По характеру проявления во времени



ЛЕКЦИЯ 1

ВВЕДЕНИЕ

 

Метрология, стандартизация и сертификация это деятельность основной целью которой является обеспечение качества товаров и услуг.

Качество совокупность характеристик объекта, относящихся к его способности удовлетворять установленные или предполагаемые потребности.

Можно выделить 10 групп показателей качества по характери­зуемым ими свойствам продукции:

1. Показатели назначения

В эту группу входят:

а) классификационные показатели

б) функциональные (эксплуатационные)

в) конструктивные

г)       показатели состава и структуры

2. Показатели надежности

Безотказность — свойство изделия сохранять работоспособ­ность в течение некоторого времени или наработки.

Долговечность -- свойство изделия сохранять работоспособ­ность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонта.

Ремонтопригодность — способность продукции подвергаться ремонту.

Сохраняемость — свойство изделий и продуктов сохранять исправное и пригодное к потреблению состояние в течение уста­новленного в технической документации срока хранения и транс­портирования, а также после него.

3. Эргономические показателихарактеризуют систему «человек -- изделие»

4. Эстетические показатели

5. Показатели технологичности

6. Показатели стандартизации и унификации

7. Патентно-правовые показатели

8. Экологические показатели

9. Показатели безопасности

10. Экономические показатели

 

 

ЛЕКЦИЯ 2

 

Метрология от греческого метро-мера, логос-учение, наука об измерениях, методах и средствах обеспечения единства и требуемой точности измерений.

Метрология как наука подразделяется на:

1) законодательную метрологию;

2) фундаментальную (научную) метрологию;

3) прикладную (практическую) метрологию.

Законодательная метрология — раздел метрологии, включающий общие правила регламентации и контроля со стороны государства, направленные на обеспечение единства измерений и единообразие средств измерений.

Фундаментальная метрология занимается общими рекомендательными вопросами теории измерений, разработкой новых методов измерений, созданием систем единиц измерений и физических постоянных.

Прикладная метрология изучает вопросы практического применения результатов разработок фундаментальной и законодательной метрологии в различных сферах деятельности.

единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности результатов не выходят за установленные границы с заданной вероятностью.

Главным законодательным актом, обеспечивающим единство измерений, является Закон РФ от 26.06.2008 №102 – ФЗ" Об обеспечении единства измерений"

На смену государственной системе обеспечения единства измерений пришла система государственного технического регулирования, основы которой установлены Законом «О техническом регулировании».

 

Виды измерений

1) По характеру зависимости измеряемой величины от времени

а)статические - имеют место, когда измеряемая величина практически постоянна (измерения размеров тела, постоянного давления);

б) динамические, связанные с величинами, которые в процессе измерений претерпевают те или иные изменения (измерения пульсирующих давлений, вибраций).

2) По способу получения результатов

а) Прямые измерения — измерения, при которых искомое значение физической величины находят непосредственно из опытных данных путем ее непосредственного сравнения с мерой. (измерение давления, температуры и др.).

б) Косвенные измерения — измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят через преобразование или через установленную формулу ( определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения).

в) Совокупные измерения — это производимые одновременно измерения нескольких одноименных величин, характеризующих Данный предмет или изделие, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин ( определение массы отдельных гирь набора (или прогнозирование погоды на основе замеров силы ветра, влажности воздуха, фронтов и т.п).

г) Совместные измерения — это производимые одновременно измерения двух или нескольких неоднородных физических величин для нахождения зависимостей между ними (измерение электрического сопротивления при определенных температурных параметрах и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах).

3) По условиям, определяющим точность результата

а) Измерения максимально возможнойточности

б) Контрольно-поверочные измерения

в) Технические измерения

 

4) По способу выражения результатов измерений

а) Абсолютными

б)Относительными

 

5) По характеру изменения измеряемой величины измерения

а) Статические

б) Постоянные

 

6) По количеству измерительной информации измерения

а) Однократные измерения

б) Многократные измерения

Основными характеристиками измерений являются:

- принцип измерений,

-метод измерений,

-погрешность,

-точность,

-правильность

- достоверность.

Принцип измерении— физическое явление или совокупность физических явлений, положенных в основу измерений (измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта).

Метод измерений — совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Различают методы непосредственной оценки и методы сравнения.

Метод сравнения с мерой имеет несколько разновидностей: нулевой метод, дифференциальный метод, метод замещения и метод совпадений.

Нулевой метод (или метод полного уравновешивания) — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и встречного воздействия меры на сравнивающее устройство сводят к нулю.

Например.Измерение массы на равноплечих весах, когда воздействие на весы массы mх полностью уравновешивается массой гирь m0 (рисунок 2).

Рисунок 2 – Метод полного уравновешивания

 

При дифференциальном методе полное уравновешивание не производят, а разность между измеряемой величиной и величиной, воспроизводимой мерой, отсчитывается по шкале прибора.

Например.Измерение массы на равноплечих весах, когда воздействие массы mх на весы частично уравновешивается массой гирь m0, а разность масс отсчитывается по шкале весов, градуированной в единицах массы (рисунок 3).

Рисунок 3 – Дифференциальный метод

 

В этом случае значение измеряемой величины mх = m0+ m, где mпоказания весов

Метод замещения — метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.

Например.Взвешивание на пружинных весах. Измерение производят в два приема. Вначале на чашу весов помещают взвешиваемую массу и отмечают положение указателя весов; затем массу mх замещают массой гирь m0, подбирая ее так, чтобы указатель весов установился точно в том же положении, что и в первом случае. При этом ясно, что mх = m0, (рисунок 4).

Рисунок 4 – Метод замещения

В методе совпадений разность между измеряемой величиной и величиной воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов.

Например.Измерение числа оборотов вала с помощью стробоскопа - вал периодически освещается вспышками света, и частоту вспышек подбирают так, чтобы метка, нанесенная на вал, казалась наблюдателю неподвижной. Метод совпадений, использующий совпадения основной и нониусной отметок шкал, реализуется в штангенприборах, применяемых для измерения линейных размеров.

Погрешность измерений— отклонение результата измерений от истинного значения измеряемой величины. Погрешность вызывается воздействием множества факторов, таких как: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия измерения (температура, влажность, давление и т.п.), индивидуальные особенности лица, выполняющего измерения, и др. Под влиянием этих факторов результат измерений будет отличаться от истинного значения измеряемой величины.

Точность измерений— качественная характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.

Правильность измерений— качество измерений, отражающее близость к нулю систематических погрешностей в их результатах (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Достоверностьхарактеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Поэтому такие вероятности следует рассматривать в качестве критериев достоверности контроля, чтобы в границах допуска правильно охарактеризовать параметры качества и безопасности.

Измерения как основной объект метрологии связаны в основном с физическими величинами

Физическая величина — одно из свойств физического объекта, явления, процесса, который является общим в качественном отношении для многих физических объектов, отличаясь при этом количественным значением.

Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины.

Различают основные и производные единицы.

Основные единицы физической величины выбираются произвольно, независимо от других единиц ( единица длины — метр, единица массы — килограмм, единица температуры — градус и т.д.)

Единицы, образованные с помощью формул, выражающих зависимость между физическими величинами, называют производными единицами. В этом случае единицы величин будут выражаться через единицы других величин. Например, единица скорости — метр в секунду (м/с), единица плотности — килограмм на метр в квадрате (кг/м2).

Разные единицы одной и той же величины отличаются друг от друга своим размером. Такие единицы называют кратными (например, километр — 103 м, киловатт— 103 Вт) или дельными (например, миллиметр —l 10-3 м, миллисекунда — 10-3 с). Такие единицы получают умножением или делением независимой или производной единицы на целое число, обычно на 10.

Совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами, составляет систему единиц физических величии.

 

Международная система единиц состоит из семи основных единиц, двух дополнительных единиц и необходимого числа производных единиц. К основным относятся:

- единица длины — метр

- единица массы — килограмм — масса, кг

- единица времени — секунда 

- единица силы электрического тока — ампер

- единица термодинамической температуры — кельвин

- единица количества вещества — моль

- единица силы света — кандела

Дополнительными единицами являются:

Единица плоского угла — радиан и единица телесного угла — стерадиан используются для образования производных единиц, связанных с угловыми величинами (например, угловая скорость, световой поток и др.).

 

ЛЕКЦИЯ 3

ШКАЛЫ ИЗМЕРЕНИЙ

 

Шкала наименований – это качественная, а не количественная шкала, она не содержит нуля и единиц измерений (напр., шкала цветов).

Шкала порядка – характеризует значение измеряемой величины в баллах (напр., шкала землетрясений; силы ветра и др.).

Шкала интервалов – имеет условное нулевое значение, а интервалы устанавливают по согласованию (напр., шкала времени, шкала длины).

Шкала отношений – имеет естественное нулевое значение, а единица измерений устанавливается по согласованию, в зависимости от требования точности измерения (напр., шкала веса).

СРЕДСТВА ИЗМЕРЕНИЙ

Средство измерений (СИ) представляет собой техническое устройство, предназначенное для измерений и имеющее нормированные метрологические характеристики.

Средство измерений представляют собой конструктивно законченные изделия, предназначенные для измерений и осуществляющие одну из двух основных функций:

1) воспроизведение физической величины заданного размера;

2) преобразование измерительного сигнала одного вида в другой.

Виды средств измерений

К средствам измерений относятся: меры, измерительные приборы, измерительные преобразователи, измерительные установки и измерительные системы.

Мера - это средство измерения, предназначенное для воспроизведения физической величины заданного размера.

Стандартный образец- средство измерений в виде вещества (материала), состав и свойства которого установлены при метрологической аттестации. В последние годы стандартные образцы нашли широкое применение в метрологической деятельности и в практике измерений.

Измерительный прибор - средство измерения, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Измерительный преобразователь- средство измерения, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения. В отличие от измерительного прибора сигнал на выходе измерительного преобразователя не может восприниматься наблюдателем

Измерительная установка - совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.

Измерительная система - совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связей, предназначенных для выработки сигналов измерительной информации в форме, удобной для автоматической обработки передачи и (или) использования в автоматических системах управления.

По метрологическому назначению средства измерений подразделяют на два вида:

1) Эталоны– предназначены для воспроизведения, хранения и передачи размеров единиц рабочим средствам измерений.

2) Рабочее средство измерений – предназначено для получения результатов измерений при решении различных производственных задач.

Эталон – это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи ее размера другим средствам измерений.

Эталоны классифицируют на первичные, вторичные и рабочие:

Первичный эталон – это эталон, воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне научно-технических достижений. Первый эталон может быть национальным и международным.

Вторичный эталон – (эталон-копия) могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами.

Рабочие эталоны – воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера рабочим средствам измерений.

Государственный эталон величины

Рабочий эталон 1 – го разряда

              Рабочий эталон 2 – го разряда

                               Рабочий эталон 3 – го разряда

 


Рисунок 5 – Система передачи размера единицы величины

 

Поверка средств измерений - совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

Калибровка средств измерений - совокупность операций, выполняемых с целью определения и подтверждения действительных значений характеристик и (или) пригодности к применению средств измерений, не подлежащих государственному метрологическому контролю и надзору.

Поверочная схема - утвержденный в установленном порядке документ, устанавливающий средства, методы и точность передачи размеров единиц от государственного эталона рабочим средствам измерений.

Результатом поверки является:

– подтверждение пригодности СИ к применению. В этом случае на него и техническую документацию наносится оттиск поверительного клейма и выдается «Свидетельство о поверке». Поверительное клеймо – знак установленной формы, наносимый на СИ, признанные в результате их поверки годными к применению.

– признание СИ непригодным к использованию. В этом случае оттиск поверительного клейма и «Свидетельство и поверке» аннулируются, и выписывается «Свидетельство о непригодности».

Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками

По метрологическим характеристикам средств измерений решается ряд задач, важных для обеспечения единства измерений:

-определение погрешности результата измерений (одной из составляющих погрешности измерений является погрешность средств измерений),

-выбор средств измерений по точности по известным условиям их применения и требуемой точности измерений (эта задача является обратной по отношению к задаче определения погрешности измерений);

-сравнение средств измерений различных типов с учетом условий их применения;

-замена одного средства измерений на другое - аналогичное;

оценка погрешности сложных измерительных систем и др.

Все метрологические свойства средств измерений можно разделить на две группы:

- Свойства, определяющие область применения средств измерений;

- Свойства, определяющие качество измерения.

Метрологические характеристики, определяющие свойства первой группы:

1 диапазон измерений – область значений величины, в пределах которых нормированы допускаемые пределы погрешности. (Значения величин ограничивающих. диапазон называется нижним и верхним пределом измерений).

2 порог чувствительности – наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например: если порог чувствительности весов 10г., то заметное перемещение стрелки произойдет при изменении массы на 10г.

Метрологические характеристики, определяющие свойства второй группы: точность, достоверность, правильность.

Метрологические характеристики, устанавливаемые Нормативными Документами, называют нормируемыми метрологическими характеристиками.

В повседневной производственной практике широко пользуются обобщенной характеристикой:

Класс точности средств измеренийобобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность.

Выбор измерительных средств

1) Измерительные средства выбираются с учетом формы конструктивного элемента (внут. диам. или паруж.).

2) Учитывается необходимость соблюдения требуемой точности измерения: допускаемая погрешность измерения конструктивного элемента должна быть больше погрешности инструмента.

[x]изм.>хинстр.

Факторы, влияющие на результат измерения (влияющие факторы):

– объект измерения;

– субъект измерения;

– метод измерения;

– средство измерения;

– условия измерения.

 

ЛЕКЦИЯ 4

Погрешность

Количественной характеристикой качества измерений является погрешность измерения, определяемая как разность между измеренным хизм и истинным хист значениями измеряемой величины:

 

Δх = хизм – хист,        (1)

 

где Δх – погрешность измерения.

На практике хист заменяется на действительное значение величины хд, и погрешность рассчитывается по формуле:

 

Δх = хизм – хд,            (2)

 

Погрешность, выраженная в соответствии с формулами (1) и (2), называется абсолютной погрешностью. Используется также понятие относительной погрешности – погрешности, выраженной в долях измеряемой величины. Относительные погрешности выражают принятыми в системе СИ относительными величинами: безразмерным числом, в процентах и др.

 

δ = Δх/хд

 

Классификация погрешностей

В метрологии принята следующая классификация.

По характеру проявления во времени

– систематические составляющие погрешности;

– случайные составляющие погрешности.

Систематической погрешностью измерения называется погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остается постоянной или закономерно изменяется.

Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом по знаку и (или) величине.

2 По источнику возникновения различают:

–  инструментальные;

–  методические;

–  личные погрешности.

3 По условиям возникновения у средств измерения различают:

– основную;

– дополнительные погрешности.

Основной называется погрешность СИ, определяемая в нормальных условиях его применения.

Дополнительной называется погрешность СИ, возникающая вследствие отклонения какой-либо из влияющих величин от нормального ее значения.

Однократное измерение – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин.

Многократное измерение – обычно минимальное число измерений в данном случае больше трех. Преимущество – в значительном снижении влияний случайных факторов на погрешность измерения

Основной постулат метрологии: Отсчет является случайным числом!

При многократном измерении одной и той же величины ошибки проявляются в том, что результаты отдельных измерений заметно отличаются от остальных. Если отличие велико, ошибочный результат необходимо отбросить. При этом руководствуются «правилом трех сигм»:

Правило:

Если при многократном измерении сомнительный результат отдельного измерения от среднего больше чем на 3s то с вероятностью 0,99 он является ошибочным. s - среднее квадратичное отклонение значения измеряемой величины от среднего значения.

Правила обработки результатов измерения с многократными наблюдениями учитывают следующие факторы:

1. обрабатывается ограниченная группа из n наблюдений;

2. результаты наблюдений хi могут содержать систематическую погрешность;

3. в группе наблюдений могут встречаться грубые погрешности;

4. распределение случайных погрешностей может отличаться от нормального.

 

 

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

 

Под метрологическим обеспечением понимается установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

Объектом МО являются все стадии жизненного цикла изделия – продукции или услуги.

Под жизненным циклом понимается совокупность последовательных взаимосвязанных процессов создания и изменения состояния продукции от формулирования исходных требований к ней до окончания эксплуатации или потребления.

 

ЛЕКЦИЯ 5


Дата добавления: 2018-06-27; просмотров: 224; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!