Цифроаналоговый преобразователь



ОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОМЕРЧЕСКАЯ

 

ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

 

«ВОЛЖСКИЙ УНИВЕРСИТ ИМЕНИ В.Н.Татищева» (ИНСТИТУТ)

 

 

Факультет – Среднее профессиональное образование.

Специальность – Компьютерные системы и комплексы.

Кафедра – ЭдиИТ.

 

Тема: Техническое обслуживание, поиск и устранение неисправностей видеокарт

 

 

Курсовая работа

Буренко Н.Г.

 

Научный руководитель

Преподаватель

Елена Викторовна Плюснина

 

 

Допускается к защите                                        Дата сдачи_____________

Научный руководитель                                   Дата защиты_____________

«__»______________201_г.                                     Оценка_____________

 

 

Тольятти 2017

 

Содержание

 

Введение................................................................................................................3

Глава 1. Основные сведения о видеоплате…………….………….4

1.1 Назначение и основные блоки устройства……………………….………...…4

1.2 Основные характеристики..................................................................................9

1.3 Интерфейсы подключения видеокарт……………………….……...…….…12

1.4 Методы диагностики неисправностей видеокарт…………………………..15

1.4.1 Диагностическое оборудование …………………………………………15

1.4.2 Программные методы диагностики……………………………………..16

ГЛАВА 2. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ВИДЕОКАРТ……………....17

2.1 Порядок установки и настройки видеоплаты……………………………….17

2.2 Поиск и устранение неисправностей видеокарты…………………………..22

ГЛАВА 3. Инструкционно-технологическая карта неисправностей видеокарт……………………………………..……..29

ЗАКЛЮЧЕНИЕ…………………………………………………………….……..39

Список литературы......................................................................................40

 


Введение

 

Практически все пользователи делятся на две основных категории: одних совершенно не волнует, какого качества видеоплата установлена в их компьютере, для других же именно этот вопрос жизненно важен. К первой группе относятся те, кто ограничивается работой с текстом, таблицами, простенькой графикой и, конечно же - интернетом. Вторая, более многочисленная категория - это фанаты компьютерных игр, а также профессиональные дизайнеры. По сути, для современных требовательных игр и необходимы мощные видеокарты, здесь и проявляются все возможности видеоплаты.

Цель данной курсовой работы заключается в разработке инструкционно - технологической карты по ремонту видеоплат, с описанием и действиями по устранению неисправности.

Для достижения поставленной цели необходимо решить ряд задач:

- изучить виды видеокарт, их техническое устройство и ее основные узлы.

- проанализировать причины возникновения неисправностей видеоплат.

- разработать методы поиска и устранения неисправностей.

- изучить технику безопасность при ремонте СВТ.

Работа состоит из содержания, введения, трех глав, заключения и списка литературы. При написании работы была использована учебная литература периодические издания и периодичекие издания и электронные источники информации.

 


Глава 1. Основные сведения о видеоплате

 

Назначение и основные блоки устройства

 

Устройство, которое называется видеокартой, есть в каждом компьютере, либо в виде устройства (рис. 1), интегрированного в системную плату, либо в качестве самостоятельного компонента. Главная функция, выполняемая видеокартой, - преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране. Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию, включая графику, текст, видео, она влияет на производительность всего компьютера в целом.

 

Рис 1 Основные узлы, блоки видеокарты

 

1. TV-выход

- разъем DVI (можно преобразовать в аналоговый сигнал)

- выход VGA

- разъем питания вентилятора охлаждения

-графический процессор с интегрированной DAC и теплоотводом/вентилятором

    - разъем AGP

    - модули памяти DDR (128 Мбайт)

    - микросхема регулировки напряжения

BIOS видеокарты

Видеокарты имеют свой BIOS, которая подобна системной BIOS, но полностью независима от нее. Если вы включите монитор первым и немедленно посмотрите на экран, то сможете увидеть опознавательный знак BIOS видеоадаптера в самом начале запуска системы.видеокарты, подобно системной BIOS, хранится в микросхеме ROM; она содержит основные команды, которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением. Программа, которая обращается к функциям BIOS видеокарты, может быть автономным приложением, операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов.

Графический процессор

Графический процессор (рис. 2), или набор микросхем, является сердцем любой видеокарты и характеризует быстродействие адаптера и его функциональные возможности. Две видеокарты различных производителей с одинаковыми процессорами зачастую демонстрируют схожую производительность и функции обработки графических данных. Кроме того, программные драйверы, с помощью которых операционные системы и приложения управляют видеокартой, как правило, разрабатываются именно с учетом параметров конкретного набора микросхем.

 


Рис 2 Графический процессор

Видеоконтроллер

Отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Видеопамять

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, буферов и т.п. Казалось бы, что чем её больше - тем лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти - это наиболее распространенная ошибка! Значение объема памяти неопытные пользователи переоценивают чаще всего, используя его для сравнения разных моделей видеокарт. Оно и понятно - раз параметр, указываемый во всех источниках одним из первых, в два раза больше, то и скорость у решения должна быть в два раза выше, считают они. Реальность же от этого мифа отличается тем, что рост производительности растет до определенного объема и после его достижения попросту останавливается.

В каждом приложении есть определенный объем видеопамяти, которого хватает для всех данных, и хоть 4 ГБ туда поставь - у нее не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки. Именно поэтому почти во всех случаях видеокарта с 320 Мбайт видеопамяти будет работать с той же скоростью, что и карта с 640 Мбайт (при прочих равных условиях). Ситуации, когда больший объем памяти приводит к видимому увеличению производительности, существуют, это очень требовательные приложения в высоких разрешениях и при максимальных настройках. Но такие случаи весьма редки, поэтому, объем памяти учитывать конечно нужно, но не забывая о том, что выше определенного объема производительность просто не растет, есть более важные параметры, такие как ширина шины памяти и ее рабочая частота.

Большинство видеокарт для хранения изображений при их обработке обходятся собственной видеопамятью; хотя некоторые видеоадаптеры AGP используют системную оперативную память для хранения трехмерных текстур, эта функция редко находит применение.

От объема видеопамяти зависит максимальная разрешающая способность экрана и глубина цвета, поддерживаемая адаптером. На рынке в настоящее время предлагаются модели с различным объемом видеопамяти: 128, 256, 512 Мбайт. Хотя больший объем видеопамяти не сказывается на скорости обработки графических данных, при использовании увеличенной шины данных (с 64 до 128 или 256 бит) или системной оперативной памяти для кэширования часто отображаемых объектов скорость видеокарты может существенно увеличиться.

Кроме того, объем видеопамяти позволяет видеокарте отображать больше цветов и поддерживать более высокое разрешение, а также хранить и обрабатывать трехмерные текстуры в видеопамяти адаптера AGP/ PCI-E 16x, а не в ОЗУ системы.

Память DDR SDRAM. Этот тип памяти позволяет работать на удвоенной частоте по сравнению с обычной памятью SDRAM. Разработан для современных системных плат с частотой шины 133 МГц. В настоящее время DDR SDRAM используется во всех видеокартах среднего и высшего уровней.

Видеокарты с одним и тем же графическим процессором (GPU) могут взаимодействовать с видеопамятью, обладающей различными скоростными характеристиками.

Рассматривая память в системе отображения, следует также остановиться на формате обращения к памяти со стороны схем обработки изображения. В современной видеокарте все схемы, необходимые для формирования и обработки изображения, реализованы в специализированной микросхеме - графическом процессоре, установленном на этой же плате. Графический процессор и память обмениваются данными по локальной шине. Большинство современных адаптеров имеют 64-,128- или 256-разрядную шину

Цифроаналоговый преобразователь

Цифроаналоговый преобразователь видеокарты (обычно называемый RAMDAC) преобразует генерируемые компьютером цифровые изображения в аналоговые сигналы, которые может отображать монитор. Быстродействие цифроаналогового преобразователя измеряется в МГц, чем быстрее процесс преобразования, тем выше вертикальная частота регенерации.

В большинстве современных видеоадаптеров функции преобразователя поддерживаются непосредственно графическим процессором, однако у некоторых адаптеров с поддержкой нескольких мониторов есть отдельная микросхема RAMDAC, которая позволяет второму монитору работать с разрешением, отличным от установленного разрешения основного монитора.

При увеличении быстродействия цифроаналогового преобразователя происходит повышение частоты вертикальной регенерации, что позволяет достичь более высокого разрешения экрана при оптимальных частотах обновления (72-85 Гц и более).

Шина

В настоящее время, наиболее распространенным является стандарт шины PCI-E (PCI Express) для персональных компьютеров, который сейчас приходит на замену AGP. Новая технология PCI-E обеспечивает достаточно широкую полосу пропускания шин ввода-вывода для удовлетворения растущих требований к скорости передачи данных по этим шинам. Ширину пропускания канала PCI Express можно масштабировать за счет добавления каналов с данными, при этом получаются соответствующие модификации шины (PCI-E x1, x4, x8, x16).

Производительность устройства PCI-E характеризуется числом используемых сигнальных линий. Одна линия имеет пропускную способность 250 Мбайт/с, в каждом направлении передачи сигналов. Так, интерфейс PCI-E 16x (16 линий) имеет пропускную способность 4 Гбайт/с.

Основные характеристики

 

Тактовая частота видеочипа

Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество различных исполнительных блоков, их характеристики и т.п.


Дата добавления: 2018-09-22; просмотров: 223; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!