Классификация электрической дуговой сварки.



Nbsp;

ГБПОУ СПО РБ

Белебеевский колледж механизации и электрификации.

 

 

Письменная экзаменационная работа

На тему: «Технология ручной дуговой сварки»

 

                                                 Разработал:

          Учащийся 24 группы ГЭС

Дмитриев Александр

Руководитель:

Преподаватель спец дисциплин

Миниахметов У.Т

 

 

г. Белебей

2017-2018 учебный год

СОДЕРЖАНИЕ

1. Введение-------------------------------------------------------------------------------------3

2. Классификация электрической дуговой сварки-----------------------------------4-6

3. Режимы ручной дуговой сварки-----------------------------------------------------7-12

4. Техника ручной дуговой сварки---------------------------------------------------13-24                

5. Техника сварки полуавтоматом------------------------------------------------------25

6. Схема дуговой сварки----------------------------------------------------------------26-29

7. Плюсы и минусы дуговой сварки----------------------------------------------------30

8. Техника безопасности при ручной дуговой сварке----------------------------31-32

9. Список использованной литературы------------------------------------------------33

 

 

 

Введение

Сваркой называется процесс получения неразъёмных соединений посредством установления межатомных связей между соединяемыми частям, при их нагревании и расплавлении или пластическом деформировании.

Сварка позволила внести коренные изменения в технологии производства, создать принципиально новые конструкции машин. Например, применение сварных конструкций вместо клёпанных в строительстве позволило сэкономить около 20% металла, снизить на 5 - 30% трудоёмкость изготовления конструкции.

Основным видом сварки является дуговая сварка. Основоположниками сварки являются русские учёные и инженеры - В.В.Петров (1761-1834), Н.Н.Бенардос (1842-1905) и Н.Г.Славянов (1854-1897).

При дуговой сварки для нагрева и расплавления используют электрическую дугу, которую открыл в 1802 г. профессор физики Санкт-Петербургской медико-хирургической академии В.В.Петров и указал на возможность её применения для освещения и плавления металлов. В 1882 г. русский изобретатель Н.Н.Бенардос применил электрическую дугу для плавления и сварки металла неплавящимся угольным электродом с дополнительной присадочной проволокой. В 1888 г. инженер-изобретатель Н.Г.Славянов разработал и применил способ дуговой сварки металлическим электродом, при котором не требовалось металлического прутка, так как плавящийся электрод, включенный в сварочную цепь, подводил ток к дуге и, расплавляясь, заполнял зазор между соединяемыми частями как присадочный металл. Расплавленной дугой жидкий металл детали, электрода или присадочного прутка легко смешивается, образуя общую ванночку. При её охлаждении металл затвердевает и укрепляется его межатомные связи.

Несмотря на большие масштабы использования в промышленности различных видов механизированной сварки, объём применения ручной дуговой сварки сегодня не только не снижается, но и возрастает, что связано с созданием новых материалов и нового оборудования для ручной дуговой сварки.

Создаются новые марки электродов для сварки металлических конструкций, изготавливаемых из самых различных марок стали; высокопроизводительные электроды с железным порошком в покрытии; специальные марки электродов, позволяющих выполнить сварку в различных пространственных положениях, включая сварку сверху вниз и сварку наклонным электродом.

Большое внимание уделяется разработке и созданию нового сварочного оборудования, включая источники питания сварочной дуги, оснастку и другие.

На современном этапе развития сварочного производства в связи с развитием научно-технической революции резко возрос диапазон сварочных толщин, материалов, видов сварки. В настоящее время сваривают материалы толщиной от нескольких микрон (в микроэлектронике) до нескольких метров (в тяжелом машиностроении). Наряду с традиционные конструкционными сталями сваривают специальные стали и сплавы на основе титана, циркония, молибдена, ниобия и других материалов, а также разнородные материалы.

Дуговая сварка занимает ведущее место в сварочном производстве. Повышенное качество и производительность при изготовлении сварных конструкций можно достичь как путём совершенствования и разработки новых технологических процессов ручной дуговой сварки, так и в результате роста уровня механизации и автоматизации сварочных работ. Важнейшая роль в этом принадлежит разработке и освоению в производстве оборудования, отвечающего современным требованиям.

Классификация электрической дуговой сварки.

Все существующие способы сварки, как уже упоминалось выше, можно разделить на две основные группы:

сварку давлением (контактная, газопрессовая, трением, холодная, ультразвуком) и сварку плавлением (газовая, термитная, электродуговая, электрошлаковая, электронно-лучевая, лазерная).

Самое широкое распространение получили различные способы электрической сварки плавлением, а ведущее место занимает дуговая сварка, при которой источником теплоты служит электрическая дуга.

Электрическую сварку плавлением в зависимости от характера источников нагрева и расплавления свариваемых кромок можно разделить на следующие основные виды сварки, схема

1. электрическая дуговая, где источником тепла является электрическая дуга;

2. электрошлаковая, где основным источником теплоты является расплавленный шлак, через который протекает электрический ток;

3. электронно-лучевая, при которой нагрев и расплавление кромок соединяемых деталей производят направленным потоком электронов, излучаемых раскалённым катодом;

4. лазерная, при которой нагрев и расплавление кромок соединяемых деталей производят направленным сфокусированным мощным световым лучом микрочастиц-фотонов.

При электрической дуговой сварке основная часть теплоты, необходимая для нагрева и плавления металла, получается за счет дугового разряда, возникающего между свариваемым металлом и электродом. Под действием теплоты дуги кромки свариваемых деталей и торец плавящегося электрода расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания дугового разряда, получается от источников питания дуги постоянного или переменного тока. Классификация дуговой сварки производится в зависимости от степени механизации процесса сварки, рода тока и полярности, типа дуги, свойств электрода, вида защиты зоны сварки от атмосферного воздуха и др.

По степени механизации различают сварку ручную, полуавтоматическую и автоматическую. Отнесение процессов к тому или иному способу зависит от того, как выполняются зажигание и поддержание определенной длины дуги, манипуляция электродом для придания шву нужной формы, перемещение электрода по линии наложения шва и прекращения процесса сварки.

При ручной сварке указанные операции, необходимые для образования шва, выполняются рабочим-сварщиком вручную без применения механизмов.

При полуавтоматической сварке плавящимся электродом механизируются операции по подаче электродной проволоки в сварочную зону, а остальные операции процесса сварки осуществляются вручную.

При автоматической сварке под флюсом механизируются операции по возбуждению дуги, поддержанию определённой длины дуги, перемещению дуги по линии наложения шва. Автоматическая сварка плавящимся электродом ведётся сварочной проволокой диаметром 1-6 мм; при этом режим сварки (ток, напряжение, скорость перемещения дуги и др.) более стабилен, что обеспечивает однородность качества шва по его длине, в то же время требуется большая точность в подготовке и сборке деталей под сварку.

По роду тока различают дуги, питаемые постоянным током прямой (минус на электроде) или обратной (плюс на электроде) полярности или переменным током. В зависимости от способов сварки применяют ту или иную полярность. Сварка под флюсом и в среде защитных газов обычно производится на обратной полярности.

По типу дугиразличают дугу прямого действия (зависимую дугу) и дугу косвенного действия (независимую дугу). В первом случае дуга горит между электродом и основным металлом, который также является частью сварочной цепи, и для сварки используется теплота, выделяемая в столбе дуги и на электродах; во втором - дуга горит между двумя электродами. Основной металл не является частью сварочной цепи и расплавляется преимущественно за счёт теплоотдачи от газов столба дуги. В этом случае питание дуги осуществляется обычно переменным током, но она имеет незначительное применение из-за малого коэффициента полезного действия дуги (отношение полезно используемой тепловой мощности дуги к полной тепловой мощности).

По свойствам электрода различают способы сварки плавящимся электродом и неплавящимся (угольным, графитовым и вольфрамовым). Сварка плавящимся электродом является самым распространённым способом сварки; при этом дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. Этот вид сварки можно производить одним или несколькими электродами. Если два электрода подсоединены к одному полюсу источника питания дуги, то такой метод называют двухэлектродной сваркой, а если больше - многоэлектродной сваркой пучком электродов. Если каждый из электродов получает независимое питание - сварку называют двухдуговой (многодуговой) сваркой. При дуговой сварке плавлением КПД дуги достигает 0,7-0,9.

По условиям наблюдения за процессом горения дуги различают открытую, закрытую и полуоткрытую дугу. При открытой дуге визуальное наблюдение за процессом горения дуги производится через специальные защитные стёкла - светофильтры. Открытая дуга применяется при многих способах сварки: при ручной сварке металлическим и угольным электродом и сварке в защитных газах. Закрытая дуга располагается полностью в расплавленном флюсе - шлаке, основном металле и под гранулированным флюсом, и она невидима. Полуоткрытая дуга характерна тем, что одна её часть находится в основном металле и расплавленном флюсе, а другая над ним. Наблюдение за процессом производится через светофильтры. Используется при автоматической сварке алюминия по флюсу.

По роду защиты зоны сварки от окружающего воздухаразличают следующие способы сварки: без защиты (голым электродом, электродом со стабилизирующим покрытием), со шлаковой защитой (толстопокрытыми электродами, под флюсом), шлакогазовой (толстопокрытыми электродами), газовой защитой (в среде газов) с комбинированной защитой (газовая среда и покрытие или флюс). Стабилизирующие покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу. Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки. Защитные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги, легировать и рафинировать металл шва.Наибольшее применение имеют средне - и толстопокрытые электроды, предназначенные для ручной дуговой сварки и наплавки, изготовляемые в специальных цехах или на заводах.Применяются также магнитные покрытия, которые наносятся на проволоку в процессе сварки за счёт электромагнитных сил, возникающих между находящейся под током электродной проволокой и ферромагнитным порошком, находящемся в бункере, через который проходит электродная проволока при полуавтоматической или автоматической сварке. Иногда это ещё сопровождается дополнительной подачей защитного газа.

 

 

Режимы ручной дуговой сварки

Чтобы надежно сварить детали какого-либо изделия, следует учесть целый комплекс условий, участвующих в процессе.

Чтобы выбрать самый подходящий режим сварки, надо точно установить физико-химический состав металла, который подвергается сварке, толщину и конфигурацию заготовок, конструкцию сварочного соединения.

Знание совокупности этих условий даст возможность правильно подобрать диаметр электрода и величину тока сварки.

Поскольку всех значимых факторов достаточно много, и они по-разному влияют на сам процесс, их разделили на основные и дополнительные параметры. Основные параметры включают следующие позиции:

· диаметр электрода;

· величина тока;

· род и полярность тока;

· длина дуги сварки;

· скорость электросварки;

· количество проходов.

Из этого перечня видно, что основные параметры режима сварочного процесса связаны с условиями и характером горения сварочной дуги. Дополнительные же параметры режима включают такие характеристики:

· длина электрода;

· наклон электрода;

· положение изделия при сварке;

· начальная температура свариваемого металла;

Рассмотрим некоторые наиболее важные из указанных позиций.

Выбор диаметра электрода. Диаметр электрода выбирают в зависимости от толщины свариваемого металла; марки свариваемого металла; формы разделки кромок и номера выполненного валика-шва; положения, в котором

выполняется сварка; вида соединения.

Диаметр электрода в зависимости от толщины свариваемого металла выбирают в основном при сварке в нижнем положении, хотя такой выбор не исключен при сварке в других пространственных положениях. При сварке металла в нижнем положении (если не учитывать форму разделки кромок) имеется следующая экспериментальная зависимость между толщиной свариваемого металла и диаметром электрода.

 

Электроды диаметром 2-3 мм при сварке металла толщиной от 4 мм и выше применяют при выполнении первого слоя - так называемого корневого шва.

Диаметр электрода при прочих равных условиях выбирают в зависимости от марки свариваемого металла. Для уменьшения тепловложения в основной (свариваемый) металл (для снижения возможности образования трещин), особенно при сварке закаливающихся сталей и чугуна, электрод берут диаметром 2-3 мм, что обеспечивает получение валика небольшого сечения.

Диаметр электрода выбирают также в зависимости от формы разделки кромок под сварку. Если разделки кромок нет, то диаметр электрода можно подбирать повыше приведенной зависимости. Если же имеется разделка кромок, то при наложении первого слоя, независимого от марки свариваемого металла, применяют электроды диаметром 2-3 мм и редко 4 мм. Применение электродов больших диаметров (свыше4 мм), как правило, приводит к непровару, зашлаковыванию и образованию ряда других дефектов. Последующие слои выполняют электродами диаметром 4 мм, а если толщина металла свыше 12 мм и сварку выполняют в нижнем положении, то могут быть применены электроды диаметром 5 мм. Декоративный слой при сварке металла толщиной более 12 мм в нижнем положении можно выполнить электродами диаметром 5 мм и более. При выполнении швов в вертикальном и других пространственных положениях первый слой накладывают электродами диаметром 2-3 мм и редко 4 мм, а последующие слои, в том числе и декоративный слой, выполняются электродами диаметром 4 мм.

Диаметр электрода должен выбираться в зависимости от свариваемого соединения. При сварке стыкового соединения выбор диаметра электрода надо осуществлять как было сказано выше. При сварке тавровых, угловых и нахлесточных соединений существует такое правило выбора диаметра электрода:

для швов, выполняемых в несколько слоев, первый слой делают электродами диаметром 2, 3, 4 мм. Чем ответственнее конструкция, тем меньше диаметр применяемого электрода, что способствует получению хорошего провара в корне шва, уменьшает тепловложение в основной металл, а, следовательно, снижает сварочные напряжения и деформации;

для швов, выполняемых за один проход, применяют электроды диаметром 2, 3, 4 5 и 6 мм - в зависимости от толщины свариваемых листов.

Тип и марку электрода подбирают в зависимости от прочности, механических и эксплуатационных свойств сварного соединения.

Напряжение дуги. Напряжение на дуге изменяется пропорционально длине дуги. Выбор режима подразумевает правильный расчет длины сварочной дуги, которая также взаимосвязана с диаметром электрода. Под термином длины дуги понимают расстояние между кромкой свариваемого предмета и концом сварочного электрода. Данный параметр очень важен для качества сварочного соединения.

 

Наилучшего качества при сваривании металлических элементов можно добиться поддержанием равномерной дуговой длины на протяжении всей операции. Однако этого мало, надо еще определиться с оптимальным расстоянием. Считается, что для надежной сварки необходимо стабильно поддерживать короткую дугу, когда ее длина составляет не больше диаметра электрода. Как правило, такой режим работы присущ опытным сварщикам. Но и для них, и для новичков необходимо выдерживать следующую зависимость между электродным диаметром и длиной дуги:

1,5-2 мм – дуга 2,5 мм;

3 мм – дуга 3,5 мм;

3-4 мм – дуга 4 мм;

4 мм – дуга 4,5 мм;

4-5 мм – дуга 5 мм;

5 мм – дуга 5,5 мм;

6-8 мм – дуга 6,5 мм.

Скорость сварки. Выбор оптимальной скорости сварочного процесса находится в прямой зависимости от толщины металлической заготовки и толщины шва. А оптимальной она будет тогда, когда расплавленный металл электрода заполнит сварочную ванну таким образом, чтобы в месте ее сочленения с кромками металла свариваемого изделия образовался равномерный переход с возвышением без подрезов и наплывов.

В идеале необходимо придерживаться такой скорости движения, чтобы по своей ширине шов оказался в 1,5-2 раза больше диаметра электрода. При излишне медленном перемещении перед его движущимся наконечником будет накапливаться слишком много раскаленного металла. Он будет растекаться из ванны и мешать качественному провару стыка и образованию дефективного шва.

Если же слишком быстро проводить электрод вдоль стыка, рабочая зона не успеет в достаточной степени прогреться, это обязательно приведет к непроваренному соединению. После охлаждения такой шов может деформироваться и даже потрескаться.

 

Чтобы подобрать оптимальную скорость перемещения, рекомендуется ориентироваться на получение экспериментальным способом следующих параметров ванны: ширина – 9-15 мм, глубина – до 6 мм, длина – 10-30 мм.

Род и полярность тока. Род и полярность тока также влияют на форму и размеры шва. При сварке постоянным током обратной полярности глубина провара на 40 - 50% больше, чем при сварке постоянным током прямой полярности, что объясняется различным количеством теплоты, выделяющейся на аноде и катоде. Поэтому обратная полярность применяется при сварке тонкого металла с целью исключения прожога и при сварке высоколегированных сталей с целью исключения их перегрева. При сварке переменным током глубина провара на 15-20% меньше, чем при сварке постоянным током обратной полярности.

Род и полярность тока выбирают по типу электродного покрытия, марке свариваемого металла, толщине свариваемого металла.

Наклон электрода. Положение рабочего элемента сварочного аппарата относительно стыка свариваемых металлических деталей влияет на глубину и ширину сварочного шва. Обычно сварочные операции проводят, держа электрод в целом вертикально, наклоняя его по отношению к направлению проводки несколько вперед или немного назад.

Сварка проводится только углом вперед, если электрод держится сварщиком под углом, меньшим 90 °. Выбор такого способа ведет к тому, что глубина проплавления металлической заготовки в значительной степени уменьшается, а ширина шва возрастает. Это происходит из-за происходящего в данном случае вытеснения металла, расплавленного электродом, в переднюю часть сварочной ванны.

Если наклон электрода выбран большим, чем 90 °, то заготовки свариваются исключительно под углом, направленным назад. В этом случае, как нетрудно предположить, расплавленный металл убирается в хвостовую (заднюю) часть ванны. Данный режим сварки обеспечивает существенное увеличение проплавливаемой глубины с одновременным уменьшением ширины шва.

Длина (вылет) электрода.

Что касается длины (вылета) электрода, применяемого в работе, то от указанного фактора непосредственно зависит скорость и степень его нагревания. В частности, чем больше соответствующая длина рабочего элемента, тем в большей мере он нагревается и быстрее расплавляется.

Это ведет к уменьшению силы тока и уменьшению глубины провара. Например, если сварщик применяет в работе проволоку диаметром в 1-2,5 мм, то изменение вылета электрода на 6-8 мм может стать причиной плохо сформированного шва. Однако если будет использована проволока диаметром более 3 мм, то такие же показатели вылета практически никак не повлияют на характер шва.

 

Наклон изделия. В зависимости от расположения соединений на изделии или от наклона изделия ручная дуговая сварка может быть выполнена на горизонтальной плоскости, на подъем и спуск. Влияние наклона изделия и пространственного расположения соединений на изделии на форму шва примерно такое, что и влияние наклона электрода. При сварке на подъем расплавленный металл под действием собственного веса вытекает из-под дуги, в результате чего увеличиваются глубина проплавления и высота усиления, а ширина шва уменьшается. При сварке на спуск жидкий металл подтекает под дугу, что уменьшает глубину проплавления и увеличивает ширину шва.

Предварительный подогрев и последующую термическую обработку выполняют в случаях, когда металл склонен к образованию закалочных структур, например, закалочные структуры образуются в сварных соединениях при сварке средне- и высокоуглеродистых сталей, низколегированных, теплоустойчивых и высоколегированных сталей и т. д., и когда металл обладает значительной теплопроводностью и теплоемкостью (медь и др.).

Положение в пространстве, котором выполняется сварка. Ручную дуговую сварку практически можно выполнять во всех пространственных положениях: нижнем, в лодочку, полувертикальном, вертикальном, полугоризонтальном и горизонтальном, а также полупотолочном и потолочном. Возможность выполнения сварки в том или ином положении зависит прежде всего от марки свариваемого металла и типа покрытия электрода.

Выбор сварочного тока. Сварочный ток устанавливают в зависимости от диаметра применяемого электрода и пространственного положения, в котором выполняется сварка.

Для сварки в нижнем положении сварочный ток может быть определен по формуле Iсв = К×dЭ, где Iсв - сварочный ток, А; К - коэффициент пропорциональности, зависящий от диаметра и типа электрода, А/мм; dЭ - диаметр электрода, мм.

При сварке низкоуглеродистых сталей значения К следующие:

Диаметр электрода, (d3), мм . 1-2 3-4 5-6

Коэффициент пропорциональности, А/мм 25 - 30 30 - 45 45 - 60

При сварке в вертикальном положении сварочный ток выражается по формуле Iсв = 0,9 К×dЭ, где 0,9 - коэффициент, учитывающий снижение сварочного тока при сварке в вертикальном положении.

При сварке в потолочном положении сварочный ток равен Iсв = 0,8×К×dЭ, где 0,8 - коэффициент, учитывающий снижение сварочного тока при сварке в потолочном положении.

Таким образом, узнав особенности основных и дополнительных параметров сварочного режима, исполнитель сможет оптимально настроить свой аппарат для максимально эффективной, удобной и безопасной работы.

 


Дата добавления: 2018-08-06; просмотров: 1093; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!