Вопрос. Детонационный синтез и электровзрыв.



Детонация взрывчатых веществ, т. е. энергия взрыва, достаточно широко используется для осуществления фазовых переходов в веществах и детонационного синтеза. Детонационный синтез как быстро протекающий процесс позволяет получать тонкодисперсные порошки в динамических условиях, когда важную роль приобретают кинетические процессы.

Впервые детонационный синтез алмаза был осуществлен путем ударно-волнового нагружения ромбоэдрического графита до 30 ГПа. Было показано, что полученный в этих условиях алмазный порошок содержит одиночные кристаллы размером не более 50 нм, а также скопления и плотно спаянные агломераты размером до 5 мкм и более, состоящие из отдельных кристаллов с размерами 1-4 и 10-160 нм.

Обычно для получения ультрадисперсных алмазных порошков используют смеси тринитротолуола и гексогена в соотношении по массе 50:50 или 60:40. Для этих смесей давление и температура в детонационной волне составляют p>15 ГПа и Т>3000 К. При "сухом" детонационном синтезе процесс проводят в специальных взрывных камерах, заполненных инертным или углекислым газом, который предотвращает окисление алмазных частиц и их превращение в графит. Образование частиц ультра дисперсного алмаза заканчивается за 0,2-0,5 мкc, что соответствует продолжительности зоны химической реакции для смесей тринитротолуол-гексоген. Заметим также, что в детонационном синтезе при весьма малом времени образования алмазных частиц скорость их роста на несколько порядков выше таковой для статических условий. После взрыва конденсированные продукты синтеза собирают и обрабатывают в горячих хлорной НСlO4 и минеральных кислотах под давлением для удаления сажи и других примесей, затем многократно промывают в воде и сушат. Выход алмазного порошка составляет 8—9 % от исходной массы взрывчатых веществ, которая в различных устройствах может меняться от десятков грамм до нескольких килограммов.

В промышленных условиях освоен конверсионный способ получения алмазного нанопорошка путем взрыва боеприпасов в специальных камерах; в результате развивающихся при взрыве высоких давлениях и температур происходит синтез алмаза из углеродсодержащих взрывчатых веществ, катализируемый частицами и парами металла из оболочек боеприпасов.

Характерной особенностью алмазных нанопорошков, получаемых детонационным синтезом, является чрезвычайно малая дисперсия размеров наночастиц: основная доля частиц имеет размер 4-5 нм.

Данным методом наночастицы получают в плазме, образованной в процессе взрыва бризантных взрывчатых веществ (ВВ) во взрывной камере (детонационной трубе).

В зависимости от мощности и типа взрывного устройства ударно-волновое взаимодействие на материал осуществляется за очень короткий промежуток времени (десятые доли микросекунд) при температуре более 3000 К и давлении в несколько десятков гектопаскалей. При таких условиях возможен фазовый переход в веществах с образованием упорядоченных диссипативных наноразмерных структур.

Ударно-волновой метод наиболее эффективен для материалов, синтез которых осуществляется при высоких давлениях, например, порошков алмаза, кубического нитрата бора и других.

При взрывном превращении конденсированных ВВ с отрицательным кислородным балансом (смесь тротила и гексогена) в продуктах реакции присутствует углерод, из которого и образуется алмазная дисперсная фаза с размером частиц порядка 4-5 нм.

Подвергая ударно-волновому воздействию от заряда ВВ пористые структуры различных металлов и их солей, гели гидрооксидов металлов, можно получать нанопорошки оксидов Al, Mg, Ti, Zn, Si и другие.

Достоинством метода ударно-волнового синтеза является возможность получения нанопорошков различных соединений не только обычных фаз, но и фаз высокого давления. Вместе с тем практическое применение способа требует специальных помещений и технологического оборудования для проведения взрывных работ.

Быстро развивающимся методом получения тонкодисперсных порошков является электрический взрыв проводника при прохождении по нему мощного импульса тока длительностью 10-5-10-7 с и плотностью 104-106 А/мм2. Для этой цели используется проволока диаметром 0,1-1,0 мм. Электрический взрыв проводника представляет собой резкое изменение физического состояния металла в результате интенсивного выделения энергии в нем при пропускании импульсного тока большой плотности. Электровзрыв сопровождается генерацией ударных волн и создает возможность быстрого нагрева металлов со скоростью более 107 К/с до высоких температур Т>104 К. Способность электрически взрываемых проводников резко изменять свои свойства и эффективно преобразовывать первичную электрическую или магнитную энергию накопителей в другие виды энергии (тепловую, энергию излучения образующейся плазмы, энергию ударных волн и др.) нашла применение для получения, в частности, тонкодисперсных порошков.

На начальной стадии электровзрываджоулев нагрев проводника сопровождается его линейным расширением с относительно небольшой скоростью 1-3 м/с. На стадии собственно взрыва в результате прохождения импульса тока металл перегревается выше температуры плавления, расширение вещества взрываемого проводника происходит со скоростью до 5*103 м/с и перегретый металл взрывообразно диспергирует. Давление и температура на фронте возникающей ударной волны достигают нескольких сотен мегапаскалей (тысяч атмосфер) и примерно 104 К соответственно. В результате конденсации в потоке быстрорасширяющегося пара образуются частицы очень малых размеров. Регулируя условия взрыва, можно получать порошки с размером частиц от 100 мкм до 50 нм. Средний размер частиц монотонно убывает с ростом плотности тока и сокращением длительности импульса. Электровзрыв в инертной атмосфере позволяет получать порошки металлов и сплавов, а при введении в реактор дополнительных реагентов (воздуха, смеси кислорода и инертного газа, азота, дистиллированной воды, декана С10Н22, парафина, технического масла) можно получать тонкодисперсные порошки оксидов, нитридов, карбидов или их смесей. Ультрадисперсные порошки, получаемые методом электрического взрыва проволоки, имеют очень большую избыточную энергию. Так, порошки алюминия со средним размером частиц 500-800 нм обладают избыточной энергией 100-200 кДж/моль, а порошки серебра со средним размером частиц приблизительно 120 нм имеют избыточную энергию 40-80 кДж/моль, что в несколько раз превышает теплоту плавления массивного вещества. Такой избыток энергии порошков не может быть обусловлен вкладом только поверхностной энергии. Такое запасание большой избыточной энергии тонкодисперсными порошками, полученными электровзрывом, объяснения не получило.

Частицы порошков металлов и сплавов,полученныхэлектровзрывом, являются сферическими, а частицы нитридных порошков имеют огранку.

 


Дата добавления: 2018-06-27; просмотров: 300; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!