Критерий работоспособности шлицевых соединений. Метод расчета шлицевых соединений.



Шпоночные соединения. Достоинства и недостатки, область применения. Типы призматических шпонок, способы изготовления шпоночных пазов.

Шпоночные соединения применяют для передачи вращающе­го момента между валом и ступицей (например, ступицей зуб­чатого колеса, шкива, маховика и т. п.) с помощью специаль­ной детали — шпонки. Шпоночные соединения подразделяют на ненапряженные, осуществляемые призмати­ческими или сегментными шпонками, и напряжен­ные, осуществляемые клиновыми шпонками.

Достоинства соединений: простота конструкции и низкая стоимость.

Недостатки: вал и ступица ослаблены шпоночными пазами, в зоне которых возникает концентрация напряжений, что сни­жает усталостную прочность деталей соединений; трудно обес­печить взаимозаменяемость соединения из-за необходимости ручной подгонки шпонки по пазу; ненадежная работа соедине­ния при ударных, реверсивных и циклических нагрузках.

Ширину b и высоту h обыкновенных призматических шпо­нок выбирают в зависимости от посадочного диаметра вала. Концы шпонок могут быть плоскими или скруг­ленными. Глубина врезания шпонки в ступицу k ~ 0,4h. Призматические шпонки вставляют в паз вала по по­садке с натягом, а в паз ступицы по посадке с зазором.

В валу паз изготовляется пальцевой фрезой при единичном или мелкосерийном производстве, а при крупносерийном или массовом дисковой фрезой. Паз в ступице выполняется протяжкой или долбяком.

 

Соединения призматическими шпонками: расчет и конструкция.

Шпонки обычно подбирают по диаметру вала, т.к. шпонки стандартизованы.

В расчетах принимают, что шпонка нагружена силой от момента  и по этой силе выполняют расчеты. Глубина врезания паза в вале такова, что рассчитывать надо только выступающую часть шпонки. Если шпонка выбирается по стандарту, то она рассчитывается только на смятие.

, lр – рабочая длина шпонки.

, где S – коэффициент безопасности.

Если по каким то причинам шпонку не удалось выбрать по стандарту, ее еще считают на срез: .

Соединения сегментными шпонками: конструкция и расчет.

Сегментная шпонка является разновид­ностью призматической шпонки, так как принцип работы этой шпонки подобен прин­ципу работы призма­тической шпонки. Кон­струкция соединения с помощью сегментной шпонки   показана на рис. Глубокая по­садка шпонки обеспе­чивает ей более устой­чивое положение, чем у простой призмати­ческой шпонки. Одна­ко глубокий паз значительно ослабляет вал, поэтому сегмент­ные шпонки применяют главным образом для закрепления деталей на малонагруженных участках валах, например на концах валов. Аналогично соединению с призматической шпон­кой для сегментной шпонки получим

При длинных ступицах можно ставить в ряд по оси вала две сегментные шпонки.

Бывает, что такие шпонки считают еще и на срез .

Шлицевые соединения. Назначение и типы шлицевых (зубчатых) соединений, их сравнительная оценка. Область применения. Способы центрирования деталей шлицевых соединений, обоснование выбора способа центрирования.

Шлицевые соединения валов со ступицами (зубча­тых колес, шкивов и т. п.) применяют для передачи вращаю­щего момента. На валу изготовляют выступы (зубья), входя­щие во впадины (шлицы) ступицы.

Достоинства шлицевых соединений: высокая несущая спо­собность благодаря значительно большей рабочей поверхности шлицев; высокая усталостная прочность вала вследствие не­значительной концентрации напряжений; возможность при­менения точных и производительных методов обработки шли­цев в ступицах (протягиванием) и зубьев на валах (фрезерова­нием червячными фрезами, шлифованием, как при нарезании зубьев зубчатых колес). Этим достигается высокая точность центрирования шлицевых соединений.

Недостатки: высокая стоимость соединений из-за сложнос­ти технологического оборудования (зубофрезерные, протяж­ные и шлифовальные станки); изготовление шлицевых соеди­нений становится экономически целесообразным лишь при крупносерийном и серийном производствах.

Различают шлицевые соединения неподвижные и подвиж­ные с возможностью перемещения деталей вдоль оси под на­грузкой или без нагрузки. (Например, шлицевые соединения сверлильных шпинделей станков, карданных валов автомо­билей и др.) Шлицевые (зубчатые) соединения стандартизова­ны. При данном диаметре соединения стандартами установле­но число и размеры шлицев (зубьев), а также допуски на их раз­меры.

В машиностроении применяют прямобочные, эвольвентные и треугольные шлицы.

В настоящее время наиболее распространены давно приме­няемые прямобочные шлицевые соединения (около 80%) по ГОСТу 1139-80. В поперечном сечении профиль прямобочных шлицев очерчивается окружностью выступов зубь­ев D, окружностью впадин d, и прямыми, определяющими по­стоянную толщину зубьев b. Стандартом предусмотрены три серии соединений: легкая, средняя и тяжелая. С переходом от легкой к средней и тяжелой сериям при одном и том же внут­реннем диаметре d, увеличивают наружный диаметр D и число зубьев z, что повышает несущую способность соединений. Соединения с прямобочными шлицами выполняют с центри­рованием по наружному диаметру D, по внутрен­нему диаметру d, и по боковым граням b.

При выборе способа центрирования руководствуются вели­чиной и характером нагрузки на соединение, требованиями по точности центрирования деталей соединения. Несущую способность шлицевых соединений и износостойкость шлицев можно значительно увеличить повышением твердости рабочей поверхности (боковых граней) шлицев путем закалки их до высокой твердости. Однако после закалки происходит искаже­ние сопрягаемых поверхностей, которое можно устранить лишь последующим шлифованием, которое не всегда можно выполнить. Наружное шлифование шлицевых валов по диа­метру D выполняется легко; сложнее шлифовать отверстия в ступицах по диаметру d и боковые грани зубьев шлицевых ва­лов; невозможно шлифовать боковые грани шлицев и впадины между шлицами по диаметру D у ступиц.

Наиболее надежным (но и более сложным в изготовлении) является соединение, в котором вал и ступица закалены до вы­сокой твердости после нарезки зубьев. В этом случае для полу­чения необходимой точности сопряжения ступицу и вал цент­рируют по диаметру d. Менее надежным, но и более простым в изготовлении является соединение, в котором отверстие сту­пицы не закалено и поэтому может быть окончательно получе­но протягиванием, а вал с предварительно нарезанными зубья­ми закаливается и шлифуется по наружному диаметру D. В этом случае центрирование осуществляют по D. И, наконец, самое простое в изготовлении, но и менее надежное центриро­вание по боковым поверхностям зубьев применяют в тихоход­ных механизмах при больших вращающих моментах. Вал и ступица в этом случае не закалены и зубья на них окончатель­но нарезают (протягивают) без шлифования.

Более перспективны соединения с эвольвентными зубьями (шлицами). Их выполняют с центрированием по боковым, ра­бочим поверхностям или по наружному диаметру; наиболее распространен первый способ центри­рования из-за простоты его получения. Профиль эвольвентных шлицев очерчивается, как и профиль зубьев эвольвентных зубчатых колес, окружностью вершин, окружностью впа­дин и эвольвентами с углом зацепления 30° (у зубчатых колес 20°) при уменьшенной высоте зуба h = m (у зубчатых колес h = 2,25m). Размеры эвольвентных шлицев определяются по ГОСТу 6033-88.

Достоинства эвольвентных шлицевых соединений по срав­нению с прямобочными: выше прочность на изгиб благодаря утолщению зубьев у основания; меньше концентрация напря­жений, поэтому выше сопротивление усталости; выше проч­ность на смятие благодаря увеличенному числу зубьев; при производстве требуется меньшая номенклатура фрез, так как эвольвентные шлицы одинакового модуля можно нарезать од­ной фрезой или долбяком, в то время как при изготовлении прямобочных шлицев для каждого размера и числа зубьев тре­буется отдельная фреза; при обработке зубьев (шлицев) могут быть использованы совершенные технологические процессы, применяемые для изготовления зубьев зубчатых колес.

Недостатки: более дорогие эвольвентные протяжки для ма­лых диаметров ступиц, шлифование эвольвентных шлицев бо­лее сложно, чем прямобочных.

Шлицевые соединения треугольного профиля применяют редко при стесненных габаритах в радиальном на­правлении. Эти соединения центрируют по боковым сторонам зубьев. Размеры шлицев треугольного профиля установлены отраслевыми стандартами (ОСТ) и нормалями. В основном их применяют в кинематических (приборных) механизмах. При необходимости беззазорного соединения применяют кониче­ские соединения треугольного профиля с конусностью 1 : 16 на валу.

 

Критерий работоспособности шлицевых соединений. Метод расчета шлицевых соединений.

Критерии: 1) смятие 2) износ 3) возможен срез зубьев

Основными видами отказов шлицевых соединений являют­ся смятие и износ рабочих поверхностей. Износ является след­ствием работы сил трения при взаимных микроперемещениях контактирующих поверхностей в процессе работы. Особенно большой износ в шлицевых соединениях наблюдается при скудной загрязненной смазке, больших напряжениях смятия. Износостойкость соединения повышают с помощью увеличе­ния твердости контактирующих поверхностей закалкой, уменьшения зазоров между зубьями, а также применяя сма­зочный материал и хорошее уплотнение от загрязнения.

Расчет шлицевых соединений ведется по двум критериям: 1) смятие (если только присутствует вращающий момент) 2) износостойкость (если еще изгибающий момент и радиальные силы).

Упрощенный расчет на смятие:

 где kPH – коэффициент, учитывающий неравномерность распределения нагрузки между зубьями из-за ошибок изготовления, h – рабочая высота зубьев, l – рабочая длина зубьев.

Для прямобочного профиля:

 где f – величина фаски.

 


Дата добавления: 2018-10-26; просмотров: 533; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!