Энергетическая природа человека



Энергетика живых систем

Фундаментальными работами И.Р.Пригожина установлено, что вся термодинамика делится на три большие области: равновесную, в которой производство энтропии, потоки и силы равны нулю, слабо неравновесную, в которой термодинамические силы «слабы», и энергетические потоки линейно зависят от сил, и сильно неравновесную, или нелинейную, где энергетические потоки нелинейны, а все термодинамические процессы носят необратимый характер. Основная задача неравновесной термодинамики – количественное изучение неравновесных процессов, в частности определение их скоростей в зависимости от внешних условий. В неравновесной термодинамике системы, в которых протекают неравновесные процессы, рассматриваются как непрерывные среды, а их параметры состояния – как полевые переменные, то есть непрерывные функции координат и времени.

Слабо неравновесная (линейная) термодинамика рассматривает термодинамические процессы, происходящие в системах в состояниях, близких к равновесию. Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящихся к минимальному уровню активности. Первые работы в этой области принадлежат Ларсу Онсагеру, который в 1931 году впервые открыл общие соотношения неравновесной термодинамики в линейной, слабо неравновесной области – «соотношения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воздействует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла).

Таким образом, в слабо неравновесной области практически действуют законы равновесной термодинамики, система ни к чему не стремится и ее поведение в большинстве случаев вполне предсказуемо.

Сильно неравновесная термодинамика рассматривает процессы, происходящие в системах, состояние которых далеко от равновесия.

Когда термодинамические силы, действуя на систему, становятся достаточно большими и выводят ее из линейной области в нелинейную, устойчивость состояния системы и ее независимость от флуктуации значительно уменьшается.

В таких состояниях определенные флуктуации усиливают свое воздействие над системой, вынуждая ее при достижении точки бифуркации – потери устойчивости, эволюционировать к новому состоянию, который может быть качественно отличным от исходного. Происходит самоорганизация системы. Причем считается, что развитие таких систем протекает путем образования нарастающей упорядоченности. На этой основе и возникло представление о самоорганизации материальных систем.

Все материальные системы, от самых малых до самых больших, считаются открытыми, обменивающимися энергией и веществом с окружающей средой и находящимися, как правило, в состоянии, далеком от термодинамического равновесия.

Сущность жизнедеятельности биологических систем вытекает из двух законов термодинамики биологических систем.

Первый закон термодинамики биологических систем устанавливает факт того, что живые организмы могут находиться только в устойчивом неравновесном термодинамическом состоянии. Он формулируется следующим образом:

Живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии при существующих внешних условиях.

Здесь следует указать, что неживая материя, в силу законов открытых термодинамических систем, всегда находится в неустойчивом неравновесном термодинамическом состоянии.

Второй закон термодинамики биологических систем устанавливает, каким образом биологическими системами обеспечивается устойчивость неравновесного термодинамического состояния со следующей формулировкой:

Устойчивость неравновесного термодинамического состояния биологических систем обеспечивается непрерывным чередованием фаз потребления и выделения энергии посредством управляемых реакций синтеза и расщепления АТФ соответственно.

Аденозинтрифосфат (АТФ) – нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

Из этих законов следует, что сущностью жизнедеятельности биологических систем является обеспечение устойчивости их неравновесного термодинамического состояния, в результате чего выделяется необходимая им свободная энергия. Поэтому вся совокупность процессов метаболизма и работа многочисленных механизмов обратных связей на всех уровнях: целостных организмов, систем, органов и клеток, управляющих этими процессами, в конечном итоге, направлена именно на эту цель, то есть на максимальную продолжительность жизни. Потеря устойчивости неравновесного термодинамического состояния означает смерть.

Исходя из изложенного и на основании приведенных выше законов термодинамики биологических систем было сформулировано определение гомеостаза.

Гомеостаз – свойство живых организмов сохранять устойчивое неравновесное термодинамическое состояние при изменениях внешних условий.

Как следует из формулировки второго закона, в живом организме устойчивость неравновесного термодинамического состояния – его среднее значение (т.е. гомеостаз) обеспечивается непрерывными динамическими процессами – энергетическими колебаниями, вызываемыми последовательными реакциями синтеза и расщепления АТФ, управляемые системами обратных связей в зависимости от условий внешней среды.

Таким образом, природой гомеостаза являются энергетические колебания, направленные на обеспечение устойчивости неравновесного термодинамического состояния биологических систем.

На основании второго закона термодинамики биологических систем получены следующие следствия:

1. В живых организмах ни один процесс не может происходить непрерывно, а должен чередоваться с противоположно направленным: вдох с выдохом, труд с отдыхом, бодрстование со сном, биохимический синтез с расщеплением и т.д.

2. Состояние любого живого организма никогда не бывает статическим, а все его биологические параметры: концентрация веществ в клетках, различные биохимические реакции, пульс, артериальное давление, температура, состав крови, физиологические реакции, функции нервной деятельности и другие всегда находятся в состоянии непрерывных колебаний относительно некоторых средних значений.

Применение второго закона позволяет объяснить природу биологических ритмов и ряд других физиологических процессов, происходящих в живых организмах, которые до настоящего времени объяснения не нашли. В частности, он позволяет раскрыть проблему биологических часов, некоторые вопросы фенотипической адаптации и другие.

Запасы энергии в организме

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой.

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Всю необходимую для жизнедеятельности энергию человек получает вместе с пищей. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

· Углеводы – 4ккал (17кДж) на 1г

· Белки (протеин) – 4ккал (17кДж) на 1г

· Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Каким образом мы получаем энергию из пищи?

Обмен веществ и энергии (метаболизм) – совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэргических) соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из этих предшественников; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

АТФ клетки – разменная валюта. Для энергетического обмена клетки очень важны так называемые сопряженные химические реакции. В каждой такой реакции связываются воедино два различных процесса: один, сопровождающийся выделением энергии, и другой, требующий ее затрат. В результате оказывается, что первый (энергодающий) процесс становится движущей силой для второго процесса, потребляющего энергию.

В начале 40-х годов известный биохимик Ф. Липман высказал гипотезу, что различные реакции освобождения энергии в клетке всегда сопряжены с одной и той же реакцией, а именно синтезом АТФ из ее предшественников – аденозиндифосфорной кислоты (АДФ) и неорганической ортофосфорной кислоты (Н3РО4). С другой стороны, реакции расщепления (гидролиза) АТФ до АДФ и Н3РО4 сопряжены, по Липману, с совершением различных типов полезной работы. Другими словами, образование АТФ служит универсальным накопителем энергии, а расщепление АТФ – универсальным поставщиком энергий.

Было установлено, что внутриклеточное дыхание, то есть окисление водорода карбоновых кислот кислородом, сопряжено с синтезом АТФ. Образование АТФ было показано также при гликолизе (расщепление углеводов до молочной кислоты в отсутствие кислорода), В 50-е годы американский биохимик Д. Арнон продемонстрировал синтез АТФ у растений за счет энергии света.

В то же время были описаны многочисленные случаи энергообеспечения работы клетки за счет гидролиза АТФ. Выяснилось, что синтез белков, жиров, углеводов, нуклеиновых кислот из соответствующих мономеров «оплачивается» энергией АТФ. Было обнаружено расщепление АТФ сократительным мышечным белком. Это открытие позволило понять, каким образом обеспечивается энергией работа мышцы. К настоящему времени несомненна причастность АТФ также и ко многим другим процессам, потребляющим энергию.

Итак, клетка использует энергетические ресурсы, чтобы получить АТФ, а затем тратит этот АТФ, чтобы оплатить различные виды работы.

Где и как образуется АТФ?

Первой системой, для которой выяснили механизм образования АТФ, оказался гликолиз – вспомогательный тип энергообеспечения, включающийся в условиях нехватки кислорода. При гликолизе молекула глюкозы расщепляется пополам и полученные обломки окисляются до молочной кислоты.

Такое окисление сопряжено с присоединением фосфорной кислоты к каждому из фрагментов молекулы глюкозы, то есть с их фосфорилированием. Последующий перенос фосфатных остатков с фрагментов глюкзы на АДФ дает АТФ.

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ состоит из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Как расходуется энергия во время физической нагрузки?

Начало физической нагрузки. В самом начале физической нагрузки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период физической нагрузки. В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период физической нагрузки. Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой, которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли. С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.


Дата добавления: 2018-08-06; просмотров: 123; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!