TRUNKS AND AMOUNT OF E1 TRUNKS REQUIRED TO HANDLE THE LOADS FOR HTE-31/32



 

Quantity of E1 trunks depends on the amount of channels necessary to carry payload whiting a connection direction.

Quantity of channels between telephone exchange depends on traffic intensity, operation mode and calls loss rate.

For trunks between digital exchanges we’ll use first Erlang formula, which determines:

 

                                                               ν= f(Y; p)                                                  (3.1)

where ν - represents amount of necessary channels;

Y - denotes traffic intensity;

p – denotes call losses rate.

Call losses rate for calculation we will use:

1. Between HTE, RSwM, PE p=0,005.

2. For trunks towards toll exchange p=0,001.

3. For SSC p=0,001.

Let’s calculate quantity of channels required to handle the loads for HTE-31/32: In course project we need to calculate quantity of channels for all directions for HTE-31/32.

YHTE31/32−HTE51/52 = Y31/32−51/52 + Y51/52−31/32 + YRSwM1−51/52 + Y51/52−RSwM1 +

YRSwM2−51/52 + Y51/52−RSwM2 = 45,67 + 55,22 + 8,43 + 7,64 + 10,86 + 11,32 = 139,14 E; νHTE31/32−HTE51/52 = f(139,14; 0,005) = 163;

YHTE31/32−HTE41/42 = Y31/32−41/42 + Y41/42−31/32 + YRSwM1−41/42 + Y41/42−RSwM1 +YRSwM2−41/42 + Y41/42−RSwM2 + Y31/32−SAN1 + YSAN1−31/32 + Y31/32− SAN2 + YSAN2−31/32 +YRSwM1−SAN1 + YSAN1−RSwM1 + YRSwM1−SAN2 + YSAN2−RSwM1 + YRSwM2−SAN1 + YSAN1−RSwM2 + YRSwM2−SAN2 + YSAN2−RSwM2 = 28,59 + 35,26 + 9,46 + 9,25 + 14,03 + 15,77 + 33,86 +62,64 + 28,69 + 55,37 + 9,38 + 13,75 + 10,74 + 16,42+ 20,41 + 21,9 + 13,11 + 23,05 = 421,68 E; νHTE31/32−HTE41/42 = f(421,68; 0,005) = 457;

YHTE31/32−RSwM−1 = YRSwM1−RSwM2 + YRSwM2−RSwM1 + YRSwM1−41/42 + Y41/42−RSwM1 + YRSwM1−51/52 + Y51/52−RSwM1 + YRSwM1−31/32 + Y31/32−RSwM1 + YRSwM1−SAN1 + YSAN1−RSwM1 +YRSwM1−SAN2 + YSAN2−RSwM1 + YRSwM1−TEto+ssp+ti + YRSwM1−SSC = 23,47 + 20,41 + 9,46 + 9,25 +8,43 + 7,64 + 43,1 + 34,15+ 9,38 + 13,75 + 10,74 + 16,42 + 46,08 + 4,873 = 257,353 E;

νHTE31/32−RSwM−1 = f(257,353; 0,005) = 287;

YHTE31/32−RSwM−2 = YRSwM2−RSwM1 + YRSwM1−RSwM2 + YRSwM2−41/42 + Y41/42−RSwM2 + YRSwM2−51/52 + Y51/52−RSwM2 + YRSwM2−31/32 + Y31/32−RSwM2 + YRSwM2−SAN1 + YSAN1−RSwM2 +YRSwM2−SAN2 + YSAN2−RSwM2 + YRSwM2−TEto+ssp+ti + YRSwM2−SSC = 20,41 + 23,47+ 14,03 + 15,77 +10,86 + 11,32 + 63,91 + 58,25 + 12,99 + 21,9 + 13,11 + 23,05 + 61,44 + 6,497 = 557,007 E;

νHTE31/32−RSwM−2 = f(557,007; 0,005) = 595;

YHTE31/32−RSubM−1 = YloRSubM1 + YliRSubM1 + Yto+sspRSubM1 + YtiRSubM1 + YsscRSubM1 =25,262E; νHTE31/32−RSubM−1 = f(25,262; 0,005) = 38;

YHTE31/32−RSubM−2 = YloRSubM2 + YliRSubM2 + Yto+sspRSubM2 + YtiRSubM2 + YsscRSubM2 =25,262 E; νHTE31/32−RSubM−2 = f(25,262; 0,005) = 38;

YHTE31/32−RSubM−3 = YloRSubM3 + YliRSubM3 + Yto+sspRSubM3 + YtiRSubM3 + YsscRSubM3 =12,631 E; νHTE31/32−RSubM−3 = f(12,631; 0,005) = 22;

YHTE31/32−TE = ∑ Yti(31/32;RSwM1;RSwM2;RSubM1;RSubM2;RSubM3) +

∑ Yto+ssp(31/32;RSwM1;RSwM2;RSubM1;RSubM2;RSubM3) = 86,494 + 17,592 + 23,456 + 1,466 + 1,466 +0,733 + 139,616 + 28,396 + 37,862 + 2,366 + 2,366 + 1,183 = 342,996 E; νHTE31/32−TE = f(342,996; 0,001) = 390;

YHTE31/32−SSC = ∑ Yssc(31/32;RSwM1;RSwM2;RSubM1;RSubM2;RSubM3) = 23,959 + 4,873 + 6,497 +0,406 + 0,406 + 0,203 = 36,344 E;

νHTE31/32−SSC = f(36,344; 0,001) = 55;

After calculation of quantity of channels we need to find quantity of E1 trunks.

 

                                                              NE1 = ν/30                                                 (3.2)

 

Let’s calculate the amount of necessary E1 trunks required to handle the loads for HTE-31/32 by formula (3.2):

NE1HTE31/32−HTE51/52 =  = 6 E1 trunks;

NE1HTE31/32−HTE41/42 =  = 16 E1 trunks;

NE1HTE31/32−RSwM−1 =  = 10 E1 trunks;

NE1HTE31/32−RSwM−2 = = 20 E1 trunks;

NE1HTE31/32−RSubM−1 = = 2 E1 trunks;

NE1HTE31/32−RSubM−2 = = 2 E1 trunks;

NE1HTE31/32−RSubM−3 =  = 1 E1 trunks;

NE1HTE31/32−TE = = 13 E1 trunks;

NE1HTE31/32−SSC =  = 2 E1 trunks.

        

 


 

BLOCK DIAGRAM OF PROJECTED NGN NETWORK FOR UTN

 

For connection new analogue and ADSL subscribers we will use ipBAN modules. IP ban can include 20 boards (1 board is used for system performance that is control the whole module):

1. For analogue subscribers POTS - include 64 analogue subscriber lines (ASL) and the name of that board is SAK.

2. For SGN board - include 48 ADSL lines. 

Main board that performs control and aggregation functions IDC. Every module ipBAN can have 1 or 2 IDC boards.

𝑁𝐴𝐷𝑆𝐿= 𝑁𝑚𝑐𝑖𝑝𝐵𝐴𝑁∗ 𝐾𝐴𝐷𝑆𝐿2+ = 1200 ∗ 0,75 = 900;

𝑁𝐴𝑆𝐿= 𝑁𝑚𝑐𝑖𝑝𝐵𝐴𝑁− 𝑁𝐴𝐷𝑆𝐿= 1200 − 900 = 300;

𝑁𝑃𝑂𝑇𝑆= ;

𝑁𝑆𝐺𝑁= ;

𝑁𝑖𝑝𝐵𝐴𝑁=.

To connect all BAN and ipBAN we need to include them in packet switch that is part of MSAN, via optical lines.

𝑁𝑚𝑐𝐵𝐴𝑁= 960;

𝑁𝑚𝑐𝐵𝐴𝑁=  = 4.

For operation and maintenance is used centralized management system. For subscriber access MSAN (multiservice access node) include ipBAN.

MSAN has following hardware and software components:

1. iCS board of integrated softswitch (Call Server). It is Softswitch of 5th class, support control protocol MGCP, TDM signaling (SS7, V5.2).

2. SMG board — signaling and media gateway, has 32 E1 digital trunks, for connection TDM access node (V5.2). Support all types of signaling for channel and packet switching network (SS7, V5.2, DSS1, MGCP, H.248, SIP). Board is controlled MGCP/H.323 protocols, network connection via 1 GbE interface.

ipBAN has following components: the Ethernet switch blade called IDC is the central blade for the SI3000 MSAN. With its two 10GE and four GE combo (SFP or RJ45) modular network interfaces it is a carrier-class and future-safe Ethernet switching and aggregation platform for MSAN blades and other external network elements with advanced network functionalities.

It offers extremely high bandwidths and flexibility in building various network topologies with an enormous total throughput of 86 Gbps.

Let’s show the designed block diagram of projected NGN network for UTN on fig. 4.1.

One of the main difference between BAN and ipBAN is that BAN is connected to the network via ATM, while ipBAN – via Ethernet. Also they have different construction, boards, capacity.

Softswitch 4th class is placed near toll exchange (TE), implements routing, signaling handling and control of transit of voice connection. Softswicth 4th class doesn’t have application servers and doesn’t serve subscribers connections.

Softswitch 5th class is placed in local network (UTN) near HTE-51/52 and provides routing, signaling handling, gateways control and serving of calls of subscriber calls with a goal to provide different services.

 


 


Figure 4.1 – Structure scheme of projected NGN network


 


Дата добавления: 2018-06-27; просмотров: 196; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!