РЫЧАГИ, ИХ ХАРАКТЕРИСТИКИ И ВИДЫ



 

Рычаг – это твёрдое тело, имеющее точку опоры и способное вращаться вокруг этой точки – оси вращения; приспособление, служащее для преобразования силы. В рычаге действует, по крайней мере, две силы с противоположными моментами.

Костные рычаги – звенья тела, подвижно соединённые в суставах под действием приложенных сил, могут либо сохранять своё положение, либо изменять его. Они служат для передачи движения и работы на расстояние.

Когда силы приложены по обе стороны от оси (точки опоры) рычага, его называют двуплечим, а когда по одну сторону – одноплечим. Для разных мышц, прикреплённых в разных местах костного звена, рычаг может быть разного рода. В природе существуют три рода рычагов: рычаги I‑го («весы»), II‑го(«тачка») и III‑го(«подъемный кран») родов.

Каждый рычаг имеет следующие элементы: 

– точку опоры (ось вращения, точка 0);

– как минимум две силы (f и F);

– точки приложения этих сил (А и В);

– плечи рычага (расстояния от точки опоры до точек приложения сил – АО и ВО);

– плечи сил (наикратчайшие расстояния от точки опоры до линий действий сил – опущенные на неё перпендикуляры АО и 0В).

Мерой действия силы на рычаг служит её момент относительно точки опоры – вращательный момент. Момент силы определяется произведением силы на плечо этой силы.

Mf = F * OВ

Mf= F * АО

Момент силы – это векторная величина. Если сила лежит не в плоскости, перпендикулярной оси, то находят составляющую силы, лежащую в этой плоскости. Она и вызывает момент силы относительно оси. Остальные составляющие на момент силы не влияют .

Когда противоположные относительно оси сустава моменты сил равны, звено либо сохраняет своё положение, либо продолжает движение с постоянной скоростью (моменты сил уравновешены). Если же один из моментов сил больше другого, звено получает ускорение в направлении его действия.

В опорно‑двигательном аппарате присутствуют рычаги всех трёх родов, причём значительно больше рычагов III‑го рода, рычагов скорости, так как мышцы крепятся в основном вблизи суставов.

Таким образом, двигательный аппарат человека по природе своей в большей степени быстрый и ловкий, чем сильный. Кроме этого, во всех костных рычагах имеются потери в силе ввиду того, что мышцы крепятся к костям под острым или тупым углом.

В рукопашном бою силой, совершающей работу, является прикладываемое к противнику усилие, а противодействующей силой – усилие противника. Для преодоления противодействующей на рычаге силы необходимо либо увеличить силу, совершающую работу, либо изменить длину плеча, через которое совершается работа. Поскольку силовые возможности почти всегда ограничены, а бой может вестись со значительно превосходящим по силам противником, то основным способом работы с помощью рычагов является перемещение точки опоры. В качестве точки опоры могут использоваться любые части тела (своего и противника), а также оружия и подручных средств.

 

ОСНОВЫ БИОМЕХАНИКИ МЫШЦ

 

Известно, что мышца управляется центральной нервной системой. Биомеханика рассматривает, что происходит с состоянием и положением мышцы в результате нервных влияний, т. е. связь линейных перемещений концов мышц (кинематика движения) и усилий, развиваемых ею (динамика движения). Механика мышечного сокращения заключается в связи напряжений в мышце с её деформацией.

Для полного описания биомеханических свойств мышц используют следующие определения: 

– жёсткость – способность противодействовать прикладываемым силам. Она проявляется как упругость и квазижесткость;

– релаксация – падение напряжения (натяжения) с течением времени;

– прочность – понимается как прочность на разрыв.

Часто при исследовании механических свойств тела человека и его отдельных элементов не учитывается влияние сухожилий. Сухожилия нередко рассматривают как абсолютно нерастяжимую, гибкую часть мышцы. А сухожилия способны амортизировать резкие толчки и обладают жёстко‑демпфирующими свойствами.

Прочность сухожилий превышает прочность мышц в 2 раза. Сухожилия человека разрываются, в основном, в месте крепления к мышцам.

Сила, скорость и экономичность движений зависят от того, в какой степени человеку удаётся использовать биомеханические свойства своего двигательного аппарата. Сила и скорость движения могут быть повышены за счёт использования упругих сил, экономичность – за счёт использования рекуперации (повторного использования) механической энергии и уменьшения потерь на рассеивание.

Кроме того, необходимо знать, что с возрастанием скорости активного сокращения мышцы величина её предельного напряжения уменьшается и наоборот, т.е. для того, чтобы нанести как можно более быстрый (резкий) удар (рукой или ногой), необходимо как можно больше расслабить ту часть тела, которая этот удар наносит перед выполнением ударного движения.

Биомеханические свойства мышц в решающей мере влияют на это. Общеизвестно, что в прыжках вверх с места, выполняемых из приседа после паузы, результат будет ниже, чем в прыжке из приседа без паузы, так как во втором случае используются силы упругой деформации предварительно растянутых мышц. Считается, что рекуперация энергии упругой деформации является основной причиной высокой экономичности бега человека, прыжков кенгуру.

В мышечных и сухожильных структурах может накапливаться значительное количество энергии упругой деформации. Однако накопленная энергия упругой деформации не всегда используется в полной мере. Степень её использования зависит от условий выполнения движений, в частности, от времени между растяжением и сокращением мышцы. Необходимо научиться правильно использовать эту энергию при действиях в рукопашном бою.

В процессе тренировок надо учитывать, что механическая прочность сухожилий и связок увеличивается сравнительно медленно. При форсированном развитии скоростно‑силовых качеств может возникнуть несоответствие между возросшими скоростно‑силовыми возможностями мышечного аппарата и недостаточной прочностью связок и сухожилий. Это грозит потенциальными травмами. Поэтому во время тренировок необходимо обращать внимание на укрепление сухожильно‑связочного аппарата. Это достигается объёмной тренировочной работой невысокой интенсивности. Желательно, чтобы движения выполнялись с максимально возможной для данного сустава амплитудой и во всех направлениях.

 

УСТОЙЧИВОСТЬ И РАВНОВЕСИЕ

 

На человека в процессе двигательной деятельности действуют статические и динамические силы, сочетание которых может вывести его из состояния равновесия.

Например, задача единоборца состоит в том, чтобы за счет выбора оптимальной стойки, определения дистанции, использования наиболее рационального в сложившейся ситуации двигательного действия обеспечить собственную устойчивость и, наоборот, вынудить противника потерять равновесие.

Поэтому в условиях боя такие понятия как устойчивость и равновесие играют исключительно важную роль.

Устойчивость – это способность бойца надежно сохранять положение равновесия без опрокидывания (падения) при внешнем силовом воздействии, возникающем при контакте с соперником или с окружающей средой.

Для количественной и качественной оценки устойчивости применяют различные критерии, наиболее приемлемые для конкретных случаев ее проявления, а именно:

– углы устойчивости;

– коэффициенты устойчивости;

– предельные скорости движения.

Различают статическую и динамическую устойчивость.

Статическая устойчивость человека – это устойчивость при отсутствии динамических сил (центробежных или сил инерции).

При статическом (медленном) наклоне твердого тела его опрокидывание происходит относительно некоторой линии, называемой линией опрокидывания.

При оценке устойчивости человека как твердого тела (рис. 18а.) такими линиями являются линии а‑b и е‑f (во фронтальной плоскости) и линии а‑f и b‑е (в сагиттальной плоскости).

Расстояния между линиями опрокидывания (d, d1 определяют опорную базу тела в данной плоскости.

Площадь аbеfа является опорной базовой площадью.

Устойчивость человека в зависимости от схемы действующих сил оценивается в одной из основных плоскостей тела – фронтальной или сагиттальной.

Итак, при отсутствии внешних сил устойчивость определяется предельным углом наклона тела, так называемым углом статической устойчивости a.

Рис. 18

 

Это угол между вектором силы тяжести G и линией, проходящей из ЦМ через линию опрокидывания а‑b (на рисунке 18b она проектируется в точку О).

Угол устойчивости a определяется из геометрических построений:

tga =0,5d/gцм, откуда

a = arctg (0,5d /g цм,), где g цм – положение ЦМ человека относительно опорной поверхности.

Статическая устойчивость человека тем выше, чем больше угол a. Следовательно, для повышения статической устойчивости необходимо увеличивать опорную базу d и понижать положение ЦМ.

Так, например, в любом поединке это есть главное условие для принятия стойки – исходного положения (рис. 19.).

Рис. 19

 

Выбор стойки диктуется не только требованиями обеспечения первоначальной статической устойчивости, но и возможностью реагирования на изменение внешнего воздействия.

Понятно, что стоящий на выпрямленных ногах человек может, сохраняя вертикальное положение позвоночника, перемещать ЦМ только вниз.

Человек, который, согнув колени, присел, оставляя позвоночник в вертикальном положении, получает дополнительные преимущества. Он может теперь перемещать свой ЦМ не только вниз, но и вверх. Эта, на первый взгляд, незначительная деталь имеет существенное значение для повышения ответной реакции на действия противника.

Угол статической устойчивости изменяется в процессе двигательного действия. Так, например, если боец, не меняя опорной базы, согнет одну ногу, одновременно выпрямив другую (рис. 20.), то произойдет смещение ЦМ на некоторую величину е.

Рис. 20

 

Угол a определяется как a = arctg [(0,5d ± e)/ g цм].

Знак «плюс‑минус» в формуле означает, что угол a уменьшается относительно линии опрокидывания а‑b (точка О), но увеличивается относительно линии е‑f(точка О1). Следовательно, устойчивость поддается контролю и управлению.

Однако в общем случае на спортсмена, помимо силы тяжести О, в основных плоскостях тела действуют внешние силы (силы воздействия со стороны соперника или окружающей среды).

Потеря устойчивости в сагиттальной плоскости из‑за меньшей опорной базы d1 наиболее вероятна, а значит, более опасна.

 


Дата добавления: 2018-09-22; просмотров: 244; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!