Основные характеристики фотодиодов



- токовая чувствительность Si (А/лм или А/Вт) - определяет значение фототока, создаваемого единичным потоком излучения; Статическую интегральную токовую чувствительность при монохроматическом световом потоке или мощности излучения определяют отношением:

                (1)

или

(мА-Вт-1)  (2)

где IФ - фототок; Ф - световой поток, Р - мощность излучения.

При работе прибора в фотодиодном режиме удобно использовать понятие интегральной вольтовой чувствительности:

                                                   (3)

                                                       (4)

где DUВЫХ- изменение выходного напряжения; RН - сопротивление нагрузки.

- спектральная характеристика.Показывает распределение чувствительности материала к длине волны падающего на него излучения.На Рис.2 показаны типовые спектральные характеристики кремниевого (2) и германиевого (1) фотодиодов. Как видно из Рис.2, максимум чувствительности германиевых диодов сдвинут в сторону более длинных волн.

- постоянные времени нарастанияtН и спадаtСП фототока, они определяют предельные значения рабочей частоты модуляции светового потока, при которых еще не заметно уменьшение фото отклика. Эти параметры характеризуют инерционность приборов. Обычно tН<tСП.

- быстродействие - определяется граничной частотой fГР, соответствующей максимальной частоте модуляции светового потока, на которой статическая чувствительность уменьшается до уровня 0,707 от чувствительности на низкой частоте модуляции.

- номинальное рабочее напряжение UНОМ, темновой ток IТМ имаксимально допустимое обратное напряжение UMAX.

Фотодиоды - малоинерционные фотоприемники. Инерционность их зависит от временных характеристик процесса фотогенерации носителей, условий разделения электронно-дырочных пар, емкости р-n перехода, а также сопротивления нагрузки. В ряде случаев от фотоприбора требуется высокое быстродействие (несколько наносекунд и менее). Такие приборы необходимы в оптических линиях связи, системах воспроизведения звука с компакт-дисков и др. В подобных устройствах применяют фотодиоды структуры p-i-n (i - диэлектрик) и лавинные фотодиоды.

p – i – n фотодиоды. Структурная схема p-i-n фотодиода показана на Рис.3.а. На подложке с проводимостью n+ сформирован слаболегированный i- слойи слой с проводимостью р+ толщиной до 0,3 мкм. При подаче обратного смещения обедненным оказываетсявесь i- слой. В результате емкость перехода уменьшается, расширяется область поглощения падающего излучения и повышается чувствительность прибора. Поглощаемое излучение в структуре затухает по экспоненте (см. Рис.3) в зависимости от коэффициента поглощения и вызывает появление фото возбужденных носителей. Электрическое поле обедненного слоя (напряженность поля больше или равна 103 В/см) ускоряет их до скорости насыщения дрейфа (около 107 см/с). Эту область называют пространством дрейфа.

За пределами обедненногослоя движение носителей носит диффузионный характер с относительно низкой скоростью - примерно 104 см/с. Это обстоятельство ухудшает быстродействие. Для его повышения необходимо сконцентрировать поглощение излучения в обедненном слое. С этой целью слой р+делают очень тонким, а толщину слоя i - большей длины поглощения излучения (1/a). Длина поглощения для кремния на длине волны 0,8 мкм равна примерно 10...20 мкм и рабочее напряжение, при котором обедненный слой имеет требуемую ширину, не превышает 10...20 В.

Лавинные фотодиоды (ЛФД). ЛФД (см. Рис.3.б) работают при обратных напряжениях смещения достаточных для размножения носителей. По сравнению с p – i – n фотодиодами они обладают внутренним усилением и в силу этого имеют большую чувствительность при приеме более слабых сигналов. ЛФД изготавливаются на основе Ge, Si, соединений группы АIIIBV и других полупроводников. При выборе материала фотодиода определяющими параметрами являются квантовая эффективность в заданном спектральном диапазоне, быстродействие и шумы. Германиевые ЛФД обеспечивают высокую квантовую эффективность в спектральном диапазоне 1…1,6 мкм, а кремниевые – особенно эффективны на длинах волн 0,6…1 мкм. В лавинном фотодиоде излучение поглощается в обедненном слое. Для создания ударной ионизациифотовозбужденными носителями рядом с р-n переходом формируют область с высокой напряженностью электрического поля (более 105 В/см), в которой происходит лавинное умножение носителей. Коэффициент умножения М принапряжении смещенияблизком к напряжению пробоя, может достигать 1000. М- показывает во сколько раз увеличивается ток оптически генерируемых носителей. Для кремния эта зависимость представлена на Рис.4. Однако это значение зависит и от температуры. Температурный коэффициент изменения напряжения пробоя до 0,2%/°С. Проектируя цепь смещения лавинного фотодиода, необходимо предусмотреть меры, устраняющие влияние этого фактора.

На Рис.5.а, б схематически показана конструкция p-i-n и лавинного фотодиода соответственно. Где: 1. – просветляющее покрытие; 2. – металлические контакты; 3. – окись кремния SiO2; 4. – охранное кольцо; 5. – подложка.

Для уменьшения отражения света от поверхности диода ее покрывают пленкой 1. По периметру рабочей поверхности формируют защитное кольцо 2, позволяющее повышать напряжение пробоя. Оптимально выбранные размеры элементов прибора дают возможность получать весьма хорошие параметры. При напряжении 100...150 В быстродействие лавинного фотодиода оказывается равным примерно 0,3 нс.

На Рис.6 показана эквивалентная схема фотодиода, где R1 – последовательное сопротивление, моделирующее сопротивление базы, C – емкость p – n перехода, R2 – внутреннее сопротивление p – n перехода. Быстродействие ограничено временем пробега фотовозбужденных носителей и постоянной времениt=R1C(1+R1/R2).Время пробега носителей при скорости 107 см/с и ширине обедненного слоя 100 мкм примерно 1нс. При меньшей ширине обедненного слоя может быть достигнута граничная частота до нескольких гигагерц. Емкость диода - 1...2пФ (сумма паразитной емкости корпуса и емкости перехода). Если сопротивление нагрузки принять равным 50 0м, то постоянная времени t=0,05...0,1нс.

Темновой ток (протекающий через диод независимо от фототока) представляет собой сумму обратного тока и тока поверхностной утечки. Он вызывает дробовой шум. У кремниевых фотодиодов темновой ток мал (около 10-12 А), поэтому и уровень шума относительно невысок. Шумовые характеристики германиевых приборов заметно хуже.

Если мощность падающего излучения равна РО, то соответствующее число падающих фотонов будет РО/hn и фототок

                             (5)

где h -квантовыйвыход, e - заряд электрона, h - постоянная Планка, n - частота.

При этом квантовый выход определяется соотношением:

                      (6)

где R - коэффициент отражения потока от рабочей поверхности прибора; Lа - ширина области поглощения света; a - коэффициент поглощения

На Рис.7 представлена зависимость квантового выхода от длины волны излучения для германия и кремния. Границу чувствительности в области длинных волн определяет ширина запрещенной зоны материала, а падение чувствительности в области коротких волн - уменьшение длины поглощения вблизи поверхности и поверхностная рекомбинация фотовозбужденных носителей.

Конструкция и схема включения фотодиода показана на Рис.8.а, б где: а - конструкция, б - схема включения фотодиода. Пластина 1 из монокристалла германия с электропроводимостью n- типа закреплена с помощью кристаллодержателя 2 в коваровом корпусе 3. Эта пластинка является базой фоточувствительного элемента и располагается против окна, закрытого стеклянной собирающей линзой 10. Электронно-дырочный переход образован вплавлением в пластину германия капли индия 8 - сплавной переход. При сплавлении индия с германием в результате диффузии индия в прилегающей области германия образуется слой с электропроводимостью p- типа. Вывод 4 от индиевого электрода пропущен через коваровую трубку 5, закрепленную стеклянным изолятором 6 в ножке 7 корпуса. Другим электродом является корпус фотодиода, так как кристалл германия припаян к кристаллодержателю оловянным кольцом 9. Для защиты p-n перехода от воздействия окружающей среды корпус фотодиода герметизирован. Наибольшее распространение получили фотодиоды на основе германия и кремния. Так же используют полупроводниковые соединения элементов групп AII BV и AII BVI (GaAs, InAs, InSb, InP, CdS, CdTe, HgCdTe и др.) Фотодиоды применяются в качестве приемников лазерных лучей в звуковоспроизводящей аппаратуре.

Параметры фотодиодов.Фотодиоды, изготовленные на основе кремния, работают в интервале длин волн 0,5...1,1 мкм. Фотодиоды на основе германия работают в интервале длин волн 0,5...1,9 мкм.

Большинство фотодиодов выпускают в герметичных металлостеклянных корпусах. Фотодиод ФД-1 выпускают в металлокерамическом корпусе, фотодиод ФД-2 - в пластмассовом корпусе. Плюсовый вывод фотодиодов маркируют на корпусе знаком «+», точкой или цветной меткой на вводе. Для ввода оптического излучения на фоточувствительный элемент в корпусе фотодиода встраивают входные окна, линзы, световоды и другие оптические элементы. Без входного встроенного оптического элемента выпускается фотодиод ФД-20-ЗОК. Фотодиоды ФД20-32К и ФД-20-ЗОК имеют по два фоточувствительных элемента ФД-19К, ФД-20КП, ФД-22КП и ФД-20-ЗЗК-по четыре. Фотодиод ФД-246 имеет 64 фоточувствительных элемента. Фотодиод ФД-К-142 имеет координатно-чувствительный квадратный четырехэлементный оптический вход.

 


Дата добавления: 2018-05-31; просмотров: 966; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!