Дерево с пассивным оптическим разветвлением PON (P2MP)



Введение

 

Тенденция развития телекоммуникационной сети начала ХХI века должна отвечать времени, то есть быть высокоорганизованной, интеллектуальной, автоматизированной, соответствовать техническому уровню высокоразвитых стран мира, обеспечивать передачу разнообразных сообщений и предоставление пользователям широкого спектра услуг с высоким качеством и надежностью.

Технический облик сети определяет внедрение передовых технологий, обеспечивающих ее модульность, гибкость, экономичность и высочайшие потенциальные возможности.

Хотя телефония и сейчас остается наиболее востребованной услугой, значительно вырос спрос на услуги Интернет не только среди офисных центров, но и среди домашних пользователей. Популярная в последнее время концепция «тройной услуги» (Triple Play) предусматривает предоставление пользователям телефонии, передачи данных и видеоинформации через одну сеть. Причем высокоскоростной Интернет и видео требуют широкополосности сетевых ресурсов. Кроме того, повышение спроса на широкополосный доступ определяется развитием новых технологий: видео по запросу (VоD), потоковое видео, интерактивные игры, видеоконференции, передача голоса в компьютерных сетях (VoIP),телевидение высокой четкости (HDTV) и другие.

При выборе технологии широкополосного доступа должны быть учтены потребности пользователей, их расположение, основные запрашиваемые услуги, различные экономические аспекты.

На развивающемся телекоммуникационном рынке опасно как принимать поспешные решения, так и дожидаться появления более современной технологии. Тем более что, такая технология уже появилась – это технология пассивных оптических сетей PON (passive optical network). Распределительная сеть доступа PON, основанная на древовидной волоконной кабельной архитектуре с пассивными оптическими разветвителями на узлах, возможно, представляется наиболее экономичной и способной обеспечить широкополосную передачу разнообразных приложений. При этом архитектура PON обладает необходимой эффективностью наращивания и узлов сети, и пропускной способности, в зависимости от настоящих и будущих потребностей абонентов. Все абонентские узлы являются терминальными, то есть отключение или выход из строя одного из них никак не влияет на работу остальных. Каждый абонентский узел рассчитан на обычный жилой дом или офисное здание и может охватывать сотни абонентов.

Сети PON значительно изменяют баланс сил на телекоммуникационном рынке, предлагая прагматичную модель работы. В случае их применения оператор может быть в большей степени уверен в компенсации финансовых затрат, прокладывая оптическое волокно от телефонного узла до района с группой потенциальных клиентов — предприятий или индивидуальных пользователей.

Таким образом, технология PON представляет особый интерес в плане расширения сферы применения цифровых широкополосных сетей.

В данном дипломном проекте представлен проект сети доступа технологий GPON (Passive optical network) микрорайона №5 г. Минусинска. Цель данного проекта заключается в разработке схемы организации связи, выборе трассы прокладки оптического кабеля, выборе и установке необходимого оборудования на центральном и терминальных узлах. Рассмотрены вопросы безопасности при строительстве сети.

 


Варианты построения сети доступа

Развитие сети интернет, в том числе появление новых услуг связи, способствует росту передаваемых по сети потоков данных и заставляет операторов искать пути увеличения пропускной способности транспортных сетей. При выборе решения сегодня им необходимо учитывать разнообразие потребностей абонентов, потенциал дальнейшего развития сети и ее экономичность.

Существуют четыре основные топологии построения оптических сетей доступа: «точка-точка», «кольцо», «дерево с активными узлами», «дерево с пассивными узлами».

 

Точка-точка» (P2P)

 

Рисунок 2.1 – Топология «точка-точка» логического соединения в сетях доступа

 

Наиболее простая архитектура. Основной минус связан с низкой эффективностью кабельных систем. Необходимо вести отдельный ВОК из центрального офиса в каждое здание или каждому корпоративному абоненту. Данный подход может быть реализуем в том случае, когда абонентский узел (здание, офис, предприятие), к которому прокладывается выделенная кабельная линия, может использовать эти линии рентабельно.

Топология P2P не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary) решений, например оптические модемы. С точки зрения безопасности и защиты передаваемой информации при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до каждого абонента, этот подход является наиболее дорогим и привлекателен в основном для абонентов в лице крупных корпоративных клиентов.

 

Кольцо»

Рисунок 2.2 – Топология «кольцо» логического соединения в сетях доступа

Кольцевая топология на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит так же хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать, где, когда и сколько абонентских узлов будет установлено. При случайном территориальном и временном подключении пользователей кольцевая топология может превратиться в сильно изломанное кольцо с множеством ответвлений. Подключение новых абонентов осуществляется путем разрыва кольца и вставки дополнительных сегментов. На практике часто такие петли совмещаются в одном кабеле, что приводит к появлению колец, похожих больше на ломаную. Так называемые «сжатые» кольца (collapsed rings) значительно снижают надежность сети. А фактически главное преимущество кольцевой топологии сводится к минимуму.


Дерево с активными узлами

Рисунок 2.3 – Топология «дерево с активными узлами» логического соединения в сетях доступа

 

Дерево с активными узлами — это экономичное с точки зрения использования волокна решение. Оно хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Стандарт IEEE 802.3 Ethernet давно перестали ограничивать нишей корпоративных сетей. Строящиеся по этому принципу сети могут иметь достаточно сложную и разветвленную древовидную архитектуру. Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.


Дерево с пассивным оптическим разветвлением PON (P2MP)

Рисунок 2.4 – Топология «дерево с пассивным оптическим разветвителем» логического соединения в сетях доступа

Частным случаем, когда в качестве пассивного оптического элемента выступает оптический разветвитель, является сеть PON, использующая топологию «точка-многоточка» P2MP (point-to-multipoint). К одному порту центрального узла может быть подключен целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом оптические разветвители, устанавливаемые в промежуточных узлах дерева, полностью пассивны и не требуют питания и специализированного обслуживания.

В топологии P2MP за счет оптимизации размещения разветвителей можно достичь значительной экономии оптических волокон и снижения стоимости кабельной инфраструктуры. Абонентские узлы не влияют на работоспособность сети в целом. Подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных.

Преимущества архитектуры PON сводятся, во-первых, к отсутствию промежуточных активных узлов и экономии волокон. Во-вторых, экономятся оптические приемопередатчики в центральном узле. В-третьих, нужно отметить легкость подключения новых абонентов и удобство обслуживания (подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных).

Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети. К недостаткам можно отнести возросшую сложность технологии PON и отсутствие резервирования в простейшей топологии дерева.

Решения на основе архитектуры "дерево с пассивными узлами" используют логическую топологию типа "точка-многоточка" P2MP (point-to-multipoint) , которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания. Общеизвестно, что PON позволяет экономить на кабельной инфраструктуре, за счет сокращения суммарной протяженности оптических волокон, так как на участке от центрального узла до разветвителя используется всего одно волокно. В меньшей степени обращают внимание на другой источник экономии – сокращение числа оптических передатчиков и приемников в центральном узле. Между тем экономия от второго фактора в некоторых случаях оказывается даже более существенной.

Итак, можно сделать вывод, что применение архитектуры "дерево с пассивными узлами" является более предпочтительным, ввиду следующих причин:

1. Структура оптимальна по количеству волокон;

2. Оптимальное решение по количеству оптических приемо-передатчиков;

3. Легкость подключения новых абонентов и удобство обслуживания;

4. Отсутствие промежуточных активных узлов;

5. Функционирование сети среднее по сложности.

В топологии "точка – множество точек" за счет оптимизации размещения сплиттеров может достигаться значительная экономия оптических волокон и снижение стоимости кабельной инфраструктуры. Все абонентские узлы являются терминальными, и отключение или выход из строя одного или нескольких абонентских узлов никак не влияет на работу остальных. Каждый волоконно-оптический сегмент подключается к одному приемо-передатчику в центральном узле (в отличие от топологии "точка-точка"), что также дает значительную экономию в стоимости оборудования. Развитие сети может происходить плавно, в любых направлениях по мере необходимости.

 


Описание технологии PON

PON (пассивные оптические сети) — это семейство быстро развивающихся, перспективных технологий широкополосного мультисервисного доступа по оптическому волокну. Суть технологии PON вытекает из ее названия и состоит в том, что ее распределительная сеть строится без использования активных компонентов: разветвление оптического сигнала в одноволоконной оптической линии связи осуществляется с помощью пассивных разветвителей оптической мощности — сплиттеров.

 

Примеры построения сетей PON

 

Определение основных терминов

Центральный узел OLT (optical line terminal) – устройство, устанавливаемое в центральном офисе, оно принимает данные со стороны магистральных сетей через интерфейсы SNI (service node interfaces) и формирует нисходящий поток к абонентским узлам (прямой поток) по дереву PON.

Абонентский узел ONT (optical network terminal) имеет, с одной стороны, абонентские интерфейсы, а с другой, – интерфейс для подключения к дереву PON – передача ведется на длине волны 1310 нм, а прием – на длине волны 1550 нм. ONT принимает данные от OLT, конвертирует их и передает абонентам через абонентские интерфейсы UNI (user network interfaces).

Оптический разветвитель – это пассивный оптический многополюсник, распределяющий поток оптического излучения в одном направлении и объединяющий несколько потоков в обратном направлении. В общем случае у разветвителя может быть M входных и N выходных портов. В сетях PON наиболее часто используют разветвители 1xN с одним входным портом. Разветвители 2xN могут использоваться в системе с резервированием по волокну.

Основная идея архитектуры PON – использование всего одного приемопередающего модуля в центральном узле OLT для передачи информации множеству абонентских устройств ONT и приема информации от них.

Структурно любая пассивная оптическая сеть состоит из трех главных элементов — станционного терминала OLT, пассивных оптических сплиттеров и абонентского терминала ONT. Терминал OLT обеспечивает взаимодействие сети PON с внешними сетями, сплиттеры осуществляют разветвление оптического сигнала на участке тракта PON, а ONT имеет необходимые интерфейсы взаимодействия с абонентской стороны. На основе архитектуры PON возможны решения с использованием логической топологии «point-to-multipoint». К одному порту центрального узла можно подключить целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом пассивные оптические разветвители (сплиттеры) устанавливаются в промежуточных узлах дерева и не требуют питания и обслуживания.

В современном мире, при постоянном росте объемов передаваемого трафика (мультимедиа, голос, телевидение, в том числе и высокого разрешения) и тенденции к увеличению требований потребителей к скорости доставки информации, требуемые скорости, при массовом охвате населения, в большей степени, чем другие, способна обеспечить технология PON. Быстро развиваясь, она становится одним из основных каналов доставки пользователю услуг широкополосного доступа.

Технология TurboGEPON является одной из разновидностей технологии пассивных оптических сетей PON, которая обеспечивает скорость передачи 2,5 Гбит/с и позволяет строить сети доступа для многоквартирных домов, бизнес-центров, крупных предприятий, поселков и сельских учреждений, обладая при этом рядом преимуществ:

· оператор предоставляет по одному кабелю такие услуги как:

o высокоскоростной доступ в интернет,

o телефонию,

o IP-телевидение (в том числе HD),

· скорость доступа к услугам до 1 Гбит/с по одному волокну с использованием механизма DBA (динамическое распределение полосы).

· отсутствие обслуживаемых узлов с активным оборудованием – между станционным и абонентским оборудованием располагаются только пассивные разветвители.

· эффективное использование ресурса волоконно-оптического кабеля (до 64 абонентов на 1 волокно).

 

Рисунок 3.1 - Обобщенная структура построения городской сети PON

 


Рисунок 3.2 - Обобщенная структура построения сети PON в поселке

Рисунок 3.3 - Предоставление услуг абоненту

Виды технологий PON

 

В семействе PON существует несколько разновидностей, отличающихся, в первую очередь, базовым протоколом передачи.

 


Таблица 3.1 - Разновидности PON

 Название  Стандарт ( Рекомендация )
APON (АТМ PON) Рекомендации ITU-T G.983.x
BPON (Broadband PON) Рекомендации ITU-T G.983.x
EPON (Ethernet PON) Стандарты IEEE 802.3ah/ IEEE 802.3av
GPON (Gigabit PON) Рекомендации ITU-T G.984.x

 

Первой в середине 90-х годов была разработана технология APON, которая базировалась на передаче информации в ячейке структуры АТМ со служебными данными. В этом случае обеспечивалась скорость передачи прямого и обратного потоков по 155 Мбит/с (симметричный режим) или 622 Мбит/с в прямом потоке и 155 Мбит/с в обратном (ассиметричный режим).

Во избежание наложения данных, поступающих от разных абонентов, OLT направляло на каждый ONU служебные сообщения с разрешением на отправку данных. В настоящее время APON в своем первоначальном виде практически не используется. Дальнейшее совершенствование этой технологии привело к созданию нового стандарта – BPON. Здесь скорость прямого и обратного потоков доведена до 622 Мбит/с в симметричном режиме или

26
1244 Мбит/с и 622 Мбит /с в ассиметричном режиме.

Предусмотрена возможность передачи трех основных типов информации (голос, видео, данные), причем для потока видеоинформации выделена длина волны 1550 нм. BPON позволяет организовать динамическое распределение полосы между отдельными абонентами. После разработки более скоростной технологии GPON, применение BPON практически утратило смысл чисто экономически.

Успешное использование технологии Ethernet в локальных сетях и построение на их основе оптических сетей доступа предопределило разработку в 2000 году нового стандарта EPON. Такие сети, в основном, рассчитаны на передачу данных со скоростью прямого и обратного потоков 1Гбит/с на основе IP-протокола для 16 (или 32) абонентов. Исходя из скорости передачи, в статьях и литературных источниках часто фигурирует название GEPON ( Gigabit Ethernet PON ), которое также относится к стандарту IEEE 802.3ah. Дальность передачи в таких системах достигает 20 км.

Для прямого потока используется длина волны 1490 нм, 1550 нм резервируется для видео приложений. Обратный поток передается на 1310 нм. Во избежание конфликтов между сигналами обратного потока применяется специальный протокол управления множеством узлов (Multi-Point Control Protocol, MPCP). В GEPON поддерживается операция обмена информацией между пользователями (bridging).

Для больших операторов, строящих большие разветвленные сети с системами резервирования, наиболее удачной считается технология GPON, которая наследует линейку APON- BPON, но с более высокой скоростью передачи -1244 Мбит/с и 2488 Мбит/с (в ассиметричном режиме) и 1244 Мбит/с (в симметричном режиме).

За основу был принят базовый протокол SDH (а точнее протокол GFP). Возможно подключение до 32 (или 64) абонентов на расстоянии 20 км (с возможностью расширения до 60 км). GPON поддерживает как трафик АТМ, так и IP, речь и видео (инкапсулированные в кадры GEM - GPON Encapsulated Method), а также SDH. Сеть работает в синхронном режиме с постоянной длительностью кадра. Линейный код NRZ со скремблированием обеспечивают высокую эффективность полосы пропускания.

Единственным серьезным недостатком GPON является высокая стоимость оборудования.

 

Таблица 3.2 - Сравнительные характеристики трех видов PON

Характеристики  BPON  EPON (GEPON)  GPON
Скорость передачи, прямой/обратный поток, Мбит/с 622/155 622/622 1000/1000 1244/1244 2488/1244 2488/2488
Базовый протокол  АТМ  Ethernet SDH(GFP)
Линейный код  NRZ 8B10B NRZ
Максимальное число абонентов 32 32(64) 32(64)
Максимальный радиус сети, км 20 10(20) 20
Длина волны, прямой/обратный поток (видео), нм  1490/1310 (1550)  1490/1310 (1550)  1490/1310 (1550)

 

Как мы видим из таблицы 3.2, отдельные разновидности PON имеют свои преимущества и недостатки:

·BPON, основанная на платформе АТМ , уже не обеспечивает высокую скорость передачи и практически не имеет перспектив;

·GPON более удачна для сетей большой протяженности и емкости. Базовая платформа SDH обеспечивает хорошую защиту информации в сети, широкую полосу пропускания и другие преимущества. Однако более сложное и дорогостоящее оборудование окупается только при высокой степени загрузки;

·в GEPON, в отличие от GPON, отсутствуют специфические функции поддержки TDM, синхронизации и защитных переключений, что делает эту технологию самой экономичной из всего семейства. К тому же, предполагается дальнейшее развитие этого ряда – 10 GEPON (по аналогии с 10 Gb Ethernet).

На данной стадии проектирования сетей связи рекомендуется не останавливать свой выбор на какой-либо одной из технологий PON, так как каждая имеет свои плюсы и минусы, но на сегодняшний день предпочтительней выглядит технология GPON из-за лучшей проработанности реальных систем и возможности получения больших скоростей в ближайшем будущем (до 10 Гбит/с).

 


Дата добавления: 2018-10-25; просмотров: 1854; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!