Миссия «Доставка марсианского грунта»



 

Священный Грааль автоматических программ по исследованию Марса – это миссия по доставке марсианского грунта (ДМГ). Если бы образцы, полученные «Викингом», оказались в одной из наших лабораторий, мы бы подвергли их серии тестов и испытаний, которые бы развеяли все сомнения. Что ж, почему бы не привезти образцы марсианского грунта? Сравнительно недавно при обсуждении планов по исследованию Солнечной системы НАСА запланировало именно такую миссию на 2020 год. Есть три способа реализовать этот проект. Первым и самым простым в идейном плане является метод грубой силы. В этом случае будет использована тяжелая ракета-носитель, способная доставить на орбиту 30 тонн груза, которая отправит на поверхность Марса очень большую полезную нагрузку, в том числе миниатюрную ракету массой около 500 килограммов, с достаточным количеством топлива для взлета с Марса и возвращения на Землю. Также на борту посадочного модуля будет автоматический ровер, который отправится исследовать окрестности (при помощи дистанционного управления) и собирать геологические образцы. Затем образцы погрузят в капсулу на борту ракеты. Когда примерно через год-полтора после прибытия откроется окно для запуска с Марса, ракета отправится обратно на Землю. Спустя восемь месяцев при подлете к Земле капсула отделится от остальной части корабля и на высокой скорости войдет в плотные слои атмосферы, во многом напоминая пилотируемые капсулы «Аполлона», а затем приземлится в намеченном пустынном районе. В зависимости от конструкции торможение капсулы будет происходить с помощью парашюта или сминающегося материала, наподобие пробкового дерева или пенопласта, чтобы смягчить удар. Идея этой миссии довольно проста, но проблема заключается в том, что, вероятнее всего, она будет очень дорогой, как обычные беспилотные исследовательские миссии. Потребуется ракета-носитель, превосходящая по возможностям существующие тяжелые ракеты класса «Атлас-V». Разработка и ракеты, и большого взлетно-посадочного модуля, необходимого для доставки такого тяжелого груза на поверхность Марса, вероятно, обойдутся очень дорого. Таким образом, метод грубой силы всегда приводил к оценкам стоимости, которые обрекали миссию на провал. В надежде снизить затраты также были рассмотрены некоторые другие методы. Один из самых популярных вариантов – проект марсианского орбитального рандеву (МОР). В этой схеме на Марс отправляют два космических аппарата, каждый запускается с помощью сравнительно недорогой (55 миллионов долларов каждая) ракеты-носителя «Дельта-2». Одна из ракет доставляет на околомарсианскую орбиту возвращаемый на Землю аппарат и спускаемую капсулу, а другая доставляет на поверхность Красной планеты полностью заправленный марсианский взлетный модуль (МВМ), в котором будет ровер и контейнер для образцов грунта. Ровер приступит к сбору образцов, которые поместит в контейнер. Когда задание будет выполнено, МВМ стартует с поверхности Марса на орбиту, где он в автоматическом режиме пристыкуется к ВЗА. Контейнер с образцами будет перемещен из МВМ в спускаемую капсулы на борту ВЗА. Затем два корабля расстыкуются, МВМ больше нужен не будет, а ВЗА останется ждать на марсианской орбите, пока не откроется окно для возвращения на Землю, а в нужный момент запустит свой двигатель и возьмет курс на Землю. Остальная часть миссии выполняется так же, как было описано выше.

Следует отметить, что план МОР обойдется значительно дешевле по сравнению со методом грубой силы. Так как МВМ должен только долететь до Марса, а его возвращение на Землю не предусмотрено, и его задача – поднять на орбиту только контейнер с образцами, а не многоразовый спускаемый аппарат, он может иметь сравнительно скромные размеры. То есть посадочный модуль, который доставит МВМ на Красную планету, можно сделать меньше, легче и дешевле и для запуска на Марс использовать менее мощную ракету-носитель. Тем не менее существуют серьезные проблемы, связанные с планом МОР. В первую очередь нужны две ракеты-носителя, что удваивает риск неудачного запуска и, значит, провала миссии. Кроме того, нужны два полноценных космических аппарата, каждый из которых должен быть спроектирован, построен, проверен на стадии сборки, а также потребуется предполетная подготовка (при запуске космический корабль подвергается сильным вибрациям и акустическим нагрузкам, которые до запуска воссоздаются в дорогостоящих установках), и каждый аппарат должен быть встроен в ракету-носитель. По сути, все эти работы удваивают стоимость миссии. Далее, стыковочные детали двух космических аппаратов должны сохранять идеальную точность после запуска и многих лет космического полета, несмотря на перепады температур в космосе и на поверхности Марса. Изготовители не могут этого гарантировать, поскольку такие нагрузки нельзя воссоздать при испытаниях. Наконец, технологии для стыковки в автономном режиме и передачи образцов на орбите Марса еще не разработаны, поэтому обойдутся очень дорого и также не могут быть проверены до начала миссии. Это еще больше увеличивает риск провала и без того почти неосуществимой миссии.

В попытке сделать план МОР более привлекательным его сторонники прибегли к оригинальным методикам, позаимствованным в бухгалтерском учете, например распределению стоимости двух необходимых запусков на отдельные миссии. В более экзотических вариантах ровер доставляет на Марс некая предшествующая миссия, так что расходы на его отправку и обслуживание можно списать на других исполнителей. В этом случае посадочный модуль, несущий МВМ, должен выполнить посадку в непосредственной близости от ровера. Возможность этого, опять же, нельзя проверить заранее, а в настоящее время мы умеем сажать беспилотные спускаемые аппараты на поверхность Марса только с погрешностью до 100 километров. Видимо, чтобы привнести элемент новизны, сторонники орбитального рандеву также предложили перенести место встречи с марсианской орбиты в межпланетное пространство. Это сэкономит топливо для ВЗА, потому что теперь ему не нужно будет выходить на орбиту Марса или сходить с нее. Однако потребуется больше топлива для МВМ, к тому же он должен будет взлететь в строго определенное время (что также невозможно заранее протестировать), чтобы успеть произвести стыковку с ВЗА в глубоком космосе. При этом ВЗА будет удаляться от Марса со скоростью 5 километров в секунду. Такую точность тяжело гарантировать с учетом работы инженерных систем одного только МВМ, не говоря уже о возможных плохих погодных условиях в назначенный день взлета.

Так что же остается, если план грубой силы слишком дорогостоящ, а схема МОР слишком рискованна?

Есть третий план, который я и мои коллеги-инженеры: Джим Френч, Кумар Рамохалли, Роберт Эш, Дайан Линн и еще несколько человек – развиваем уже несколько лет. Он называется «Доставка марсианского грунта с использованием топлива, произведенного на Марсе» (ДМГ).

В плане ДМГ используется одна ракета-носитель «Дельта-2», которая доставит на Красную планету один незаправленный марсианский взлетный модуль вместе с ровером. Пока ровер будет собирать образцы грунта, МВМ запустит у себя на борту небольшой химический завод, чтобы перерабатывать газ, закачиваемый из марсианской атмосферы в ракетное топливо (я предпочитаю комбинацию метан/кислород, хотя также возможен вариант угарный газ/кислород), и заполнить баки МВМ. Ко времени открытия стартового окна для полета обратно на Землю будет заготовлено необходимое количество топлива, и МВМ с образцами взлетит с Марса и направится прямо к Земле – так же, как в плане грубой силы. Непосредственное возвращение на Землю можно осуществить с помощью спускаемого модуля, использованного при запуске ракеты «Дельта», потому что «Дельта» и ее спускаемый аппарат должны будут всего лишь доставить на поверхность Марса незаправленный МВМ (предположительно массой порядка 70 килограммов) вместо гораздо более тяжелого заправленного МВМ.

Миссия ДМГ на сегодняшний день является самой дешевой из обсуждаемых планов такого типа, потому что вместо использования новой ракеты-носителя, способной доставить на орбиту 30 тонн и несущей один большой космический аппарат, или двух ракет «Дельта» с двумя маленькими космическими аппаратами можно запустить одну «Дельту» с одним небольшим космическим кораблем. Риск этой миссии значительно ниже, чем у плана МОР, потому что необходимое технологическое новшество – завод по производству ракетного топлива на Марсе (ЗПТМ) – может быть полностью протестировано заблаговременно  на Земле в камере, где смоделированы марсианские условия. В дополнение к этому завод представляет собой не самый сложный прибор (основанный на идеях химической инженерии XIX века) по сравнению с бортовой электроникой, необходимой для автономной стыковки аппаратов во время рандеву на орбите Марса, не говоря уже о стыковке в космическом пространстве. Как отмечалось ранее (и как будет детально описано позже), в «Мартин Мариетта» мы построили и продемонстрировали успешную работу полномасштабной копии ЗПТМ, производящей метан и кислород. Она обошлась в 47000 долларов – незначительная сумма на фоне остальных затрат на миссию ДМГ. Разумеется, аппарат для производства топлива, изготовленный в «Мартин Мариетта», был экспериментальным образцом, не готовым к полету, но нужно понимать, что риски связаны не с готовностью оборудования, а с возможностью его протестировать. Поскольку технологию производства топлива на Марсе можно отработать и проверить заранее, связанный с ней риск будет заметно ниже, чем в случае с технологиями, необходимыми для космического рандеву. Кроме того, если НАСА примет решение реализовать план ДМГ с использованием двух космических кораблей, они будут одинаковыми (и, следовательно, обойдутся дешевле, чем два разных космических аппарата в случае миссии МОР), и если хотя бы один вернется на Землю, то миссия окажется успешной. И наоборот, если в миссии МОР хотя бы один космический аппарат потерпит неудачу, неудачной будет признана миссия целиком.

Как мы увидим, использование топлива, произведенного на Марсе, – единственная возможность для человечества исследовать Красную планету.  Когда речь идет о планировании миссии ДМГ, следует продумать убедительную стратегию. Ценность миссии ДМГ резко возрастет, если с ее помощью продемонстрировать ключевые технологии, необходимые для полетов людей на Марс. Посудите сами: миссия ДМГ позволит доставить лишь приблизительно один килограмм образцов грунта с поверхности Марса, которые при удачном стечении обстоятельств будут собраны в нескольких километрах от места посадки аппарата. Поскольку маловероятно, что сейчас на поверхности Марса существует жизнь, поиски биологической активности на Марсе в значительной степени сведутся к поиску окаменелостей. Роботизированные роверы с их ограниченной подвижностью при большой временной задержке (до 40 минут из-за скорости распространения радиосигналов) при передаче команд с Земли на Марс будут очень плохим подспорьем в таких поисках. Если вы в этом сомневаетесь, представьте, что ровер вроде «Спирита» или «Кьюриосити» отправили в Скалистые горы. Скорее наступит следующий ледниковый период, чем ровер найдет останки динозавра. Поиск ископаемых требует мобильности, проворства и развитой интуиции, чтобы немедленно уловить даже еле заметные подсказки. Другими словами, нужны исследователи-геологи и старатели. Охота за ныне существующей жизнью повлечет за собой установку и запуск буровых машин, рытье шахт глубиной до сотни метров, сбор образцов, а затем проращивание культур в питательной среде, фотографирование и анализ результатов в лаборатории. На все это роверы не способны. Если Марс создан, для того чтобы открыть нам свои секреты, «люди, которых не отпугнут однообразные мрачные просторы космоса», должны отправиться туда сами.

 

 

Глава 3

Разработка плана

 

Через тернии к Марсу

 

20 июля 1989 года президент Джордж Буш-старший стоял на ступеньках Национального музея авиации и космонавтики в Вашингтоне. Позади него в прохладных залах музея располагались артефакты величайших космических достижений Америки. Среди них были напоминающий формой желейную конфету космический аппарат «Колумбия» и командный модуль «Аполлона-11». Люди, которые добирались на «Колумбии» домой с лунной орбиты, – Нил Армстронг, Майкл Коллинз и Базз Олдрин, экипаж «Аполлона-11» – стояли рядом с президентом, который готовился по случаю двадцатой годовщины первой высадки человечества на Луне объявить о смелой космической кампании.

Буш говорил о проблемах и пользе освоения космоса, о том, что нации следует взять на себя обязательство – осуществить длительную программу освоения человеком Солнечной системы, и даже о том, чтобы заселить космическое пространство. Это были слишком громкие слова, пусть они и прозвучали через двадцать лет после того, как астронавты США впервые ступили на поверхность другого мира. Президент продолжал речь, говоря о необходимости выработать план на срок более 10 лет, о долгосрочных обязательствах по исследованию космоса. Затем Буш озвучил свою программу: «Во-первых, в следующем десятилетии – в 1990-е годы – орбитальная станция «Фридом»… И потом – в новом веке – возвращение на Луну… После него – в более далеком будущем – путешествие на другую планету – пилотируемый полет на Марс».

Так родилась программа, которая стала известна как «Инициатива исследования космоса» (ИИК). Начало было хорошее, но потом все пошло под откос.

Обширная команда, представляющая все подразделения НАСА, которую поддержали все крупные аэрокосмические подрядчики, начала выяснять, как можно осуществить программу Буша. Через три месяца команда представила документ под названием «Отчет о 90-дневном изучении возможностей исследования Луны и Марса человеком», который вскоре стали просто называть «90-дневный отчет» [11]. В отчете говорилось, что перед тем, как человечество сможет отправиться на Марс, американцам потребуется тридцать лет на разработку космической инфраструктуры и это будет самая большая и самая дорогостоящая программа правительства США со времен Второй мировой войны.

НАСА собиралось построить спроектированную ранее космическую станцию, но теперь планируемый размер хотели увеличить втрое, добавив «сдвоенные кили» с большими ангарами для строительства межпланетных космических кораблей. Также требовалось построить множество дополнительных орбитальных объектов: отдельные криогенные хранилища топлива, доки для технического обслуживания, подсобные помещения для экипажа и так далее. Такой огромный и сложный комплекс вспомогательных сооружений был необходим для создания и обслуживания кораблей для полета на Луну (для доставки каждого из них на орбиту Земли потребуются три ракеты-носителя тяжелого класса и один шаттл). Те, кто помнит, что для каждого из «Аполлонов» требовался всего один запуск, почешут в затылке и подумают: «В прошлый раз долететь до Луны было не так тяжело…» В течение десяти лет эти лунные корабли должны были переместить на Луну все необходимые материалы и оборудование, чтобы создать обширную лунную базу. Вместе с орбитальными сооружениями она стала бы основой для строительства серии действительно громадных кораблей – тяжелее 1000 тонн – как «Звездный крейсер "Галактика"» – для полетов на Марс. Эти корабли работали бы на реактивной тяге и за счет других технологий, совершенно отличных от тех, использовались бы в лунных кораблях и, следовательно, потребовали бы больших затрат на разработку и на дополнительную инфраструктуру. В первых миссиях на Марс дорога заняла бы около полутора лет, причем на орбите Марса экипаж мог бы провести около одного месяца. Затем на поверхность планеты должен был спуститься маленький космический аппарат, способный поддерживать жизнь и работу небольшой команды исследователей в течение примерно двух недель, тем самым давая возможность астронавтам установить флаг США и совершить некоторые другие действия. Космические корабли вылетали бы к Марсу тяжело нагруженными и возвращались на орбиту Земли совсем легкими, сбросив все лишнее после каждой миссии (пустые топливные баки, марсианские роверы, подушки аэроторможения), таким образом навязывая дополнительные расходы на каждую последующую операцию вроде установки флага на Марсе. «90-дневный отчет» не включал оценки стоимости программы, однако в итоге эта информация просочилась в прессу. Минимальная оценка составляла 450 миллиардов долларов.

Вряд ли при такой стоимости программу можно было воспринимать всерьез. Длительность получалась большой, а разрекламированные преимущества колонизации космоса не вызывали энтузиазма у публики, заинтересованной в космических исследованиях. Предложения, озвученные в «90-дневном отчете», также были восприняты скептично. До тех пор пока предложенную стоимость программы в 450 миллиардов долларов не удалось бы значительно уменьшить, ИИК была нежизнеспособна. Это стало очевидно в последующие месяцы и годы, когда Конгресс продолжал отклонять каждый финансовый проект НИК, который попадал на рассмотрение.

На самом деле в «90-дневном отчете» не было ни внутренней логики, ни по-настоящему новых идей. Скорее, это был пересказ навязчивых идей, перекликавшийся с Die Marsprojekt – шестидесятилетней давности проектом пилотируемых миссий на Марс, который немецкий конструктор ракет Вернер фон Браун и его коллеги начали разрабатывать в конце 1940-х годов. Его техническая часть легла в основу программы пилотируемого полета к Марсу в рамках миссии «Аполлон», которая была предложена НАСА, но отклонена в 1969 году. Для фон Брауна и его сотрудников пилотируемая межпланетная миссия была поводом для самых смелых конструкторских фантазий: огромный межпланетный космический корабль (или еще лучше флот из огромных межпланетных космических кораблей), собранный на космической станции и запущенный с околоземной орбиты. Что происходило бы потом на поверхности Марса, было делом второстепенной важности. На базе этой навязчивой идеи – гигантские космические станции для сборки гигантских космических кораблей – обширный коллектив, работавший над «90-дневным отчетом», продолжал предлагать технологии, которые или уже существовали, или планировались в рамках программы технологического развития НАСА. Чтобы привлечь к процессу как можно больше людей, совет разработал самые сложные варианты архитектуры миссии, какие только можно было придумать, – вот пример того, как не нужно заниматься проектированием.

 


Дата добавления: 2018-09-22; просмотров: 209; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!