Сравнительные характеристики поколений ЭВМ

Муниципальное бюджетное образовательное учреждение

«Гимназия №33»

Реферат по информатике

«История развития компьютерной техники»

Работу подготовил:

ученик 7 класса А

Жиртуев Артём

Проверил:

учитель информатики

Золотова О.В.

Ульяновск, 2018

Оглавление

Введение. 3

Начало эпохи ЭВМ.. 4

Первое поколение ЭВМ.. 6

Второе поколение ЭВМ.. 8

Третье поколение ЭВМ.. 9

Четвертое поколение ЭВМ.. 11

Пятое поколение ЭВМ.. 13

Сравнительные характеристики поколений ЭВМ.. 14

Заключение. 15

Список литературы и Интернет-ресурсов. 17


Введение

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Вторая половина XX века характеризовалась началом "информационного взрыва", то есть необходимостью обрабатывать огромное количество информации. Для сбора, хранения, использования и распространения большого объема информации необходимо было специальное устройство. Таким устройством явился компьютер (электронная вычислительная машина, ЭВМ). Он стал основой для развития и освоения новых информационных технологий, от которых в значительной мере зависит возможность использования членами общества полной, своевременной и достоверной информации.

Компьютеры охватили все сферы человеческой деятельности. В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и малоизвестным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения, знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В XXI веке невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.


 

Начало эпохи ЭВМ

Первая ЭВМ[1] ENIAC (электронный цифровой интегратор и вычислитель) была создана в конце 1945 г. в США.  Конструкторами ЕNIАС были Дж. Моучли и Дж. Эккерт. Скорость счета этой машины превосходила скорость релейных машин того времени в тысячу раз.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

С. А. Лебедев - разработчик первых вычислительных машин в Советском Союзе и основатель советской компьютерной индустрии, внес основополагающий вклад в становление и развитие вычислительных наук в бывшем СССР. Им разработаны главные принципы построения и структура универсальных электронных цифровых вычислительных машин, организована работа коллективов разработчиков высокопроизводительных ЭВМ, промышленное производство этих ЭВМ и их внедрение, подготовка кадров.

С.А. Лебедева называют "отцом вычислительной техники" в СССР. Его имя и значимость его научной, организаторской, педагогической и общественной деятельности сопоставима с именами и значимостью деятельности академиков И.В. Курчатова, C.П. Королева, М.В. Келдыша в области атомной энергии и освоения космического пространства. Успехи в этих важнейших областях научно-технического прогресса непосредственно связаны с использованием высокопроизводительных вычислительных машин и систем, разработанных под руководством С.А. Лебедева.

При создании С.А. Лебедевым в Киеве (1951) малой электронной счетной машины (МЭСМ) им были проверены на ней фундаментальные принципы построения ЭВМ и конкретные технические решения, накоплен опыт наладки и эксплуатации ЭВМ, программирования алгоритмов важнейших вычислительных задач.

С.А. Лебедевым были предложены многие решения по распараллеливанию в ЭВМ процесса обработки данных, использованию новых элементов и технологий, модульности построения вычислительных систем, реализация которых привела к значительному увеличению производительности ЭВМ.

Так, разработанная под руководством С.А. Лебедева ЭВМ М-20 (1958) с производительностью 20 тыс. оп/сек имела новые важные структурные особенности - частичное совмещение операций, аппаратную организацию циклов, параллельную работу процессора и устройства вывода информации на печать.

В первой половине 60-х годов С.А.Лебедев организует работу по созданию специализированных быстродействующих ЭВМ, ориентированных на работу в системах реального времени. В этих машинах был реализован ввод в машину информации непосредственно с линий связи.

Выдающимся достижением С.А. Лебедева и возглавляемого им коллектива разработчиков в ИТМ и ВТ стало создание универсальной быстродействующей ЭВМ БЭСМ-6 (1967), превосходившей по производительности(1 миллион операций в секунду) все ЭВМ, разработанные до этого в СССР.

Высказанные С.А. Лебедевым идеи создания многопроцессорных и многомашинных вычислительных комплексов различной организации были реализованы в дальнейшем коллективами разработчиков ИТМ и ВТ. Эти комплексы многие годы успешно использовались и используются для выполнения важнейших работ, в том числе в центрах управления полетами космических аппаратов.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

 

 


Первое поколение ЭВМ

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Первая ЭВМ создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК (рис.1). Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набиралась сложным образом с помощью внешних перемычек.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ (рис.2) — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев. МЭСМ была расположена в зале площадью 60 м2. Общее количество электронных ламп составляет около 3500 триодов и около 2500 диодов, в том числе в запоминающем устройстве 2500 триодов и 1500 диодов.
Суммарная потребляемая мощность - около 25 кВт.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).

Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

 


 

Второе поколение ЭВМ

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.В 60-х годахтранзисторы стали элементной базой дляЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д.

 За рубежом наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США). В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. К средним ЭВМ относились отечественные машины серий «Урал», «М – 20» и «Минск».

Рекордной среди отечественных машин этого поколения и одной из лучших в мире была БЭСМ – 6 (рис.3), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн операций в секунду.


 

Третье поколение ЭВМ

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360 (рис.4). В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

 Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

К машинам третьего поколения относились "Днепр-2", ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2, "Наири-2" и ряд других.

Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем.

 


 

Четвертое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора.

Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer).

30 лет назад, 12 августа 1981 года, появился на свет первый в мире персональный компьютер под названием IBM PC 5150 (рис.6), выпущенный известной и поныне американской корпорацией International Business Machines. Одной из ключевых фигур, принимавших участие в создании первого ПК, стал ученый и ведущий инженер IBM Марк Дин (Mark Dean). Сейчас "компьютерному папе" 54 года, и он по-прежнему трудится в родной компании.

 Именно разработка IBM PC 5150 открыла новую эру современных персональных компьютеров. У этого компьютера был прародитель с индексом 5100 - выпущенный в 1975 году, он, однако, предназначался для решения научных задач и потому не подходил массовому пользователю. Да и цена "ученого" компьютера составляла ни много, ни мало 20 тысяч долларов, в то время как IBM PC 5150 в самой дорогой конфигурации стоил всего 3 тысячи долларов. В те времена это была внушительная сумма, однако массовому распространению ПК это не помешало.

IBM PC 5150 даже выглядел похожим на привычный многим домашний компьютер - он состоял из системного блока, в котором размещались дисководы, клавиатуры и цветного дисплея. Сама IBM, занимавшаяся по большей части разработкой "больших" вычислительных машин, не придавала большого значения своему новому детищу. Однако именно в нем были заложены многие компьютерные стандарты, прожившие более десятка лет и лишь затем сменившиеся на более совершенные и прогрессивные. Невероятный успех девайса позволил многим специалистам и любителям электроники охарактеризовать именно его как первый массовый персональный компьютер.

С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности. Именно ПК сделали компьютерную грамотность массовым явлением.

Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора) — набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226). К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс "Эльбрус". "Эльбрус-1КБ" имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У "Эльбрус-2" производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов ( слово 72 разряда), максимальная пропускная способность каналов ввода-вывода - 120 Мб/с.

Пятое поколение ЭВМ

В поздние 1980 годы история развития ЭВМ (поколения ЭВМ) отмечается новый этап – появляются машины пятого вида поколения. Главный упор при создании компьютеров сделан на их "интеллектуальность". Внимание акцентируется на архитектуре, ориентированной на обработку знаний. Обработка знаний - это одна из областей практического применения искусственного интеллекта, предполагающая использование и обработку компьютером знаний, которыми владеет человек для решения проблем и принятия решений.

Элементная база – сверхбольшие интегральные схемы (СБИС, содержащие более 10 тыс. элементов в кристалле) и микропроцессоры. Оперативная память - СБИС. Внешняя память: дисковые накопители, флэш-накопители. CD и DVD-диски. Ввод данных: клавиатура, мышь, сканер, микрофон, джойстик и т.п. Вывод результатов: цветной графический дисплей, принтер, графопостроитель, акустические колонки и т.п. Быстродействие – до 10 млрд. операций в секунду. Языки программирования – Pascal, C, Java, Basic, HTML и т.п., а также непроцедурные языки программирования. Характерная особенность – телекоммуникация, использование компьютеров в сети. Компьютер становится как стационарным, так и мобильным средством хранения, передачи, поиска и обработки информации.

 К компьютерам данного поколения можно отнести компьютеры на базе процессоров Pentium, Core Duo, Core Quadro.

Из-за вида операционной системы, которая обеспечивает простоту общения с электронно-вычислительными машинами пятого поколения, огромной базы программ прикладного типа из различных сфер человеческой деятельности, а также низких цен ЭВМ становится незаменимой принадлежностью инженеров, исследователей, экономистов, врачей, агрономов, преподавателей, редакторов, секретарей и даже детей.

 

 

 


 

Сравнительные характеристики поколений ЭВМ

Характеристики

Поколения ЭВМ

I II III IV V
Годы применения 1945-1954 1955-1964 1965-1974 1975-1980 1980- наше время
Элементная база компьютеры на электронных лампах транзистор, впервые появилось то, что сегодня называется операционной системой впервые стали использоваться интегральные схемы (ИС) совершенствование интегральных схем (БИС) привело к появлению микропроцессо ров сверхбольшая интегральная схема (СБИС)
Размеры большие, нередко требовали для себя отдельных зданий занимали меньше места, чем ЭВМ 1 поколения мини-ЭВМ, имели миниатюрный корпус, по сравнению с предыдущими микроЭВМ, стали менее габаритными микроЭВМ, появление карманных компьютеров
Количество ЭВМ в мире десятки тысячи десятки тысяч миллионы миллиарды
Быстродействие 10-20 тыс. операций в секунду 100-1000 тыс. операций в секунду 1-10 млн. операций в секунду 10-100 млн. операций в секунду Более 100 млн. операций в секунду
Объём оперативной памяти 2 Кб 2-32 Кб 64 Кб 2-64 Мб от 2000 Мб и выше
Типичные модели МЭСМ, БЭСМ-2 БЭСМ-6, Минск-2 IBM-360, IBM-370, ЕС ЭВМ, СМ ЭВМ IBM-PC, Apple "Pentium 2", "Pentium 3", "Pentium 4"
Носитель информации Перфокарта, перфолента Магнитная лента Диск Гибкий и лазерный диски Гибкий и лазерный диски, флеш-карта

 


 

Заключение

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микро ЭВМ.

Перспективы развития ЭВМ в первую очередь заложено обязательное уменьшение размеров компьютеров, неуклонное увеличение их быстродействия и объема памяти. Также согласно сегодняшней тенденции, уровень глобальных сетей будет увеличиваться, в связи с этим будут разрабатываться новые методы хранения, обработки, представления информации. Будут совершенствоваться способы передачи информации с учетом скорости, безопасности и качества.

Виртуальная реальность остаётся одним из самых интересных и загадочных понятий компьютерной индустрии. Виртуальная реальность — это образ искусственного мира, моделируемый техническими средствами и передаваемый человеку через ощущения. В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности.

По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся. Примерно в 2020-2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего должен облегчить и упростить жизнь человека ещё в десятки раз!

Одна из указанных вероятностных альтернатив замены современных компьютеров является создание оптических ЭВМ, носителем информации в которых будет световой сгусток. Проникновение оптических способов в вычислительную технику ведется по трем фронтам. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных особых задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связно с созданием чисто оптических или гибридных соединений, обладающих большей надежностью, чем электрические. И третье направление – создание компьютера, полностью состоящего из оптических устройств обработки информации.

Другие виды компьютеров – молекулярные. Молекулярные компьютеры – это ЭВМ, использующие вычислительные возможности молекул преимущественно биологических, также используется идея вычислительных возможностей расположения атомов в пространстве. Квантовый компьютер – ЭВМ, которое путем выполнения квантовых алгоритмов существенно использует при работе эффекты, такие как квантовый параллелизм и квантовая запутанность. Нанокомпьютеры – вычислительные устройства на основе электронных технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер также имеет микроскопические размеры. Другое направление связано с разработками биокомпьютеров – клеточные и ДНК-компьютеры.

Однако квантовые компьютеры, биокомпьютеры, нанокомпьютеры и другие направления – все это на сегодняшний момент всего лишь гипотетические вычислительные устройства, которые под собой не имеют логических решений.

Высокие технологии – это будущее и это успех всего человечества. Ежедневно выпускаются новые и более совершенны модели ЭВМ. И на этом процесс развития не остановлен.

 


 

Список литературы и Интернет-ресурсов

1. Богатырев Р.В. На заре компьютеров.// Мир ПК. 2004. - №4

2. Зуев К.А. Компьютер и общество.– Москва.: Издательство политической литературы, 1990г.

3. Прохоров А.М. Большая советская энциклопедия. – Москва.: Издательство «Советская энциклопедия», 1971г.

4. Фигурная В.С. Из истории компьютеров.// Мир ПК. 2005. - №1

5. Фролов А.В., Фролов Г.В. «Аппаратное обеспечение IBM PC» – М.: ДИАЛОГ- МИФИ, 1992г.

6. Босова Л.Л., Босова А.Ю. Электронное приложение к учебнику «Информатика. 7 класс»

7. Ресурсы Internet:

- http://fb.ru/article/2898/istoriya-razvitiya-vyichislitelnoy-tehniki

- http://www.bashedu.ru/konkurs/tarhov/russian/index_r.htm

- http://museum.iu4.bmstu.ru/abak/index.html

- http://www.computer-museum.ru/histussr/9.htm

- http://www.homepc.ru/adviser/15817/

- http://www.computerra.ru/print/hitech/novat/20724/

- http://schools.keldysh.ru/sch444/MUSEUM/PRES/DK-12-2002.htm

- http://www.bashedu.ru/konkurs/tarhov/russian/minsk-32.htm

- http://www.technotronic.org/compochelovek_4_1999.html

- https://www.syl.ru/article/192549/new_pokoleniya-evm-elementnaya-baza-istoriya-pokoleniy-evm

 

 

                                

 

 


[1] Понятие компьютер следует отличать от понятия Электронно-вычислительная машина (ЭВМ); последняя является одним из способов реализации компьютера.


Дата добавления: 2018-09-22; просмотров: 473; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!