Тугоплавкие металлы и сплавы.



Латуни.

ЛАТУНЬ, сплав на основе меди, в котором главной добавкой является цинк (до 50%).

Латунь с содержанием от 5 до 20% цинка называется красной (томпаком) , с содержанием 20–36% Zn – желтой.

ЛАТУНИ имеют красивый цвет, по сравнению с медью обладают более высокой прочностью и коррозионной стойкостью. Имеют высокие механические и технологические свойства, пластичны, хорошо обрабатываются (резанием, давлением в горячем и холодном состояниях, имеют хорошую ковкость) и сравнительно дешевы.

ЛАТУНИ - самые распространённые из медных сплавов.

Из них производят изделия с повышенной коррозионной устойчивостью, тяжело нагруженные детали в моторо- и cудостроении, для общего и морского машиностроения, для судостроения, для радиаторов, подогревателей. Например, листы, ленты, прутки, трубы, проволоку, зубчатые колеса, отливки.

Л., содержащая ок. 15% Zn и 0, 5% А1, имеет красивый золотистый цвет и повышенную стойкость против атм. коррозии; такой сплав используют как заменитель золота для знаков отличия и художеств, изделий. Л. с добавкой до 1, 5% Sn (т. н. морские Л.) имеют повышенную стойкость против коррозии в мор. воде. Добавка свинца (до 3%) делает стружку ломкой и позввляет получать при обработке резанием поверхность высокой чистоты (см. Автоматная латунь). Свинцовистые Л. применяются в автомоб. и часовой пром-сти (т. н. часовые Л.). Многие Л., содержащие более 20-30% Zn, склонны к коррозионному растрескиванию из-за одновременного действия остаточных напряжений в изделии и коррозионного воздействия аммиака, а также сернистого газа во влажной атмосфере атмосфере (см. Коррозия). Это явление называют сезонной болезнью Л., т. к. усиленное коррозионное растрескивание происходит в месяцы с повышенной влажностью воздуха. Растрескивание предотвращают, применяя отжиг для уменьшения остаточных напряжений (при 250-300 °С). Л. используются также в общем машиностроении, приборостроении, теплотехнике


Магний и сплавы на его основе.

Магний - металл светло-серого цвета. Характерным свойством магния является его малая плотность (1.74г/см3). Температура плавления магния 650°С. Кристаллическая решетка гексагональная. Технический магний выпускают трех марок МГ90, МГ95 и МГ96. Механические свойства литого магния: sв=115МПа, s0.2=25МПа, d=8%, 30НВ. На воздухе магний легко воспламеняется. Используется магний в пиротехнике и химической промышленности.

Сплавы на основе магния

Сплавы магния обладают малой плотностью, высокой удельной прочностью, хорошо поглощают вибрации, что определило их широкое использование в авиационной и ракетной технике. Однако сплавы магния имеют низкий модуль нормальной упругости 43000МПа и плохо сопротивляются коррозии.

Литейные сплавы. Широко применяется сплав МЛ5, в котором сочетаются высокие механические и литейные свойства. Он используется для литья нагруженных крупногабаритных отливок.

Сплав МЛ6 обладает лучшими литейными свойствами, чем МЛ5, и предназначается для изготовления тяжелонагруженных деталей.

Сплав МЛ5 - sв=226МПа, s0.2=85МПа, d=5%.

Деформируемые сплавы. Эти сплавы изготовляют в виде горячекатаных прутков, полос, профилей, а также поковок и штамповых заготовок.

Сплав МА1 обладает сравнительно высокой технологической пластичностью, хорошей свариваемостью и коррозионной стойкостью.

Сплав МА2-1 обладает достаточно высокими механическими свойствами, хорошей свариваемостью, однако склонен к коррозии под напряжением, поддается всем видам листовой штамповки и легко прокатывается.

Сплав МА1 - sв=190-220МПа, s0.2=120-140МПа, d=5-10%.

 

 

21. Бронзы.

Бро́нзы — ряд двойных или многокомпонентных сплавов на основе меди, где основным легирующим компонентом являются олово, бериллий, марганец, алюминий или другой элемент (соответственно бронза называются оловянными, бериллиевыми, марганцевыми, алюминиевыми и т. п.), иногда с добавлением дополнительных компонентов — цинка, свинца, фосфора и пр. Однако бронзой не может быть назван сплавы меди с цинком (это латунь) и никелем (медноникелевые сплавы).

Оловянная бронза — сплав меди с оловом (медь преобладает), один из первых освоенных человеком сплавов металлов. Она обладает значительно большей, по сравнению с чистой медью (освоенной ранее бронзы), твёрдостью, достаточной прочностью и более легкоплавка. Открытие бронзы сыграло огромную роль в освоении металлов человеком. Олово в любых марках О. бронзы всегда является вторым по количеству и основным легирующим компонентом сплава (тогда как медь — первым); третье место отводится дополнительным добавкам: свинцу, цинку, мышьяку и др., присутствие которых вовсе необязательно. Свойства оловянной бронзы[править]

Оловянная бронза (кроме марок с низким содержанием олова — т. н. деформируемой бронзы) с трудом поддается обработке давлением (ковка, штамповка, прокатка и пр.), резанием и заточке. Благодаря этому бронза в целом — литейный металл, и по литейным качествам не уступает любому другому металлу. Она обладает очень малой усадкой — 1 %, тогда как усадка латуней и чугуна составляет около 1,5 %, а стали — более 2 %. Поэтому, несмотря на склонность к ликвации и сравнительно невысокую текучесть, бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё.


25. Антифрикционные сплавы на основе олова, свинца, цинка.

Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Поэтому для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает коэффициент трения.

Баббиты — антифрикционные материалы на основе олова или свинца. Их применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках. По химическому составу баббиты классифицируют на три группы: оловянные Б83, Б88, оловянно-свинцовые БС6, Б16 и свинцовые БК2, БКА. Последние не имеют в своем составе олова.

Для оловянных и оловянно-фосфористых бронз характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и нагрузках.

Алюминиевые бронзы, используемые в качестве подшипниковых сплавов, отличаются большой износостойкостью, но могут вызвать повышенный износ вала. Их применяют вместо оловянных и свинцовых баббитов и свинцовых бронз.

Свинцовые бронзы в качестве подшипниковых сплавов могут работать в условиях ударной нагрузки.

Из-за дефицитности олова и свинца применяют сплавы на менее дефицитной основе, например алюминиевые сплавы. Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой теплопроводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами. Их применяют в виде тонкого слоя, нанесенного на стальное основание, т. е. в виде биметаллического материала. В зависимости от химического состава различают две группы сплавов.

Сплавы алюминия с сурьмой, медью и другими элементами, которые образуют твердые фазы в мягкой алюминиевой основе. Наибольшее распространение получил сплав АСМ, содержащий сурьму (до 6,5 %) и магний (0,3 — 0,7 %). Этот сплав хорошо работает при высоких нагрузках и больших скоростях в условиях жидкостного трения. Сплав АСМ широко применяют для изготовления вкладышей подшипников коленчатого вала двигателей тракторов и автомобилей.

Для работы в подшипниковых узлах трения применяют специальные антифрикционные чугуны. Изготовляют три типа антифрикционного чугуна: серый, высокопрочный с шаровидным графитом и ковкий (см. табл. 16). Антифрикционный чугун идет на изготовление червячных зубчатых колес, направляющих для ползунов и т. п. деталей машин, работающих в условиях трения.

 


Тугоплавкие металлы и сплавы.

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь[10]. Нити накаливания, состоящие из вольфрама, находят свое применение в быту и в приборостроении. Лампы более эффективно преобразовывают электроэнергию в свет с повышением температуры[9]. В вольфрамовой газодуговой сварке (англ.) оборудование используется постоянно, без плавления электрода.

Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав — титан-цирконий-молибден — содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава — 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов

Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом

Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.

Важное свойство тантала было выявлено благодаря его применению в медицине — он способен выдерживать кислую среду (организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компью

ений является самым последним открытым тугоплавким элементом из всей группы. Он находится в низких концентрациях в рудах других металлов данной группы — платины или меди. Может применяться в качестве легирующего компонента с другими металлами и придает сплавам хорошие характеристики — ковкость и увеличивает предел прочности. Сплавы с рением могут применяться в компонентах электронных приборов, гироскопах и ядерных реакторах. Самое главное применение находит в качестве катализатора. Может применяться при алкилировании, деалкилировании, гидрогенизации и окислении. Его столь редкое присутствие в природе делает его самым дорогим из всех тугоплавких металлов


23. Титан и сплавы на его основе

Титан - твердый металл: он в 12 раз тверже алюминия, в 4 раза - железа и меди. Титан химически стоек. На поверхности титана легко образуется стойкая оксидная пленка TiO2, вследствие чего он обладает высокой сопротивляемостью коррозии в пресной и морской воде и в некоторых кислотах, устойчив против коррозии под напряжением. Во влажном воздухе, в морской воде и азотной кислоте он противостоит коррозии не хуже нержавеющей стали, а в соляной кислоте во много раз лучше ее. При температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость).

Сплавы на основе титана получили значительно большее применение, чем технический титан. Легирование титана Fe, Al, Mn, Cr, Sn, V, Si повышает его прочность (sв, s0.2), но одновременно снижает пластичность (dy) и вязкость (KCU). Жаропрочность повышают Al, Zr, Mo, а коррозийную стойкость в растворах кислот - Mo, Zr, Nb, Ta и Pd. Титановые сплавы имеют высокую удельную прочность. Как и в железных сплавах, легирующие элементы оказывают большое влияние на полиморфные превращения титана.

 


Дата добавления: 2018-08-06; просмотров: 243; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!