   Кортизол Альдостерон Эстрадиол Прогестерон Тестостерон Кальцитриол

По механизму действия гормоны можно разделить на 3 группы:

1) Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;

2) гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;

3) гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

4. Иерархия регуляторных систем.

Для контроля секреции гормонов используются нервные влияния, вещества, находящиеся в кровотоке, или другие, "контролирующие" гормоны (рилизинг-факторы и тропные гормоны).


Дата добавления: 2019-07-15; просмотров: 521; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!