Различение двух детерминированных сигналов на фоне белого шума. Структурные схемы оптимальных различителей



ОПТИМАЛЬНОЕ РАЗЛИЧЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

 

Различение двух детерминированных сигналов.

Постановка задачи и правило принятия решения

 

Задача различения сигналов находит широкое распространение в дискретной радиосвязи, когда передача символа «1» связана с излучением сигнала s1(t), а передача символа «0» связана с излучением другого сигнала s2(t), отличающегося от s1(t) хотя бы одним каким-нибудь своим параметром. На приемной стороне один из указанных символов присутствует вместе с шумом. Поэтому решение о том, какой из сигналов принимается, может осуществляться с ошибкой. Отсюда возникает задача оптимального, в смысле выбранного критерия, различения сигналов. Устройство, решающее задачу различения, будем называть различителем.

Математическая постановка задачи различения: пусть на входе различителя действует случайный процесс x(t), который удобно представить в виде суммы:    

                                          (9.1)

где s1(t), s2(t) - детерминированные, то есть полностью известные сигналы, неизвестно только, какой из этих сигналов существует на входе в течение интервала наблюдения [0,Т] ; l - случайный параметр, равный 1, если действует сигнал s1(t), равный 0, если действует сигнал s2(t); n(t) - шум с известным распределением.

Выдвигается гипотеза Н1, состоящая в том, что на входе действует s1(t), и гипотеза Н2, утверждающая, что на входе действует s2(t). Вероятности гипотез Р(Н1) и Р(Н2) известны. На интервале времени [0,Т] наблюдается реализация x(t) процесса (9.1). Требуется ответить на вопрос, какому сигналу, который действует вместе с шумом, наилучшим образом соответствует наблюдаемая реализация.

Так как вероятности гипотез известны, то ответ на этот вопрос можно дать на основании критерия идеального наблюдателя, как и в задаче обнаружения. По аналогии с (7.13) можно записать следующее правило принятия решения

                                                    (9.2)

где

                                          (9.3)

                                                   (9.4)

где Psn1[x(t)], Psn2[x(t)] - функционалы плотности вероятности при непрерывном наблюдении.

Для того, чтобы принять решение о наличии того или иного сигнала на входе различителя по критерию идеального наблюдателя (7.7), необходимо сформировать отношение правдоподобия (9.3) и сравнить его с порогом L0, определяемым согласно (9.4), априорными вероятностями Р(Н1), Р(Н2). В ряде случаев, например при гауссовском шуме, удобнее формировать логарифм отношения правдоподобия

                                               (9.5)

Таким образом, решение задачи различения совпадает с решением задачи обнаружения, с той только разницей, что отношение правдоподобия определяется дробью (9.3), в которой и в числителе, и в знаменателе функции правдоподобия определяются через функционалы плотностей вероятностей при условии наличия сигнала и шума, но только при условии наличия разных сигналов.

 

Различение двух детерминированных сигналов на фоне белого шума. Структурные схемы оптимальных различителей

 

Правило принятия решения (9.5) можно конкретизировать, если положить, что n(t) в (9.1) является гауссовским белым шумом. Для белого шума функционалы плотности вероятности будут равны:

                                  (9.6)

                                 (9.7)                                                                                                                                                                                           

где К - коэффициент нормировки.

Если подставить (9.6) и (9.7) в (9.5), то получим

откуда

Учитывая, что

правило решения (9.5) можно записать в следующем виде

                                                        (9.8)

где

                                          (9.9)

- достаточная статистика при различении детерминированных сигналов;

                                         (9.10)

- порог для критерия идеального наблюдателя, зависящий как от априорных вероятностей Р(Н1) и Р(Н2), так и от отношений сигнал/шум по каждому сигналу.

Таким образом, в качестве достаточной статистики y в задаче различения используется разность между двумя корреляционными интегралами.

Если сигналы s1(t) и s2(t) имеют одинаковые энергии, то порог . Если к тому же вероятности гипотез Р(Н1) = Р(Н2) = 0,5, то h = 0.

Возможны различные варианты реализации оптимального алгоритма различения двух детерминированных сигналов: с использованием корреляционных приемников (рис.9.1) и на основе согласованных фильтров (рис.9.2). При построении схем, приведенных на рисунках, достаточная статистика y (9.9) представлялась в виде разности интегралов

Разность величин y1 и y2 на выходах интеграторов сравнивается с порогом h. Импульсные характеристики согласованных фильтров (СФ1 и СФ2) на рис. 9.2 определяются соотношением

Рис. 9.1

Рис. 9.2

Возможна реализация различителя на основе одноканальной схемы. В этом случае генератор опорного сигнала (ГОС) формирует разностный сигнал (s1(t) - s2(t)), а СФ имеет импульсную характеристику  Схемы различителей одноканального типа приведены на рис.9.3 и 9.4.

 

Рис. 9.3

Рис. 9.4

 


Дата добавления: 2018-08-06; просмотров: 269; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!