Химический шифр наследственности



 

 

Если вам когда-нибудь скажут, что у кошки вместо котят родились щенята, а у лошади — слоненок, вы улыбнетесь и, конечно, не поверите такому чуду. И будете правы. Жизнь приучила нас к тому, что орел — от орла, а не от страуса. Ио не часто мы задаем себе вопрос: а почему это происходит? Почему мирная зебра или хищный тигр обязательно вырастут полосатыми — точь-в-точь как их родители? Почему десятки признаков отца и матери стойко передаются из поколения в поколение — от детей к внукам, от внуков к правнукам? Как может такое множество наследственных признаков уместиться в крохотной половой клетке и каким образом эта клетка определяет все дальнейшее развитие организма на десятки лет?

Так начал свою беседу с нами крупнейший специалист в области органической химии академик Иван Людвигович Кнунянц. Он известен многими интереснейшими исследованиями. Он открыл, например, целый ряд химических превращений веществ, который привел к синтезу витамина В1 и антималярийных препаратов, предложил промышленности оригинальные методы получения искусственного волокна — капрона, лекарства и красителя — акрихина, получил фоточувствительные красители, открыл закономерность между строением вещества и его цветом, широко обследовал фтористые соединения и др. Круг интересов ученого очень широк, и все же для нас было неожиданностью, когда он обратился к самой загадочной проблеме биологии — к наследственности.

— Вы удивлены? — заметил Иван Людвигович. — Но кто же, как не химики, расшифрует таинственные письмена наследственности, скрытые в недрах клетки и ее ядра? Кто без помощи химиков сможет расшифровать код наследственности и детально исследовать весь ее внутренний биохимический механизм?

Первым ученым, заявившим, что наследственность — свойство материи и что надо искать в организме вещество, которое является носителем наследственности, был французский ботаник Шарль Нодэн, пытавшийся провести целый ряд экспериментов еще в 1856 году. В представлениях Нодэна было много наивного, ошибочного, но в главном своем — материалистическом — выводе, хотя с тех пор прошел целый век, он и сегодня стоит на голову выше тех современных ученых-идеалистов, которые все сложное и непознанное объясняют «волей божества». Ведь ровно сто лет спустя после Нодэна, в 1956 году, известный австралийский генетик вирусолог Л. Хойл пришел к выводу: «Между живыми клетками и неживой материей лежит бездна, и наиболее приемлемым для нас мостом через эту бездну может служить только «акт творения».

Сегодня биологи уже твердо установили, что наследственность определяется сложным ядром клетки, хромосомами, которые передают наследственные признаки и по мужской и по женской линии.

Тот факт, что наследственные признаки сосредоточиваются в ядре клетки, еще раз блестяще подтвержден известным советским биологом членом-корреспондентом Академии наук СССР Б. Л. Астауровым. Он проделал такой опыт. Направив мощный поток рентгеновских лучей на женскую яйцеклетку шелкопряда, он разрушил полностью ядро клетки. Затем ввел в эту клетку два ядра от двух мужских половых клеток, которые слились между собой и образовали новое, «мужское» ядро в женской клетке. Многочисленное здоровое потомство, полученное от этой клетки, повторяло все признаки отца и только отца, было как бы его биологической копией.

Ну, а какое же из химических веществ внутри ядра клетки является носителем наследственных свойств? Может быть, белок? Или сочетание ряда веществ в их комплексе?

Ответ на этот вопрос ученым дали, как всегда в затруднительных случаях, опыты.

Простейший вирус, вирус болезни табачной мозаики, состоящий из нуклеиновой кислоты и белка, разделили на эти две составные части. Оказалось, что белок (всемогущий белок!) не смог заразить табак болезнью, а нуклеиновая кислота даже без белка сохранила эту способность и неожиданно для всех проявила себя как носитель наследственных свойств всего вируса.

Казалось бы, все стало ясно: если носитель наследственности — не белок, то им может быть только нуклеиновая кислота и ничто другое. Ведь все хромосомы состоят из двух основных веществ — нуклеиновых кислот и белков.

Еще 15–20 лет назад химическое строение нуклеиновых кислот было изучено слабо. Их существует всего две — дезоксирибонуклеиновая кислота (сокращенно ее называют ДНК) и рибозонуклеиновая кислота (РНК). Одна встречается только в ядрах клеток, другая же в основном — в протоплазме. Обе они считались очень простыми, состоящими из большого количества совершенно одинаковых стандартных групп атомов.

Но наследственные факторы настолько разнообразны, что примитивные, как казалось, нуклеиновые кислоты не могли быть их материальными носителями, поэтому вслед за белками были «забракованы» и нуклеиновые кислоты. Поиски материальных носителей наследственности зашли в тупик.

Дальнейшие исследования опрокинули гипотезу об однообразии и простоте строения нуклеиновых кислот. Опыты убеждали, что молекулы ДНК устроены очень сложно. Однообразные группировки атомов в них не повторяются систематически, а расположены неравномерно. Оказалось, что ДНК, выделенные из клеток растений, рыб, птиц, человека, имеют существенные различия. Каждый биологический вид имеет свою формулу ДНК. Можно себе представить, сколько всего существует разновидностей этого вещества.

Для ДНК началась «полоса признаний», и ныне большинство ученых— и в СССР, и за рубежом — убедились на фактах, что ДНК-это и есть материальная основа наследственности. Молекулы ДНК в организме способны к репродукции, к самовоспроизведению. Они воспроизводят подобные себе молекулы, ведут обмен веществ и не очень легко изменяются под воздействием внешних факторов.

Но, конечно, я должен отметить, что у нас некоторые ученые еще не разделяют точку зрения на решающую роль ДНК в наследственности организмов, но так или иначе и у нас и во всем мире началось методическое исследование молекул ДНК, их химического строения.

Эта проблема сейчас находится примерно в таком же состоянии, в каком лет пятнадцать назад была таинственная проблема белка. Мы тогда знали строение сложных белков и не знали, как подойти к их исследованию. Знали только, что белок построен из звеньев — всего 20 видов аминокислот, — но порядок сцепления, их последовательность установить не могли.

А сейчас… Сейчас химики не только умеют распознавать строение белка. Они научились нанизывать аминокислоты друг на друга и, таким образом, уже осуществили синтез простейших белков.

Почему я заговорил о белках? Во-первых, потому, что белки — это, пожалуй, единственные соседи ДНК, живущие с ними в одной квартире — хромосоме, причем нрав их нам уже хорошо известен.

Во-вторых, строение молекулы ДНК можно раскрыть, последовательно отщепляя от нее по одной группе атомов, — так же, как это было сделано с белками. Элементарные звенья ДНК мы уже знаем. В них входят сахар (рибоза), фосфорная кислота и четыре другие группы атомов.

В-третьих, белки подсказывают нам пути, которыми можно синтезировать ДНК. Узнав последовательность сцепления молекул и звеньев ДНК, мы в конце концов научимся синтезировать материальные носители определенных наследственных признаков, то есть по своему усмотрению сможем управлять развитием организмов, создавать не только новые качества, но и новые организмы. Это колоссальная задача. Из рук биологов она уже переходит в руки физиков и химиков.

Астрологи в древности пытались предсказывать судьбу человека, изучая взаимное положение звезд и светил. Это, конечно, был самообман, мистика. Иное дело — изучение структуры ДНК. От того, каким образом в молекуле ДНК расположены атомы и звенья атомов, зависят, например, цвет волос, рост и другие качества будущего ребенка. Если порядок сцепления этих групп нарушился, происходят различные нарушения обмена веществ, организм заболевает. Например, ученые считают, что раковые заболевания — это результат нарушения и изменения строения молекул ДНК. Та же причина — распад и изменение строения ДНК в результате атомного облучения — порождает страшную и пока трудно излечимую лучевую болезнь. Вот, оказывается, к лечению каких тяжелых заболеваний может привести исследование ДНК.

Что даст нам практически знание строения и синтез ДНК?

Еще два года назад мы только надеялись, что лет через 10–15 удастся синтезировать хотя бы куски, фрагменты ДНК. Но жизнь опередила эти планы… Уже в 1960 году американцу Корнбергу и японцу Очоа удалось получить настоящие высокомолекулярные ДНК, подобные природным. Они смешали четыре основных фрагмента, определенную комбинацию которых обычно представляет собой природная ДНК. Прибавили фермент-катализатор. Но соединения фрагментов не произошло. И только когда внесли «штамп» — природную молекулу ДНК, эти фрагменты моментально начали соединяться и образовывать новые молекулы, в точности подобные внесенной. Так ученые подтвердили давно сделанное предположение о механизме самого важного биологического процесса — удвоения структур в организме.

Как известно, ДНК является своеобразным штампом, определяющим характер белков, синтезируемых организмом. В равной мере это касается и белков-ферментов, белков-катализаторов, регулирующих весь обмен веществ в организме. Среди этих процессов обмена имеются очень важные, в частности, в воспроизведении которых заинтересована химическая промышленность.

Синтез ДНК даст возможность синтезировать многие органические вещества.

Процессы под действием присущих организмам ферментов-катализаторов будут идти в десятки миллионов раз быстрее, чем сейчас с обычными катализаторами. Химическая промышленность перейдет на большие скорости, резко поднимет производительность.

Есть процессы, которые без катализаторов вообще не идут или протекают очень слабо. Приходится тратить массу топлива, электрической энергии, чтобы добиться выхода нужного количества продуктов. И дело не только в экономии топлива и электроэнергии. Быстро изнашивается и требует обновления оборудование — этот основной капитал любого производства. Ферменты-катализаторы помогают получать столько продукции, что основной капитал быстро окупается. А раз так, значит, можно вместо старых машин и аппаратов поставить новые, более совершенные и производительные. Видите, как чисто научные, казалось бы, исследования ДНК могут поднять производство, химическую промышленность.

Далее, ДНК со временем можно будет синтезировать в колбе и, пересаживая ее в орган или организм, добиваться в нем нужных изменений. Разве это не заманчиво для сельского хозяйства? Сделать кабачок слаще сахарной дыни, увеличить рост, размеры животных так, чтобы качество их мяса не ухудшилось, а, наоборот, улучшилось.

Опыты помогут составить четкие таблицы, по которым со временем практики сельского хозяйства будут быстро ориентироваться и узнают, сколько граммов или миллиграммов определенного вида ДНК надо ввести в организм, куда именно и что это даст. Регулирование веса, упитанности, роста, цвета, «характера» и прочее можно будет осуществлять, «сооружая» организм по «проекту», составленному заранее комбинированием ДНК родителей. А уже потом, когда «вчерне» «организм» будет готов, можно закончить его «отделку». Животное еще молодо и поэтому особенно быстро и легко поддается «формированию». Воздействие ДНК в этот период, применяемое комбинированно с другими методами, поможет вывести идеальные породы животных.

А пока в поднятии животноводства большую роль может сыграть тот факт, что в оплодотворенной клетке заложен весь «план» будущего развития организма.

Совсем недавно учеными был поставлен удивительный эксперимент. Перед ними возникла задача — быстро размножить поголовье новой породы баранов. На плаценте самки они приживили не одну оплодотворенную клетку, а тридцать. Десятки зародышей! Но ведь овца не сможет вырастить столько! Хирургически удалили все лишние оплодотворенные яйцеклетки и пересадили их в непородистых овец. Но появилось лишь чисто породистое потомство! Так как все признаки породистых овец уже были заложены.

ДНК — это вещество, в недрах которого скрывается, видимо, тайна рака — страшного заболевания, пока практически неизлечимого. Можно предположить, что «типовые» молекулы ДНК служат как бы штампами, которые перестраивают все попадающие в организм белки строго по своему подобию. Этими белками заселяется весь организм. Взамен «изношенных» молекул прибывают точно такие же новые. Можно уподобить организм высокоорганизованному автоматическому производству, которое само перерабатывает сырье, снабжает энергией и материалами — полуфабрикатами все органы, ткани и клетки и даже обновляет «оборудование» в своих «цехах».

Но если в эту стройную систему вносится разлад, если один из «биологических штампов» деформируется и по какой-либо причине начинает «штамповать» детали другой формы, организм бессилен сопротивляться. Его заполняют неспособные к нормальной жизнедеятельности молекулы ДНК. Они образуют целые сборища, которые дают опухоли. Подобного же рода многочисленные разлады постепенно накапливаются по мере жизни данного организма. Каждый из этих разладов не столь серьезен, чтобы организм погиб, как, например, от рака. Однако накопление изменений ведет к тому, что мы называем старостью. Чем помочь организму? Как заставить ДНК вернуться к первоначальной форме?

Пройдет несколько лет, люди узнают и эту тайну природы. И жизнь человека будет продлена во много раз. Те, что родятся в самом начале XXI века, бесспорно, перейдут в XXII век еще далеко не бессильными стариками.

 

Откровения зеленого листа

 

 

Уважаемые джентльмены! Когда Гулливер в первый раз осматривал академию в Лагадо, ему прежде всего бросился в глаза человек сухопарого вида, сидевший, уставив глаза на огурец, запаянный в стеклянном сосуде. На вопрос Гулливера диковинный человек пояснил ему, что вот уже восемь лет, как он погружен в созерцание этого предмета в надежде разрешить задачу улавливания солнечных лучей и их дальнейшего применения… В зале, где собрались члены Лондонского Королевского общества, наступила недоуменная тишина. Что он хочет сказать, этот русский профессор, которого Королевское общество пригласило в апреле 1903 года прочесть лекцию о своих, говорят, очень интересных исследованиях?

— Для первого знакомства я должен откровенно признаться, что перед вами именно такой чудак. Более тридцати пяти лет провел я, уставившись если не на зеленый огурец, закупоренный в стеклянную посудину, то на нечто вполне равнозначащее — на зеленый лист в стеклянной трубке, ломая себе голову над разрешением вопроса о запасании впрок солнечных лучей…

«Запасать впрок солнечные лучи? Разве их можно уловить и удержать?»— думал кое-кто из присутствующих. А остроумный русский профессор (это был Климентий Аркадьевич Тимирязев), ничуть не смущаясь, продолжал лекцию, точными цифрами и экспериментами подтверждая шаг за шагом свою мысль о величайшей, как он выразился, космической роли земных растений — деревьев, трав, водорослей.

Нет, не абстрактные рассуждения волновали замечательного русского ученого, а великая польза, которую получает от растений человечество, само того, может быть, до конца и не осознавая.

Зеленых растений на земном шаре — неисчислимое количество, а закон их питания — един. И не надо думать, что, если они встречаются нам на каждом шагу, значит, мы все знаем о них. Великая тайна зеленого листа, тайна самой жизни остается и до сих пор не полностью раскрытой.

Великая тайна зеленого листа — это проблема фотосинтеза. Это вопрос о том, каким образом растения извлекают из воздуха углерод, как солнечный свет помогает им строить, синтезировать из этого углерода сложнейшие питательные вещества.

…Мы пришли к профессору Анатолию Александровичу Ничипоровичу, крупнейшему специалисту в области изучения фотосинтеза.

— Изучая жизнь растений, ученые поняли, что высокие урожаи зависят прежде всего от фотосинтеза, — сказал ученый. — Удобрения, водоснабжение повышают урожаи постольку, поскольку они повышают фотосинтетическую продуктивность растения. Ведь на 90–95 процентов урожай любого растения возникает из воздуха, из углекислого газа, поглощенного растением на свету. Значит, надо выяснять и создавать наивыгоднейшие условия для фотосинтеза.

Нужно и можно поднять урожайность почти всех культур, потому что теоретический «потолок» урожайности еще далеко не достигнут. Человечество получает от культурных растений значительно менее 1/10 части того, что они могли бы дать, как говорит теория.

— Если бы удалось заглянуть в будущее, — продолжает профессор А. А. Ничипорович, — то мы увидели бы, как шаг за шагом поднимается урожайность, по мере того как человек раскрывает основы и механизм питания растений и ведущую роль в нем фотосинтеза — основы всего сущего.

Если бы можно было заглянуть подальше в будущее… Но сначала оглянемся назад, в историю, в те времена, когда у человека впервые возник интерес к загадке, которую в наше время называют проблемой фотосинтеза.

Пастор, священник Жан Сенебье не был специалистом-биологом, но именно ему наука обязана одним из великих открытий. Он установил, что растение, построенное в основном из углеродистых соединений, получает этот элемент из воздуха. В 1782 году в одном из трех томов своих сочинений он коснулся вопроса о действии света на листья, а в следующем. 1783 году посвятил ему целый том.

Сенебье, как и некоторые ученые до него, рассуждал примерно так: «Из чего строится растение? Из какой среды — из земли, из воды или из воздуха?» И пришел к выводу, что «стройматериалом» и главной пищей растения является воздух. Эта пища есть всюду: и в пустыне, и на скалах, и в лесу. Вот почему, где бы ни жили растения, состав у них одинаковый, ибо они строятся из углекислоты.

Есть идеи, которые, как говорят, носятся в воздухе, и нужно только, чтобы нашелся человек, который смог бы сформулировать их полно и четко. В 1753 году, за 20 лет до открытия Сенебье, написал свое «Слово о явлениях воздушных» Михайло Васильевич Ломоносов.

Вдумайтесь в его мысли:

«Преизобильное ращение тучных дерев, — писал он, — которые на бесплодном песку корень свой утвердили, ясно изъявляет, что жирными листами жирный тук из воздуха впитывают».

Это была догадка, предвосхищавшая открытие Жана Сенебье. Не произнося слова «углерод», Сенебье открыл самый факт его кругооборота и вполне осознавал значение своего открытия.

«Я вижу, — говорил он, — как моя кровь образуется в хлебном колосе… А древесина отдает мне зимою теплоту, огонь и свет, похищенные ею у солнца… Я вижу, как частицы света соединяются с телами; я хотел бы думать, что этот свет вновь будет поражать мои взоры в пламени горючих веществ, мне кажется, что он образует эти смолы, с которыми имеет так много сродства, эти маслянистые вещества, насыщенные его теплотой, его пламенем, эти спиртовые частицы семян и плодов, пропитанные его огнем…»

Все шло к тому, чтобы фотосинтезом заинтересовались многие. Почти в то же время, когда Сенебье писал свои теоретические сочинения, англичанин Пристли экспериментально установил, что растения «исправляют» воздух, испорченный дыханием животных. Но Пристли не заметил, что «исправление» воздуха зависит от того, освещается растение солнцем или нет. Лишь через семь лет, в 1789 году, это открыл голландский ученый Ингенгуз.

Целая плеяда ученых, живших в разное время и в разных странах — Лавуазье, Де-Кандоль, Соссюро, Буссенго, Либих, Роберт Майер, — связала себя с решением этой проблемы.

Но понадобился гений К. А. Тимирязева, чтобы двинуть дело дальше и положить начало современному этапу работ по фотосинтезу. Тимирязев умело и блестяще сочетал точные методы разных наук — физиологии растений, физики и химии. Недаром ему было присвоено звание доктора точных наук. Девизом К. А. Тимирязева было «Работать — для науки, писать — для народа, то есть популярно». Даже о сложнейшей проблеме фотосинтеза он умел рассказывать интересно и увлекательно.

«Когда-то, где-то, — рассказывает ученый, — на землю упал луч солнца; но он упал не на бесплодную почву, — он упал на зеленую былинку пшеничного ростка, или, лучше сказать, на хлорофилловое зерно. Ударяясь о него, он погас, перестал быть светом, но не исчез. Он только затратился на внутреннюю работу. В той или другой форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в наши нервы. И вот теперь атомы углерода стремятся в наших организмах вновь соединиться с кислородом, который кровь разносит во все концы нашего тела. При этом луч солнца, таившийся в них в виде химического напряжения, вновь принимает форму явной силы. Этот луч солнца согревает нас. Он приводит нас в движение. Быть может, в эту минуту он играет в нашем мозгу…»

Количества энергии и углерода, накапливаемые растениями в угле, нефти, газе, древесине, торфе, выражаются в цифрах поистине космических! Как микробы, крохотные и невидимые, вершат порой гигантские процессы, так и растения, эти крохотные былинки на лике нашей планеты, преобразуют ее, вершат дела космического масштаба.

В нашей атмосфере 21 процент кислорода. Весь он также добыт и освобожден растениями из воды и минералов в процессе фотосинтеза.

Пока человек использует лишь 0,35 процента энергии, накапливаемой растениями в фотосинтезе. (Это равно годовой выработке 700 Волжских ГЭС.)

Мы могли бы сказать тем, кто пророчит планете мальтузианскую голодную смерть:

— Смотрите, какие колоссальные возможности роста у сельского хозяйства! Сколько энергии дает нам солнце! Сколько земель, пригодных для сельского хозяйства, пустует! По данным Организации Объединенных Наций, эта цифра доходит до 48 процентов!

Подумать только: в центре так называемого цивилизованного мира, во Франции, пустует 10 миллионов гектаров земель. И если в наше время голод или частичный голод охватывает 2/3 населения земли, то это происходит не из-за биологических, как пытаются доказать буржуазные идеологи, а из-за социальных причин.

Ученые подсчитали, что если бы всюду сельскохозяйственное производство поднять до уровня лучших западноевропейских ферм, то продукция сразу увеличилась бы вдвое. Например, в Соединенных Штатах урожай пшеницы с гектара вдвое ниже, чем в странах Западной Европы, где применяются более передовые методы обработки. В Индии применение японского метода выращивания риса привело к увеличению урожая вдвое. Вообще нужно сказать, что в странах с развитым сельским хозяйством урожай с гектара растет быстрее, чем само население.

Наши мастера высоких урожаев, вдохновленные высокими идеями коммунизма, на практике доказали, что человек в силах поднять урожайность растения в десятки раз и приблизиться к тому теоретическому «потолку», о достижении которого мечтали ученые, исследовавшие фотосинтез. Это открывает необыкновенный простор для творческих дерзаний работников сельского хозяйства. Уже сейчас для многих передовиков у нас стало обычным получать с гектара не менее 120 центнеров зерна кукурузы, 60–70 центнеров зерна пшеницы, 1000–1200 центнеров свеклы, 1000–1500 центнеров зеленой массы кукурузы…

Трудно себе представить, насколько освоенной, изобильной и плодородной станет через десятки лет вся суша. И не только суша!

Настанет время, и мы научимся несравненно лучше, чем сейчас, использовать растительность морей и океанов, и прежде всего микроскопические одноклеточные водоросли. Водные растения синтезируют органических веществ в восемь раз больше, чем сухопутные. И это не только потому, что море в два с половиной раза больше суши. Море плодороднее. Гектар суши в среднем дает за год 3–4 тонны растительности, а гектар моря — 8–9 тонн. Но как ее добывать? Над этим пусть подумают инженеры…

Мы немного отвлеклись, — говорит профессор А. А. Ничипорович. — Вернемся к загадке фотосинтеза, решение которой позволит не только в несколько раз поднять урожайность на тех же земельных площадях, но и обещает обогатить химическое производство новыми типами реакций, новыми катализаторами и новым сырьем.

Мы не случайно начали разговор о фотосинтезе с солнца. Ведь пища, которую нам дают растения, есть не что иное, как «консервы солнечных лучей». Но нужен был основной материал, который мог бы стать переносчиком солнечной энергии из неживой природы в растение, из растения — в животное, а затем снова в неживую природу. Таким материалом является углерод — элемент с замечательным свойством: он способен легко окисляться, соединяясь с кислородом, и восстанавливаться, освобождаясь от кислорода, присоединяя, например, водород.

Есть у этого элемента и другие достоинства. Атомы углерода могут соединяться в цепочки, кольца разнообразной длины, величины и конфигурации.

Они становятся основой, скелетами сотен тысяч молекул разнообразных органических веществ, которые легко превращаются друг в друга и дают вещества с самыми разнообразными свойствами.

Итак, растения питаются углеродом. Как же он проникает в растение? Огромное количество углекислого газа растворено в атмосфере и омывает листья, принося растению основную пищу.

Лист — это орган фотосинтеза, чрезвычайно мощный синтетический аппарат. Если растения занимают гектар, то площадь их листьев достигает 3–4 и даже иногда 10 гектаров. Однако фактически поверхность соприкосновения с воздухом у листа еще больше, потому что весь лист испещрен сотнями тысяч микроскопических устьиц. Внутри листа и происходит поглощение углекислоты зернами хлорофилла. Общая поверхность клеток, которые поглощают углекислоту, за счет такой пористости в 7—10 раз больше поверхности листа. Чтобы создать большие урожаи, растения должны усваивать из воздуха громадные количества углекислого газа.

Тесно пешеходам и автомобилям на узких улицах больших городов. А в крошечных устьицах еще «теснее». Обычно через каждое устьице диаметром в несколько микрон каждую секунду внутрь должно пройти 2500 миллиардов молекул углекислого газа. А навстречу им через те же устьица мчится такой же поток кислорода и в 2–3 тысячи раз большее количество молекул воды. Скользнув взглядом по зеленой листве, мы и не догадываемся порой, с какой бешеной скоростью идут процессы внутри листа.

Пришла осень. Вы сняли урожай сахарной свеклы. Урожай средний — 250–350 центнеров с гектара. Вы не поверите сразу, сколько углекислого газа усвоили из воздуха растения — 20 тонн! Это значит, что они смогли «съесть» весь углекислый газ из слоя воздуха в четыре километра над участком в гектар!

В какой же последовательности образуются вещества при фотосинтезе?

Сначала из простейших углеродных соединений возникают так называемые промежуточные продукты. Среди них — фосфорные эфиры органических кислот, Сахаров, а также аминокислоты. Сначала все, что возникает, существует в виде растворимых соединений. А когда первый голод клеток утолен, избыток «дохода» растение кладет «в банк», переводит в крахмал, в нерастворимую форму. Крахмал можно увидеть в листьях уже через несколько минут после начала фотосинтеза. Во времена К. А. Тимирязева думали, что это первый продукт фотосинтеза, а оказалось, что это один из последних продуктов. Просто реакция идет настолько быстро, что десятки промежуточных продуктов, возникающих буквально за секунды, мы не успеваем даже распознать.

Может быть, вся цепочка превращений при фотосинтезе полностью изучена? Так ли это? К сожалению, нет! Нащупаны пока только некоторые из основных звеньев процесса.

От нескольких сантиметров до десятков метров колеблется рост растений. И если маленький колючий лютик живет всего 30–40 дней, то жизнь гигантской секвойи, эвкалипта, тисса растягивается на сотни лет. Но совершенно независимо от размеров растения фотосинтез у них может быть и очень активным, и слабым. Например, у подсолнечника и кок-сагыза аппарат фотосинтеза действует исключительно интенсивно, но каков внутренний «механизм» их высокой активности, пока неясно. А ведь без ответа на этот вопрос невозможно активизировать фотосинтез для многих сельскохозяйственных культур и поднять их урожайность до теоретического «потолка».

По-разному работает фотосинтетический аппарат при разном свете. Например, советский ученый А. Ф. Клешнин заметил, что если растить лук под белым или красным светом, он хорошо образует луковицы. А под синим люминесцентным светом он, наоборот, быстро идет в перо и не дает луковицы.

Оказывается, кванты (порции) синего света обладают почти вдвое большей энергией, чем кванты красных лучей, и способны осуществлять более трудные в энергетическом отношении фотохимические реакции. Кроме того, лучи разных частей спектра поглощаются разными веществами и активируют разные реакции превращения веществ в растениях. Поэтому при разном освещении образуются различные вещества, меняется весь ход процесса обмена.

А разве не заманчиво исследовать все способы светового воздействия на растение? Ведь можно менять не только спектр света, но и его продолжительность и силу.

Практическое применение световой техники в сельском хозяйстве по существу еще только начинается, поэтому поле деятельности для исследователя здесь безграничное.

Для того чтобы использовать энергию света на превращение веществ и усвоение углерода, свет должен быть поглощен и энергия его должна быть превращена в энергию химическую. Эти обязанности выполняет в листьях растений зеленый пигмент хлорофилла. И в наше время биологи исследуют особенно внимательно зеленое хлорофилловое зерно — этот микроскопический очаг, который служит посредником между Солнцем и всей жизнью на Земле.

Свет кажется нам непрерывным потоком, а на самом деле луч света идет последовательными порциями.

Есть у растений одна, видимо, очень существенная, но до сих пор не объясненная особенность: листья их содержат гораздо больше хлорофилла, чем, казалось бы, необходимо для фотосинтеза. Чтобы образовать одну молекулу органического вещества, продукта фотосинтеза из одной молекулы углекислого газа, достаточно энергии всего трех-четырех фотонов. А листья в полевых посевах на каждую молекулу поглощают нередко в 30–40 раз большее количество энергии. За это растению приходится расплачиваться усиленным испарением воды из листьев. Но даже в тех районах, где мало воды, растения упорно сохраняют высокое содержание хлорофилла и по-прежнему поглощают много энергии. Зачем?

И почему, даже если дать ему больше пищи и воды, в ответ растение прежде всего увеличивает содержание хлорофилла в листьях, хотя света кругом — в избытке, а доля усваиваемого света все так же мала?

Как же объяснить эти особенности растения?

Точных ответов на эти вопросы пока не дал никто.

Благодаря этому в полевых посевах растения связывают в продукты фотосинтеза в среднем всего 1/100 или 1/200 часть энергии, получаемой от Солнца. К. А. Тимирязев считал, что «человеку предстоит или усовершенствовать в этом отношении растение или изобрести взамен его искусственный прибор, который утилизировал бы больший процент получаемой энергии и притом работал бы круглый год. Насколько успеет он на этом пути — вопрос будущего».

Но усовершенствовать растение нельзя, не разобравшись в его внутреннем механизме. Давайте возьмем с вами углекислый газ и воду (то есть обычную пищу растения) и постараемся разделить эти вещества на простые составные части. Растение это делает за доли секунды, легко и просто, а нам придется нагреть газ и воду до сотен градусов. Причем как только температура и давление снизятся, снова образуется углекислый газ и вода. Это похоже на пружину: пока ее держишь, она растянута. Отпустил — сжимается.

Но почему же растение безо всяких давлений и температур не только разлагает углекислоту и воду, но и надежно разъединяет их? Как удается растению разъединить кислород и водород, которые имеют высокое сродство друг к другу и всегда стремятся соединиться между собой? Почему здесь энергетическая «пружина» остается взведенной? Эта «пружина» будет спущена, отдаст свою энергию только тогда, когда растение или будет сожжено, или станет кормом для животного.

Академик А. Н. Теренин и профессор А. Н. Красновский, исследуя хлорофилл, вскрыли интересные особенности фотохимической стадии и показали, как хлорофилл под ударами фотонов света становится своеобразным электронным насосом. В присутствии катализаторов под действием света молекула хлорофилла возбуждается и приобретает «жадность» к электрону, отнимает его у молекулы воды. Электрон передается «с рук на руки» веществам-переносчикам, пока, наконец, не доберется до углекислоты. Так же через хлорофилловую молекулу передается и ядро атома водорода. Водород вытесняет часть кислорода из углекислоты и становится на его место. «Пружина» взведена.

Обычно сгорание органического вещества идет по уравнению: СН2О + О2 = CO2 + Н2О +112 килокалорий. А в зеленом листе под солнцем эта же реакция идет в обратном направлении. Взятые растением у солнца 112 килокалорий — это и есть та сила, которая помогает реакции идти как бы против течения. Но дело не только в этом. Есть в листе что-то такое, что не дает реакции «скатываться» обратно, вспять. Это «что-то» кроется в замечательной структурной организации фотосинтетического аппарата растений, и прежде всего в тех круглых дискообразных зеленых тельцах в клетках листьев, которые Тимирязев называл в свое время хлорофилловыми зернами. Они образуют определенные структурные системы — хлоропласты.

Фотохимическая активность и совершенство хлоропласта зависят не только от его состава и обилия ферментов. Для точно направленной работы, для соединения нужных веществ растение за миллионы лет создало определенную структуру хлоропластов. Пока ясны далеко не все детали процессов, которые совершаются, происходят в хлоропласте. Во всяком случае, объемная пространственная структура хлоропласта, действующего, может быть, наподобие полупроводника, помогает реакции двигаться «против течения», как по ступенькам, поднимая вещества на более высокий энергетический уровень и сводя их в новые соединения.

Хлоропласты работают интенсивней многих химических заводов. За день работы они создают столько же органических веществ, сколько их содержится в них самих.

Убедиться в том, как важна для растения внутренняя структура листа, может каждый. Не отрывая листик от цветка, прокатайте слегка лист на столе стеклянной палочкой: клетки его останутся живы, дыхание сохранится, будут идти даже некоторые биохимические реакции, а способность к фотосинтезу будет сразу утрачена.

Хлоропласт и его структура — одна из еще не решенных полностью проблем биологии. Подобных «белых пятен» вокруг нас миллионы. И до каждого из них в конце концов доберется пытливый человеческий ум.

А когда мы полностью будем знать особенности структурной организации хлоропластов, особенности фотохимических и ферментных реакций фотосинтеза, особенности взаимодействия хлоропластов с живой протоплазмой клеток, а листьев, как органов фотосинтеза, — с растением, как единым, целым организмом, Мы получим в руки сильнейшие рычаги овладения силами природы. Применяя их для невиданного еще повышения урожайности растений, для воспроизведения фотосинтеза в искусственных условиях, для организации новых отраслей химической технологии, мы будем получать разнообразные и ценнейшие продукты и материалы из повсеместно распространенного сырья — углекислого газа, карбонатов, воды, азота воздуха и на неограниченной энергетической базе, то есть используя неиссякаемые потоки энергии солнечной радиации.

Заканчивая нашу беседу, — сказал профессор А. А. Ничипорович, — я напомню вам слова академика Сергея Ивановича Вавилова.

«Весьма возможно, — говорил он, — что сложность фотосинтеза зависит не только от запутанного переплетения физико-химических областей, уже известных. Возможно, что они заключают в себе также и новые стороны, до сих пор даже с принципиальной стороны оставшиеся скрытыми от общих наук».

Значит, молодым биологам, — сказал профессор А. А. Ничипорович, — надо смелее вторгаться в тайны зеленого листа, в секреты фотосинтеза. Их ждут, я убежден, большие романтические открытия.

Проблема фотосинтеза — это одно из «белых пятен» науки. Решив ее, мы сможем регулировать урожайность растений, навсегда уничтожим угрозу голода на земле. Конечно, мы должны прежде всего использовать и совершенствовать высокопродуктивные сельскохозяйственные растения. Но не ограничивать свое зрение только ими. Загадка эта требует более широкого научного подхода, и решение может прийти с совершенно неожиданной стороны. Еще раз советую обратить внимание на водоросли.

Да, мы пока совершенно их не используем в пищу. Но разве имеет право биолог забывать, что водоросли — одна из первых ступенек, пройденных живыми существами в ходе всей эволюции? У водорослей многие процессы идут проще, чем у высших растений. Тем лучше для исследователя! Тем ближе мы к разгадке самой поэтичной тайны природы.

И кто знает: не используют ли астронавты XXI века растения для регенерации воздуха в межпланетных ракетах? Не возьмут ли они в свои космические «ковчеги», подобно Ною из библейской легенды, примитивные, но живучие растения, которые на других планетах станут для них и пищей, и разведчиками, и напоминанием о родной Земле?

 

За одним столом с Посейдоном

 

 

Биологический факультет Московского университета на Ленинских горах. Не так-то просто среди множества лабораторий и комнат для занятий найти кабинет заведующего кафедрой зоологии беспозвоночных, члена-корреспондента Академии наук СССР Льва Александровича Зенкевича. Пробегая взглядом надписи на дверях лабораторий и кафедр, даже неискушенный в биологии человек почувствует, насколько всеобъемлющей и разветвленной стала в наши дни биологическая наука. Ничто в живом мире, кажется, не ускользнуло от биологов. В отделанных светлым деревом стенах коридоров архитекторы искусно скрыли множество шкафчиков.

Здесь, как в гигантском музее, хранятся тысячи разнообразнейших коллекций, гербариев. И глядя на них, поневоле думаешь: настанет ли день, когда биологи завершат всемирную «перепись» живых организмов? А может быть, она уже закончена и молодежи остается только завидовать первооткрывателям животных и растений, жившим в XIX веке и первой половине XX?

Лев Александрович улыбается. Наверно, даже студенты на лекции не задают ему подобных вопросов.

— Что бы вы сказали, — говорит он, — если бы географы вдруг объявили сейчас, что открыт новый, никому не известный континент? Не верится? Так вот нечто подобное

произошло недавно в зоологии, когда советские ученые, плавающие на экспедиционном судне «Витязь», подняли со дна Тихого океана много видов нового типа животных — погонофор. Оказалось, что погонофоры, живущие в тонких трубочках до полуметра длиной, — наши родственники. Это представители нового, доселе неизвестного типа животных, очень близкого к типу хордовых, куда относятся и все позвоночные. Эта древняя группа высокого уровня развития сохранилась в океане (преимущественно на глубинах 3–4 и более километров, вплоть до наибольших глубин океана!). К восьми известным нам типам живых организмов прибавился девятый.

Открытие «рангом поменьше» сделали недавно датчане. На четырехкилометровой глубине в Тихом океане они обнаружили животных нового класса, относящегося к типу моллюсков. Внешне эти существа немногим отличаются от обычных моллюсков, только строение у них более примитивное, дающее биологам основание считать, что моллюски произошли от кольчатых червей.

Что же тут интересного, спросите вы?

Видимо, эти животные, как и многие другие представители глубоководной фауны, сохраняют примитивные черты древних обитателей океана, уже вымерших в поверхностных водах морей. Однообразие и постоянство условий существования на глубинах океана как бы тормозят, замедляют ход эволюционного процесса. Открытие этих животных — находка еще одного звена той цепи эволюции, которую биологи стараются связать в единое целое, чтобы представить, как развивались разные группы животных. К XXI веку, пожалуй, не останется на биологической карте мира «белых пятен». Тогда и весь процесс эволюции станет более зримым, более ясным.

В последнее десятилетие произошло очень крупное событие в изучении морей и океанов. Как ни странно это звучит, но только сейчас мы «открыли» глубины океанов для всестороннего изучения.

Совсем недавно океан «прощупывали» на глубину не более четырех-пяти километров. А сейчас исследователи изучают дно тихоокеанских впадин, достигая предельных, открытых «Витязем» глубин — до 11 035 метров.

В 1948 году известный шведский океанолог Ганс Петтерссон, начальник экспедиции на судне «Альбатрос», выпустил книгу «Тайны морских глубин», где высказал предположение, что на глубинах больше 6,5 тысячи метров нет никакой жизни. Он ссылался на французского физиолога Фонтена, который, помещая организм в барокамеру, установил, что даже бактерии под давлением 650 атмосфер, то есть, соответственно, на глубине шести с половиной километров, существовать не могут.

Десять лет назад думали, что все морское дно, лежащее глубже 6,5 километра (а это целых 7 миллионов квадратных километров), — «мертво». Но в 1949–1952 годах исследования нашего «Витязя», а в 1951–1952 годах — датской экспедиции на «Галатее» показали, что разнообразная жизнь достигает предельных глубин океана и «мертвых» глубинных зон в океане нет…

Но вас, я вижу, интересует будущее, а не прошлое.

И ученый, с таким увлечением рассказывавший и споривший, вдруг превращается в простого, задумчивого человека.

— Океан… — говорит он так, словно видит его перед собой. — Три пятых поверхности земного шара все еще недостаточно изучены. Изучение океанов приведет науку к выводам, важным для всего человечества. Геологическое прошлое Земли, даже возраст планеты станут яснее, когда мы изучим глубины океанов и прежде всего его дно и накопившиеся на нем за миллиарды лет осадки. На дне океанов в будущем мы найдем ответ на многие вопросы, стоявшие перед наукой в прошлом.

Сколько лет Земле? Как менялся климат на ее поверхности? Как менялся, наконец, уровень самого океана и очертания его берегов и материков? Геологи считают и пересчитывают слои на земной суше, чтобы ответить на эти вопросы. Однако в результате нарушения напластований, процесса выветривания и многого другого все осадочные породы на поверхности Земли сильно смещены, перепутаны. Здесь многое препятствует составлению точной картины прошлого Земли. Атомные «часы» (определение возраста Земли по количеству распавшихся на ней радиоактивных веществ) не удовлетворяют биологов. Есть «часы», может быть, еще более точные — биологические.

Одноклеточные животные и растения, населяющие поверхностные воды океана, отмирают, и мириады их скелетиков пластами опускаются на дно океана. Если Баренцево море сто миллионов лет назад было теплее, чем сейчас, то среди донных отложений на соответствующей глубине мы найдем остатки других животных, обитателей более теплого климата. Дно океана — это как бы гигантский музей, хранилище, где, не тревожимые никем и ничем, при ровной температуре лежат «архивы» биологических явлений, на протяжении миллионов лет совершавшихся в океане. Гораздо точнее, чем любыми другими путями, по ним можно определить, например, как менялся климат на Земле. Установлено, что в районе Баренцева моря и после ледникового времени и до него были периоды более теплого климата.

Атомные «урановые часы» говорят, что Земле два-три миллиарда лет. А «биологические часы» показывают иное. Погружаясь в глубь веков, в начале палеозойской эры, то есть на 700–800 миллионов лет назад, мы встречаем там формы и типы животных наших дней. Уже тогда они в основном сложились. Почти миллиард лет прошел с тех пор. Невозможно представить себе, чтобы жизнь на Земле появилась за миллиард лет до начала палеозоя и успела за этот срок совершить всю эволюцию, если так относительно мал эволюционный путь, пройденный за последующие 800 миллионов лет. Не укладывается история развития живого населения Земли и в 4–5 миллиардов лет.

Могут возразить: а что, если раньше ход эволюции был быстрее? Но думать так нет оснований. Скорее наоборот, на заре жизни эволюция животных шла очень медленно, а по мере развития жизни темп ее убыстрялся. Земной шар должен был образоваться не меньше 10 миллиардов лет назад, чтобы жизнь на нем стала такой, какой мы ее видим сейчас. Но ведь именно к этой цифре — 10 с лишним миллиардов лет — пришел и академик О. Ю. Шмидт, по-новому объяснивший возникновение Земли и других планет. Так биология, океанология в своих выводах смыкаются с астрономией, астрофизикой. Далекие науки взаимно обогащают друг друга.

В ближайшие 20–30 лет толщи океанских отложений станут предметом детального изучения. Мы пока даже не можем сказать, как менялась соленость океана за время его существования. Но вот в 1949 году «Витязь» вышел на глубоководные исследования в Черном море. К слову сказать, оно соединилось со Средиземным сравнительно недавно, всего несколько тысяч лет назад. Понятно, что в море и грунт соленый. И вдруг, когда взяли пробу грунта с глубины 4–5 метров под дном моря, там оказалась сильно опресненная вода. Геологические трубки проникли в те слои, которые отлагались тогда, когда оно, совсем слабо соленое, было отделено от Средиземного. Исследуя остатки животных в грунте и соленость грунтового раствора на разных глубинах в Беринговом, Баренцевом, Охотском и других морях, можно проследить, когда и как менялся животный мир морей, когда они отделялись от мирового океана и когда снова объединились с ним и как изменялась их соленость.

Уже сейчас, проникая на глубину 34 метров от поверхности дна в глубь грунта, мы уходим на много миллионов лет в прошлую историю Земли. Вот как это делается. С корабля спускают ударную трубу с гидропневматическим устройством. Это как бы насос с поршнем. Если в велосипедный насос набрать воздух, заткнуть выходное отверстие и погружать насос в воду, то чем глубже, тем сильнее давление воды будет сжимать воздух через поршень. Но океанологи не дают воздуху сжиматься. Они задерживают поршень во «взведенном» состоянии и погружают трубу все глубже. Вода давит на поршень уже с силой 500–600 атмосфер… К поршню приделана тонкая трубка, как игла шприца. Как только нажимают «спусковой крючок» (открывают кран), вода ударом через поршень вгоняет «шприц» в в грунт, берет пробу. Этой подводной пушке энергию для выстрела дает сам океан.

Сейчас конструируются новые грунтовые трубки, которые смогут проникнуть в дно на 100 метров, к слоям, которым 10–15 миллионов лет. Они пересекут отложения ледникового периода и войдут в отложения третичной эпохи. Такую трубку опустят с корабля на тросе, и когда конец ее вонзится в грунт, то при подъеме трос потянет вверх поршень, находящийся внутри трубки. Стремясь заполнить образующийся вакуум, трубка под давлением воды будет медленно вползать в грунт. Это новый, улучшенный способ взятия пробы.

Пройдет немного времени, и океанологи обновят свое вооружение. Мы даже представить себе не можем, какие огромные возможности открывает перед исследователями современная техника. Уже созданы приборы для бурения дна на практически неограниченную глубину. И здесь свое слово еще скажет глубинный подводный флот. Французы для местного обследования больших глубин уже применяют маленькие самоходные подводные лодочки с аккумуляторами. Но это — разведка на полдня. А нам нужны крепкие лодки с атомными двигателями не только для исследовании, но и для быстрого передвижения под водой. Возможно ли это?

Мы почему-то не удивляемся, когда слышим, что рыбы под водой могут двигаться со скоростью 60–80 километров в час. Значит, можно построить подводные корабли, у которых будет такая форма и такие двигатели, что, несмотря на большое лобовое сопротивление, они смогут пересекать океаны на глубине, скажем, ста метров, то есть там, где им не помешают никакие штормы. Сумел же человек подняться в воздух и летать быстрей самой быстрой птицы! Сумел же он пробиться так высоко, что самолетам уже не страшны ни грозы, ни ветры!..

Среди множества технических средств, которыми мы сейчас располагаем, особенно быстро идет усовершенствование гидролокации ультразвуковых аппаратов. Сейчас с помощью ультразвука ищут китов, косяки рыбы. Чем плотнее среда, тем быстрее передается по ней звук. Медленно бежит звук по воздуху, гораздо быстрее — по воде, а еще быстрее — по суше или по дну океана. Современные дальние локаторы с берега «засекают» местонахождение корабля чуть ли не за тысячу километров!

Если вам доведется лет через 20–30 путешествовать вдоль океанских берегов, вам непременно покажут ультразвуковые маяки. Это будут даже не маяки, а станции, посылающие и принимающие ультразвуковые сигналы. Все, что происходит в океане, — любой шторм, тайфун, движение айсбергов и кораблей, — за всем этим непрерывно будет следить станция, причем точность пеленгации их уже сейчас громадна. Центр тайфуна, бушующего далеко в море, ультразвуковые станции указывают, ошибаясь всего на несколько десятков метров.

…Где-то далеко от берега под водой произошло землетрясение. Гигантская волна, вызванная этим землетрясением, катится по океану, «проглатывая» целые острова, обрушиваясь на побережье зыбкой черно-синей стеной, достигающей 10—12-метровой высоты… Это цунами, страшное бедствие, уничтожающее в несколько секунд прибрежные города с десятками тысяч людей, которые даже и не подозревают, что через минуту погибнут…

Но ультразвуковая «служба цунами» не даст совершиться несчастью. Через несколько секунд после рождения гигантской волны приборы определят ее силу и направление. Если цунами окажется опасным, в любое время дня и ночи автоматическая сигнализация включит сирены, радиостанции. Дикторы-автоматы прервут любую передачу и призовут население, живущее на берегу, в течение остающихся до бедствия минут уйти на катерах в море, подальше от берега, подняться в горы, куда не достанет волна, покинуть город. Гибельные последствия стихийной катастрофы будут в значительной степени смягчены.

Вы замечаете, мы ушли в сторону от «чистой» биологии? Иначе и быть не может…

Современная техника позволяет думать о широком освоении богатств океана, если хотите — о промышленном их использовании.

В морях сосредоточено гораздо больше веществ (и органических и неорганических), чем на поверхности суши. Если бы мы могли извлечь все золото, которое находится в морской воде, оно по цене было бы не дороже меди, — таковы его запасы!

Некоторые ученые задавались целью разработать технологию добычи золота из морской воды. Но, к сожалению, «морское» золото оказывается пока во много раз дороже золота, добытого на суше.

Возможно, в дальнейшем удастся найти рентабельные методы извлечения из морской воды редких и рассеянных элементов — никеля, кобальта, ванадия и других ценных металлов. А пока даже йод берут не прямо из морской воды, а из водорослей, которые концентрируют его в себе. Впрочем, в последнее время химики с успехом получают йод и из нефти.

Ради чего с такой настойчивостью стремятся ученые в глубь океана, бьются над десятками сложнейших проблем? Не проще ли, в самом деле, получать тот же йод из нефти, а водоросли оставить в покое? Может быть, богатство океанов — это призрак заманчивый, но недостижимый, как золото, растворенное в океанской волне?

— Нет и еще раз нет, — убежденно говорит Л. А. Зенкевич. — Мы не можем расточать сокровища, которые сами идут к нам в руки. Несмотря на высокую техническую оснащенность, наш рыбный промысел — пока еще дикий промысел, охота, а не рыбное хозяйство. Мы должны не только ловить рыб, бить китов, собирать таких кормовых беспозвоночных, как омары, устрицы. Надо использовать в интересах человека всю массу морского населения, В XXI веке человечество будет управлять громадным и организованным морским хозяйством. И так же, как сухопутное сельское хозяйство разделяется на овощеводство, лесное хозяйство, овцеводство и т. д., морское хозяйство будет иметь несколько своих отраслей. Возьмем китов. Допустим, сегодня родился кит.

Как вы думаете, — обращается к нам Л. А. Зенкевич, — когда он начнет размножаться?

Мы лихорадочно перебираем в памяти все, что знаем о китах. Вспоминаем, что киты достигают в длину десятков метров, весят по 10–15 тонн. Но мы не биологи, и никак не можем сообразить, сколько лет нужно киту, чтобы вырасти. Наверное, лет десять-двенадцать?

— Не смущайтесь, — ободряет нас ученый. — Не вы первые совершаете эту ошибку. Все знают, что самое крупное сухопутное животное — слон становится взрослым, достигает половой зрелости в 35—40-летнем возрасте. И мало кто знает, что киты — эти «слоны океанов» — становятся взрослыми и дают потомство уже на второй-третий год после своего рождения… До сего времени такой неслыханный темп роста китов остается загадкой для всех. А биологически это объясняется просто: океан неизмеримо богаче суши пищей, питательными веществами, витаминами.

Растительность на суше должна иметь твердые стебли, древесную часть, чтобы устоять против ветра, чтобы тянуться к солнцу. У нее должны быть корни, достаточно прочные, сложные и разветвленные, чтобы питаться из грунта, проникать к влаге, в глубину. Растения суши должны защищаться от высыхания, от большой жары, от холода. Сколько же энергии им приходится тратить на защитные приспособления! И как мало полезных, питательных веществ оставляют они человеку!

В море другие законы. Здесь растениям не нужны особые покровные, защитные элементы. Они почти целиком состоят из тех же клеток и органических веществ, что и листья наземных растений. Образно говоря, биологический коэффициент полезного действия морских растений (по содержанию кормовых, питательных веществ) равен почти 100 процентам, в то время как у древесной растительности он не выше 5–6 процентов. Происходит это потому, что в океанах идеальные условия для жизни растений: питание из окружающей среды, благоприятная малоизменяющаяся температура, существование во взвешенном состоянии. Недаром жизнь на Земле, по-видимому, зародилась в теплых океанских лагунах, пронизанных животворными лучами жаркого солнца.

Но дело не только в доступности и обилии питательных веществ, из которых «строятся» морские организмы. Если рассматривать продукцию моря с точки зрения пищевой полезности, надо обратить внимание и на другое.

Дело в том, что земные растения, как правило, не имеют такой высокой концентрации витаминов, как морские организмы. Особенно богат витаминами и питателен так называемый планктон. Это мельчайшие растительные и животные организмы, особенно обильно населяющие верхние слои моря. Интересно, кстати, что растительный планктон по питательным свойствам очень близок к самому высокому сорту лугового сена.

Поневоле задумаешься: как же так? В нашем сухопутном хозяйстве мы траву косим, стараемся использовать каждую крошку органических веществ зеленой массы, а здесь, в морях, где такое множество различных организмов, остаются нетронутыми несметные богатства. Вы скажете: а водоросли, а моллюски, а ракообразные? Ведь их уже добывают… Но много ли? Ничтожную долю той массы, которая обитает в море.

Вот что пишут наши чешские коллеги, — ученый открывает журнал с яркой обложкой. — Смотрите: они намерены в ближайшее время использовать в промышленном масштабе хлореллу — зеленую пресноводную водоросль. — Он читает: — «Хлорелла — ценный источник кормов и сырья для производства удобрений, спирта, бензина, медикаментов. В бассейне для выращивания водорослей с гектара водной поверхности за год можно получить примерно в 20 раз больше корма, чем с гектара, занятого самыми высокоурожайными травами. А расходы — гораздо меньше, чем при посеве таких трав…»

Чем выгодно морское хозяйство?

Вы пришли в лес, срубили все деревья на отведенной делянке и посадили здесь молодые саженцы. Как и слон (да простят мне это сравнение!), деревья вырастут, лес восстановится только через сорок лет. А в океане организмы, составляющие основную массу растительности земного шара, дают пятьдесят поколений в течение года!

Теперь вы понимаете, почему киты вырастают не за сорок лет, а за год-два. Они научились черпать из океана обильное питание. Но киты — не исключение, а только яркий пример. Таких примеров можно привести тысячи. Среди них есть и курьезные — такие, что заставляют всерьез задуматься о законах природы, которая у нас на глазах творит чудеса, словно подсказывая людям: «Смотрите, учитесь!..» Задумывались ли вы когда-нибудь, почему самые большие животные земного шара питаются самыми мелкими животными или растительной пищей? Ведь по силе своей и размерам и кит и слон вполне могли бы стать хищниками. Однако они не хищники. И в этом проявился великий закон жизни, закон природы. В тропиках, где живут слоны, в океанах, где обитают киты, природа создала такие благоприятные условия, что растительноядные животные и животные, питающиеся мельчайшими организмами, получили больше «привилегий», чем хищники. Крупным хищникам становится все труднее прокормиться в этих условиях. Природа как бы говорит им: если хочешь развиваться дальше, быть крупнее, сильнее, жизнеспособнее (а это важно б борьбе за существование!), переходи на новую пищу. Может быть, она менее питательна, чем мясо твоих жертв, но зато ее много вокруг и тебе не придется тратить силы на охоту, на погоню, на борьбу… Нужно только приспособиться к этой пище.

И вы знаете, некоторые крупные хищники принимают эти условия, чтобы выжить.

Какая самая крупная рыба в мире? Акула? Хищная акула? Нет! Самая крупная из акул перестала быть хищницей. Она, так же как и киты, процеживающие воду через китовый ус, питается планктоном: вбирает в себя воду и фильтрует ее. Предки ее были хищниками, но ни один из них не имел таких размеров, как эта 16-метровая гигантская акула, мирно пасущаяся на океанских пастбищах…

Вот она — сила природы. Вот они — средства, овладев которыми, может творить чудеса и человек.

Простое устройство — китовый ус. Но люди пока не сумели сделать столь же дешевый и надежный фильтр для извлечения планктона из морской воды. Строились даже корабли со специальными насосами, с гигантскими центрифугами, которые отцеживали планктон. Все это было пока не рентабельно. Но пройдет еще десяток-другой лет, и мы сможем черпать из океана массу планктона, превращать его в корма для сельскохозяйственных животных, а возможно, и в пищу для людей. В 1963 году в Антарктике рядом с китами будет «кормиться» богатейшими скоплениями планктона и советский БРТ — большой рыбный траулер. Его уже оснастили насосами и сетями. Планктон будут грузить в трюмы.

Можно с уверенностью сказать, что в XXI веке будут использоваться и водоросли. Никто не делал пока точных подсчетов, но мировые запасы водорослей можно определить в миллиарды тонн. Из них мы сейчас используем едва сотни тысяч тонн.

К 2000 году, я уверен в этом, заявит о своем рождении новая наука — подводная агрономия и, если хотите, подводная генетика. Баренцево море, Балтийское, Азовское, северо-запад Черного моря, их многочисленные заливы станут угодьями морских совхозов. На глубинах до 100 метров, где много солнца и теплая вода, агрономы и механизаторы — подводники в скафандрах — на юрких подводных машинах будут разводить полезные растения и животных и создавать новые формы. Только на больших глубинах, где темно, где температура всего 1–2 градуса и развитие жизни заторможено, не будет подводных нив и огородов.

…Пришла весна. Из морской воды вдруг исчез фосфор и азот. Их вобрали в себя водоросли, начавшие бурно развиваться. Растения испытывают фосфорный и азотный голод: в море не так много этих веществ. Дайте водорослям удобрения — и они принесут вам урожай тем больший, чем больше соединений фосфора и азота вы растворите в лагуне. Но и тут нужен глаз агронома, точнее говоря — «моренома», знатока морских растений. Ведь мы и на суше не вносим удобрений зимой. Надо точно ^нать, когда и какие нужны удобрения морским полям. «Моределие» — вещь не простая.

Будет развиваться морское животноводство. Вряд ли удастся разводить китов в питомниках. Но стоит подумать о том, чтобы превратить в питомник все океаны Земли. Китам нужны пространства. Ведь в Антарктике они живут только летом, а на зиму уходят за тысячи километров — в субтропики. И никто не знает, где именно они размножаются, каким маршрутом идут. До сих пор неясен вопрос: одни и те же киты живут в северном и южном полушариях или это разные стада?

Китовое хозяйство должно быть упорядочено. Недавно были проведены первые мероприятия по охране китов. Если они будут выполняться, то киты не только сохранят стада, но даже увеличат их.

Профессор на минуту остановился. Мы видим, что, увлеченный беседой, он мог бы рассказать еще очень и очень много интересного. Но…

— Простите, время истекло. У меня экзамен…

Лев Александрович подходит к стеклянной двери, открывает ее и приглашает терпеливо ждущего в коридоре студента:

— Молодой человек, прошу вас…

 

Золотой век изобилия впереди

 

 

Не смогли бы вы сказать, — попросили мы академика Семена Исааковича Вольфковича, — сколько людей, например, могло бы прокормиться на нашей планете? Существует ли в этом смысле для роста населения земли какой-либо предел?

— Нет такого предела и быть не может, — уверенно, не задумываясь, ответил академик.

Видно, ему не раз приходилось думать над этим вопросом.

Возможности науки в повышении производительных сил земли, сельского хозяйства неограниченны.

— Вспомните, — сказал академик, — еще более полувека назад Дмитрий Иванович Менделеев считал, что не только десять миллиардов, но и во много раз больше народу пропитание на земном шаре найдут, прилагая к этому делу не только груд, но и настойчивую изобретательность, руководимую знаниями. Это было сказано в самом начале двадцатого века, когда население земного шара исчислялось в 1,6 миллиарда человек. За полвека численность населения земли поднялась на целый миллиард.

Откуда же берется пропитание для растущего человечества?

Наряду с природными процессами, дающими пишу растениям, в кругообороте питательных веществ большую роль играют специально получаемые химические средства.

Во время Великой Отечественной войны землям Средней Азии не хватало азотных и фосфорных удобрений. Всего за три года урожаи хлопка на этих неудобренных землях уменьшились вдвое. А нынче здесь снова вместо 10 тонн хлопка, как это было в войну, собирают по 20–24 тонны и более с гектара.

Современная химическая наука и химическая промышленность опрокидывают «теорию» Мальтуса, а также пессимистическую теорию «убывающего плодородия», считавшуюся еще недавно законом. Практика земледелия ряда стран показывает, что прирост урожая, если обеспечено нормальное водоснабжение полей, примерно наполовину определяется удобрением, на четверть — механической обработкой почвы и еще на четверть — качеством семян. Видите, какая нехитрая на первый взгляд арифметика. К. А. Тимирязев, Д. Н. Прянишников и другие ученые рассчитали, что, внося органические и минеральные удобрения, можно поднять продуктивность нашего сельского хозяйства в шесть-семь раз, а если увеличить площадь пашни, то в двенадцать-четырнадцать раз. Основываясь на анализе роста народонаселения нашей страны и перспективах повышения урожайности, Д. Н. Прянишников говорил в 1925 году, что на 150 лет вперед Россия может не думать о недостатке средств продовольствия, если она даже будет удваивать население через каждые пятьдесят лет.

Этот замечательный прогноз ученого, заглянувшего далеко вперед, в XXI век, говорит о великой силе науки и техники, которую человечество пока еще не использует в полную меру.

С тех пор как были высказаны эти прогнозы ученых, прошло несколько десятилетий. За это время биология и химия сделали новые шаги вперед.

Если учесть социальный прогресс и новые данные науки, то цифры, приведенные в прогнозе Д. И. Менделеева, можно было бы удвоить или утроить, то есть при широком использовании успехов науки и техники можно было бы обеспечить питанием на земном шаре 20–30 миллиардов человек. Но…

Можно себе представить, — говорит академик, — какого благосостояния достигнут все страны мира, если не будут расточать свои силы на гонку вооружений, а направят их на мирное созидание. Я думаю, что «золотой век» человечества не позади, а впереди. Он наступит, когда наука, применяемая в мирных целях, будет пронизывать, преобразовывать всю хозяйственную и культурную жизнь человека.

Большое место займет в будущем химия. Среди множества полезных веществ, полученных химиками, триумфальной победой в XX веке было извлечение и связывание азота из воздуха, производство синтетических азотных удобрений. Для этого потребовались долгие годы упорной работы физико-химиков и инженеров и большие усилия со стороны промышленности, изготовившей сложные машины из специальных сталей.

Все большее значение приобретают сейчас многочисленные новые органические препараты для защиты растений от вредных насекомых, грызунов и болезней, для уничтожения сорняков, для ускорения и регулирования роста и плодоношения растений и животных. Эти новые вещества действуют в сотни раз лучше, чем прежние сельскохозяйственные яды.

Мы так привыкли к минеральным удобрениям и химическим средствам защиты растений, что забываем об их молодом возрасте. Ведь выпуск фосфорных удобрений начат всего сто лет назад, калийных — около восьмидесяти, а синтетических азотных удобрений — около полувека. Задача массового производства удобрений решена в нашем столетии. Сейчас круг удобрений расширяется. Глубоко исследуются и внедряются в практику земледелия, например, микроэлементы, которые в растениеводстве играют примерно такую же роль, как витамины и гормоны в человеческом организме. Одновременно некоторые из них являются средствами против болезней растений: бор излечивает от гнили сердечка свеклу, от бактериоза— лен. Микроэлементы, добавляемые в корм скоту, избавляют его отряда заболеваний: медь — от лизухи, кобальт — от сухотки и др. Вот какое важное значение имеют незначительные добавки этих элементов!

Можно с уверенностью предсказать, что с помощью обогащенной пищи и санитарных средств животные будут в будущем так же защищены от болезней и паразитов, как и человек.

Чтобы перенестись в будущее, не обязательно строить фантастические догадки. Вы идете по улицам Москвы и видите, как высаживают в грунт взрослые большие деревья. Обычно они приживались с большим трудом, долго болели. Но почему же теперь эти деревья приживаются значительно быстрее и лучше?

Потому что корни их обработаны особыми веществами — стимуляторами, ускорителями роста.

Вы берете всего долю грамма определенного органического вещества, и корневая система растения быстро развивается. Уже сейчас применяют стимуляторы роста для быстрого развития помидоров, яблок, груш. Стимуляторы роста ускоряют заживление на деревьях ран, отодвигают предел роста. Они позволяют получить в год по два урожая картофеля, выращивать, например, качаны капусты диаметром более метра. Я имею в виду один из видов стимуляторов — гиббереллины. Не изменяя корневой системы, гиббереллины заставляют в несколько раз увеличиться надземную часть растения.

Сейчас применяют лишь несколько веществ-ускорителей. Пройдут годы, и их будут десятки и сотни. Ученые подберут для различных видов растений свои ускорители, замедлители и другие регуляторы жизненных процессов.

У многих стимуляторов роста есть удивительное свойство. Если доза ускорителей взята очень большая, они становятся «замедлителями». Они подолгу не дают картофелю прорастать на складах, не дают упасть с дерева недоспелым фруктам и даже заставляют прекрасную розу, на радость всем любителям цветов, цвести неделями.

А вот несколько беглых картин из будущего.

…Осень. Под крылом самолета — тысячи гектаров спелой пшеницы. В центре — пестрый ковер-прямоугольник. Это совхоз, утонувший в садах. Откуда здесь, в полупустыне, взялся этот оазис? Что дало силу пшенице, яблоням, дубравам подняться на чахлой земле, где раньше росла только редкая верблюжья колючка? Химические средства дают почве питание и улучшают ее структуру, вызывают дожди, опресняют соленые воды озер и морей.

…Морозит. Зябнет озимь. Она давно ждет, когда, наконец, пушистое снежное одеяло укроет ее. Но снега нет. Тонкий ажурный ледок покрывает лужи Плывут только низкие тучи.

Летчик входит в одну из туч и включает распылитель. Кристаллы углекислоты словно дают туче «толчок», и она постепенно тает, превращаясь в пушистый снег.

Записка агронома требует: «Ожидаются сильные морозы. Закрыть озимые слоем снега» И летчик, подождав, когда над полями нависнет или метеорологами будет передвинута сюда туча, вызовет снегопад.

Даже ребятишки в XXI веке будут знать, чем можно вызвать снегопад зимой и дождь летом. Они будут знать, что порошок, высыпанный летчиком в туче, испаряется и при этом поглощается много тепла. Туман, пар в туче переохлаждаются, конденсируются и капельками воды или кристаллами снежинок выпадают над полями.

…Однажды летом, когда в ночь вдруг ударили заморозки, казалось, погибнет весь урожай. А поля у совхоза такие огромные, что кострами их не согреешь, дымовые шашки на машинах развезти не успеть. И тогда в бой с заморозками вступили совхозные вертолеты: и большой транспортник и малые— связные, пассажирские такси. Они забросали поля дымовыми шашками. Стелющийся по земле дым спас урожай…

Деревья нелегко приживаются в пустынях. В песках мало питательных, связывающих и удерживающих влагу веществ. Химики начинают обработку песков и других почв, не обладающих нужной для земледелия структурой, веществами, которые являются структурообразующими. Таковы некоторые органические вещества с мудреными названиями. Их можно производить из бурых углей, древесины, нефтяных углеводородов, водорослей. Эти препараты будут применяться в сравнительно небольших количествах на гектар и будут дешевыми, не то что в 50-е годы. Они намного повысят влагоемкость почвы и помогут удержать питательные вещества в ее поверхностном слое. К настоящему времени испытано уже несколько десятков подобных органических препаратов, дающих большой эффект. Структура почвы резко улучшается. Она поглощает влагу вместе с питательными веществами, но плохо ее отдает.

Известный почвовед академик И. В. Тюрин считает, что разрешение задачи снабжения земледелия доступными и недорогими структурообразующими веществами явится историческим событием, которое равнозначно появлению в 40-х годах XIX века минеральных удобрений.

Но поднять плодородие земли и повысить урожай — это еще недостаточно. Надо его защитить от вредителей и болезней, надо его сохранить и рационально использовать.

Химики синтезировали к настоящему времени несколько десятков тысяч химических ядов, из которых пригодными для сельского хозяйства во всех отношениях оказались лишь сотни; но и они могут быть использованы не в любых условиях…

— Знаете ли вы, что около некоторых заводов, производящих ДДТ, разводится много мух? — спросил нас С. И. Вольфкович. — Но ведь ДДТ средство против них, скажете вы, — как же так?

Оказывается, мухи способны привыкать, приспосабливаться к ДДТ. Необходимо, следовательно, думать о новых средствах. В природе, в медицине, в сельском хозяйстве нередки случаи, когда организм приспосабливается к вредным условиям и ядам. И тогда химикам вместе с биологами приходится изыскивать взамен другие. Поиски должны обеспечить взаимозаменяемость средств и их возможную универсальность.

— Жителям XXI века химическими средствами удастся отстоять поля, сады и леса от вредителей, болезней и даже отдалить для деревьев старость, — улыбаясь, говорит академик. — В будущем станут применять химические средства, в которых объединятся удобрения со структурообразующими веществами, со стимуляторами роста и ядами против вредных насекомых, болезней, растений и др. Еще много творческих работ предстоит выполнить химикам в союзе с биологами и агрономами.

Жаль, что мы не успели с вами заглянуть в совхозные парники. Через короткий срок вокруг каждой электростанции, вокруг заводов, особенно на севере, протянутся на много километров их стеклянные коридоры.

Обилие тепла и углекислого газа, отходящих из печей предприятий, позволит поставить парниковое хозяйство на широкую ногу; оно будет действовать круглый год. В них газообразная углекислота, как удобрение, будет давать большой эффект. Это доказано на практике.

Добавьте к этому искусственное освещение, сетчатые полки, на которых овощи уже сейчас выращиваются без почвы (она заменена питательными растворами), — и вы поймете, что свежую зелень люди смогут получать круглый год в любом месте земного шара.

Агротеплофикация… Не многие еще знают этот термин, а ведь у него блистательное будущее. Все шире и шире применяется в нашей стране теплофикация — комплексная выработка на тепловой электростанции и электрической энергии и тепла. Обычная тепловая электростанция вырабатывает только электрический ток, а огромные количества тепла из конденсаторов выбрасывает вместе с охлаждающей водой в мимо текущую реку.

Бывает, что такая река на добрый десяток километров вниз по течению от электростанции не замерзает в самый лютый мороз. Но «улицу не натопишь», а коэффициент полезного действия такой электростанции всего 20–25 процентов.

Теплоэлектроцентраль вырабатывает несколько меньше электроэнергии, но зато она отпускает потребителям большие количества тепла в виде горячей воды или пара. Это тепло идет и для технических нужд — на заводы и фабрики, и для бытовых целей — отопления жилищ, горячего водоснабжения и так далее. Но вот беда: если зимой потребителей тепла хоть отбавляй, то летом их становится значительно меньше. Куда же девать тепло?

Потребителем этого тепла может быть сельское хозяйство. Опыты показали, что если под поверхностным слоем почвы, там, где находятся корни растений, проложить керамические трубы с отверстиями в стенках и с помощью этих труб осуществлять «подземный полив» растений теплой водой. урожай значительно возрастет. Сочным редисом, ароматной мякотью помидора, рассыпчатым картофелем может вернуться к нам ненужное летом, но неизбежно получающееся на электростанциях избыточное тепло.

Наука даст такой прирост урожая, а следовательно, и продуктов животноводства, что вряд ли в XXI веке понадобится синтетическая искусственная пища. Резервы сельского хозяйства еще огромны. К тому же многие виды пищевых продуктов, используемые в качестве сырья в химической промышленности, можно заменить уже сейчас нефтью, природным газом, древесными опилками и многими другими распространенными и дешевыми природными ресурсами. Благодаря этому для питания высвободится огромное количество продуктов.

Мы с вами приоткрыли завесу в будущее. То, что химия создала до сих пор, — только фундамент величественного сооружения науки будущего. Нет сомнения, что «золотой век» изобилия, здоровья и силы людей не позади, а впереди.

 

Нет пределов плодородию

 

 

Мы в кабинете у академика Николая Васильевича Цицина. Он сидит за широким письменным столом. У чернильного прибора — черная фигурка каслинского литья. В руках этой фигурки вместо копья, которое, судя по ее воинственному виду, полагалось бы ей держать, — гигантский колос не виданного никогда нами культурного растения. Если бы нам сказали, что это колос с Марса, мы поверили бы, так он не похож на обычные для нас колосья ожи и пшеницы.

— Для того чтобы жить и творить, — начинает свой рассказ хозяин кабинета, — необходимо в первую очередь питаться. Пища — это одна из самых первых потребностей человека наряду с воздухом для дыхания, одеждой и жильем. В настоящее время подавляющее большинство пищевых продуктов, кроме, может быть, соли, рыбы и дичи, поступает на стол к человеку из сфер его сельскохозяйственной деятельности.

Сельское хозяйство поставляет разнообразные продукты. Пройдя соответствующую переработку, они превращаются в бекон и колбасы различных сортов, сдобные булочки и макароны, печеночный фарш и похожие на обломки камня кусочки сахару. Но если мы посмотрим глубже, то увидим, что главное в сельскохозяйственном производстве — это хлеб. Именно поэтому проблеме производства зерна уделяет столько внимания Коммунистическая партия.

Производством зерна, в первую очередь пшеницы, занято у нас очень много людей. Достаточно напомнить, что, например, в 1958 году у нас в стране было засеяно зерновыми культурами 126 миллионов гектаров, из них пшеницей 69 миллионов гектаров. Как видите, у нас только одной пшеницей засевается площадь, превосходящая всю территорию Франции. Чтобы осеменить эти 69 миллионов гектаров, нужно около 100 миллионов центнеров зерна ежегодно. Грандиозная цифра!

Посевная кампания… Трудно представить себе ее в размерах всей страны. Это сотни тысяч тракторов, которые круглые сутки работают в поле, — трактористы, на ходу спрыгивая со своих стальных коней, сменяют друг друга. Это реки бензина, который движет стальные сердца машин. Это миллионы людей, ежедневный труд которых в дни посевной никак не укладывается в рамки семи- или восьмичасового рабочего дня. Если подсчитать, какое количество средств и человеческой энергии, сил, труда вкладываем мы ежегодно в одну только посевную кампанию, получаются миллиарды рублей.

Сельскохозяйственное производство, характеризующееся огромными масштабами, имеет одну очень важную особенность — понижение затрат труда в нем всего на один процент влечет за собой экономию в миллионы человеко-дней, повышение урожайности всего на одно зерно в каждом выращенном колосе вызывает общий рост урожайности на миллионы пудов. А какую фантастическую экономию дало бы снижение затрат труда на посевную кампанию в два или три раза! Трудно себе представить.

А путь для этого есть. Надо иметь такую зерновую культуру, засевая которой наши поля, можно будет получать урожай без возобновления посевов несколько лет кряду. Так же, как, например, дает урожай клевер.

Но где взять такую культуру? Сельскохозяйственная практика многих тысячелетий не знала ее.

…Около тридцати лет назад, в 1930 году, впервые были получены гибриды между однолетним культурным растением — пшеницей и многолетним диким пыреем. И возникла идея о возможности создания многолетней пшеницы.

Действительно, законы генетики, а по ним и практика селекции подтверждают, что при скрещивании двух растений в их потомстве возможно образование таких растений, где будут сочетаться именно те свойства обоих родителей, которые нужны для решения поставленной задачи. Взяв эти растения через ряд последовательных отборов и дополнительных скрещиваний, можно получить новые растения с устойчивой наследственностью по тем именно свойствам и признакам, которые нас наиболее интересуют.

При скрещивании пшеницы и пырея нам надо было сохранить зерно с полезными вкусовыми качествами пшеницы, воспитанной в течение тысячелетий бесчисленными поколениями земледельцев. А от пырея следовало взять способность к многолетнему образу жизни и плодоношению.

Когда была впервые провозглашена эта идея, многие ученые отнеслись к ней очень недоверчиво. Я помню, как на одной из выездных сессий Академии наук СССР в Свердловске один ученый после моего краткого сообщения потрепал меня по плечу и посоветовал пойти подучиться ботанике… Да и многие не верили в идею создания многолетней пшеницы, не считали ее перспективной.

Но были и такие люди, которые поддерживали меня.

Особенно важной и одобряющей была поддержка великого преобразователя природы Ивана Владимировича Мичурина. Он считал, что претворение в жизнь этой идеи произведет революцию в сельском хозяйстве.

Ну, а сегодня далеки ли мы от ее реализации? Осуществляется ли она?

Да, бесспорно. Сегодня мы уже имеем десятки многолетних пшенично-пырейных гибридов, дающих урожаи хорошего, доброго, качественного зерна.

Ученый взял с полки небольшую шкатулку и открыл ее. Она была наполнена необычными колосьями, вроде того, который, словно копье, держал чугунный страж. Но колосья все-таки были разные. Одни пышно ветвились, выбрасывая в стороны пучки колосков, густо усыпанных зернами. Другие — необычайно длинные — состояли из стройных рядов колосков, содержащих множество зерен.

— Вот они, — сказал академик, показывая нам колосья. — Это не пшеница и не пырей. Это совершенно новые виды культурного растения. Оно— вы видите — ничем не похоже на тощий мелкозернистый пырей. Вместе с тем это не плотная пшеница: зерно у него лучше, чем у пшеницы. Посмотрите сами.

Пшеница созревает снизу вверх. Сначала начинает желтеть стебель, затем созревает и колос. Многолетняя же пшеница созревает сверху вниз. Сначала созревает колос, в то время как стебель и листья остаются еще зелеными.

Может быть, вам это кажется не очень важным, но представьте себе, что миллионы гектаров у нас засеяны такой пшеницей. Осенью комбайны снимут сухой вызревший колос и затем отдельно уберут остальную массу, еще зеленую. Здесь уже получится не солома, а значительно более ценное как кормовой продукт для скота сено.

Пшеница очень восприимчива к многим болезням. Многолетняя пшеница почти ничем не болеет.

В зерне обыкновенной пшеницы содержится белка 14–15 процентов, а у многолетней пшеницы — 20–25 процентов, то есть почти столько же, сколько у бобовых растений, например у гороха. Да к тому же белок многолетней пшеницы усваивается живым организмом на 80–90 процентов, а белок гороха — на 50–60 процентов.

Считая под микроскопом количество хромосом в клетках растений, обнаруживаем, что обыкновенная пшеница содержит их 42, а пшеница многолетняя — 56.

Все пшеницы в мире являются самоопыляющимися. А многолетняя пшеница — растение перекрестноопыляемое.

Еще одно отличие: пшеница — растение однолетнее, а это — многолетнее. Важнейшее различие!

Можно привести еще много сравнений. Но мне кажется, что и уже перечисленные качества достаточно убедительно свидетельствуют, что мы имеем дело с совершенно новыми видами пшеницы, растением, которого не было раньше ни в природе, ни в культуре, растением, искусственно созданным по заранее задуманному плану нашими советскими учеными.

Почему же до сих пор многолетней пшеницы нет еще в производстве колхозов и совхозов? Этому мешают некоторые трудности, которые нам предстоит устранить.

Я уже упоминал о свойстве многолетней пшеницы, ее жадной способности к перекрещиванию. Стоит ей оказаться рядом с какой-либо формой или сортом пшеницы, как в ее потомстве уже от нее ничего не останется. Кроме того, недостаточна еще и устойчивость многолетней пшеницы к перезимовке во второй и третий годы ее существования. Если в первый год она дает всегда отличный урожай, то во второй год ее поведение неопределенно, неустойчиво. Трудно предсказать в каждом отдельном случае, хороший или плохой урожай даст она на второй год своей жизни. Учитывая все это, мы пока не можем выйти с ней в сельскохозяйственное производство, на поля совхозов и колхозов.

Создание многолетней пшеницы — исключительно интересная задача. Получение ряда новых, даже двухлетних форм пшеницы позволит нам экономить ежегодно миллионы центнеров посевного зерна, огромное количество бензина, человеческого труда и т. д.

В процессе поисков окончательного решения этой задачи мы сделали целый ряд интереснейших работ, имеющих большое практическое значение.

Я говорил уже, что при скрещивании двух различных растений появляются потомки с самыми разнообразными комбинациями свойств родителей. Некоторые из потомков, рожденных в результате скрещивания пырея и пшеницы, оказались очень похожими и внешне и по своим свойствам на пшеницу. Однако урожайность их, как правило, оказывается значительно более высокой, чем у обычных сортов пшеницы. От пырея, обладающего высокой устойчивостью к неблагоприятным условиям существования, эти гибриды приобрели способность к особенно энергичному росту и развитию.

Есть уже ряд сортов пшеницы, в которых «течет кровь» их дальнего прародителя — пырея и которые уже широко вышли на поля. Три таких сорта в 1958 году занимали под посевом около 700 тысяч гектаров в семнадцати областях. Эти гибридные сорта отличаются высокой урожайностью. Так, один из них — пшенично-пырейный гибрид № 1—на Елгавском сортоиспытательном участке в Латвии за 10 лет испытания в среднем дал урожай в 50 центнеров с гектара, превысив на 11 центнеров лучший местный стандартный сорт пшеницы.

Особый интерес представляет полученная нами так называемая зернокормовая пшеница, являющаяся совершенно новым видом культурной пшеницы. Эту пшеницу можно в течение одного лета убирать либо сначала на зерно а потом на сено, либо сначала на сено и потом на зерно, либо использовать ее только на сено. Так, в 1958 году мы получили за три укоса 120 центнеров сена с гектара. И какого сена! В нем содержится столько же белка, сколько и в зерне обыкновенной пшеницы, — 14–15 процентов! Эта новая пшеница форсированно размножается и испытывается. Большой интерес представляют полученные нами ветвистые новые разновидности мягкой пшеницы. Видели ли вы когда-нибудь вот такие колосья? — Академик показывает мощные колосья самых разнообразных форм гибридной пшеницы. — Я беседовал со многими опытными, старыми хлеборобами; они не видели таких колосьев. Не видели их и в зарубежных странах. Таких пшениц, в колосе которых насчитывалось бы по 30 и более колосков по 7–9 зерен на один колосок, не было, они лишь теперь созданы советскими учеными. Сорта таких пшениц, когда мы передадим их производству, наверняка будут давать урожай на 30–40 процентов выше обычного.

…Зимой при анализе селекционного материала нам приходится подсчитывать количество зерен в колосьях. На первый взгляд это скучное занятие может показаться смешным. А знаете ли вы, что представляет собой одно лишнее зерно в каждом колосе всех растений, выращенных на одном гектаре? Это величина очень солидная. Это примерно один центнер зерна на гектар.

Я хочу отметить, что я лично никаких пределов в повышении урожайности культурных растений не вижу. И есть целый ряд путей к этой цели.

Я позволю себе привести один пример возможного пути дальнейшего повышения урожайности культурных растений.

В природе есть такое дикое растение — элимус, или колосняк. Встречается оно у нас в полупустынях. Из 50 видов этого растения наиболее интересны два — песчаный и гигантский. В колосе последнего насчитывается до 700–800 зерен! Возникает мысль: а нельзя ли получить, скажем, пшеницу с таким же большим количеством зерна? Десять лет мы пытались провести скрещивание пшеницы с элимусом. Каждый год на две-три тысячи скрещиваний мы получали 5–6 зерен. Их высаживали в прокаленную удобренную почву, они давали ростки и вскоре погибали. И мы никак не могли из них получить жизнеспособные гибридные растения.

А разгадка оказалась несложной. Между зародышем и эндоспермой, которой должен в первые дни питаться зародыш, в гибридном семени образуется прослойка. Она мешает зародышу воспользоваться запасами питательных веществ семени.

В связи с этим мы решили отделить зародыш от эндоспермы и посадить его в пробирку в специально приготовленное для этого вещество. Появился крепкий росток, который быстро развивался. Когда у него корешки хорошо развились, мы высадили молодое растеньице в почву, и из него выросло гигантское растение.

Десять лет заняло у нас преодоление первого препятствия. А за ним сразу же возникло второе. Гибриды оказались неспособными к дальнейшему размножению. Немало труда пришлось затратить, чтобы преодолеть и это препятствие. Путем удвоения числа хромосом удалось преодолеть нам и его.

Сегодня у нас есть гибриды от скрещивания элимуса с рожью, с ячменем, с пшеницей. Сейчас мы поставили задачу получить новые сорта культурных растений — ржи, пшеницы, ячменя, в колосе которых было бы не по 20–30 зерен, как сейчас, а по крайней мере по 200–300 зерен и более. А потом, я убежден, будут получены сорта с еще большим содержанием зерен в колосе. Все это совершенно возможно, и задачи, которые мы ставим, являются реальными.

Я коснулся только нескольких вопросов, связанных главным образом с теми работами, которыми в течение многих лет занимается наш коллектив научных работников.

…Мы стоим у карты мира. Голубые просторы океанов занимают большую часть. Наверно, если мимо нашей планеты пролетал когда-нибудь космический корабль посланцев другой солнечной системы, он сообщил по радио на свою родину, что типичным пейзажем здесь является вечно колеблющаяся под ветром гладь океана.

Суша — она занимает меньше трети поверхности Земли — раскрашена пестрее. Здесь и желтые пятна пустошь и полупустынь, коричневая окраска горных хребтов, бело-зеленые разводья вечных льдов, яркая зелень тропических джунглей…

Сколько на нашей планете пространства, еще не использованного человеком! Как мало на Земле полей! А ведь лучи Солнца озаряют всю Землю, и вся она может плодоносить — и опаленные солнцем пустыни (лишь дай им воду), и зыбкие трясины болот (только осуши их), и тропические джунгли, и голубые воды океана, — сумей люди их покорить. Бесконечно щедрая, сколько десятков миллиардов своих сынов может прокормить Земля!

Нет пределов повышению урожайности, сказал академик. Почему же голодают ежегодно на этой прекрасной зеленой планете миллионы людей? Для чего кое-кто из них бряцает оружием, грозит войной, тратит бесконечное количество драгоценного человеческого труда, ума, средств на подготовку битв, в огне которых может сгореть половина человечества? Не лучше ли разным народам, каждому на своей территории, мирно соревнуясь, постараться обогнать друг друга в борьбе с природой? Соревноваться в производстве тех благ, которые нужны каждому человеку. Чтобы не было ни голодных, ни обездоленных. Земля дает. Люди, берите!

 


Дата добавления: 2018-10-26; просмотров: 181; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!