Тугоплавкие припои (твердые).



К тугоплавким припоям относятся припои с температурой плавления выше 400-500°С.

В таблице 2. для примера представлены две группы таких припоев; 1) припои на медной основе; 2) серебряные припои.

Припои медно-цинковые вследствие хрупкости не могут применяться для спаивания деталей, подверженных ударным нагрузкам или вибрации. Эти припои применяют при "тонкой" пайке, когда требуется соединить детали, несущие лишь статическую нагрузку.

Для соединения стальных деталей наиболее доступными тугоплавкими припоями являются чистая медь и латуни Л62 и Л68 (табл. 3.). Соединения, паяные латунью, обладают более высокой по сравнению с паяной медью прочностью и пластичностью и могут подвергаться значительным деформациям. Перегрев латунных припоев вызывает испарение цинка, ухудшая механические свойства соединений.


Таблица 2.

Припои, свойства и назначение

Наименование и марка

Интервал кристаллизации

Химический состав

Металлы, подвергаемые пайке

Назначение припоя (примеры применения)

начало конец Ag Cb Sn Zn Sb, Pb и др. примеси
1 2 3 4 5 6 7 8 9 10 11 12 13

Тугоплавкие

Медно-цинковые

ПМЦ-36 825 800 - 36 - ост. - 0,6 Латунь и другие медные сплавы с содержанием меди до 68%, а также тонкая пайка по бронзе

Для соединений, не подвергающихся ударам, вибрации и изгибу

ПМЦ-54 880 876 - 54 - ост. - 0,6 Медь, томпак, бронза, сталь, нейзильбер

Серебряные

ПСр-70 775 730 70 26 - 4 - 0,5 Медь, латунь, серебро Для паяния деталей в случаях, когда места спая не должны резко уменьшать электропроводность
Пср-65 - - 65 20 - 15 - 0,5 Сталь Для паяния ленточных пил
ПСр-45 725 660 45 30 - 25 - 0,5 Медь, латунь, стали хромистые и нержавеющие

Для паяния деталей в случаях, когда требуется прочность (при ударах, вибрациях), стойкость против коррозии, чистота спая

ПСр-25 775 745 25 40 - 35 - 0,5 Сталь, медь и медные сплавы
ПСр-12М 825 780 12 52 - 36 - 0,5 Латунь с содержанием меди 50% Для паяния деталей из латуни с высоким содержанием меди

Легкоплавкие

Оловянно-свинцовые

ПОС-90 222 183 - - 90 . Sb 0,5 ост 0,294 Латунь, медь Для паяния медной аппаратуры и пищевой посуды
ПОС-61 198 183 - - 61 - Sb 0,8 ост 0,314 Латунь, медь Для паяния ответственного назначения – металла с керамикой, выводных концов ротора с ламелями коллектора и т.п.
ПОС-40 235 183 - - 40 - Sb 2 ост 0,32 Латунь, медь, малоуглеродистая сталь, никель, луженый в местах пайки Паяние латуни, токопроводящих деталей, проводов, наконечников, лепестков и т.д.
ПОС-18 277 183 - - 18 - Sb 2,5 ост 0,424 Сталь оцинкованная, свинец, медь и её сплавы Для паяния деталей неответственного назначения, а также при ремонте оборудования

Таблица 3.

Латунные припои.

Марка припоя или латуни

Химический состав в %

Примесей не более, %

Температура плавления, ºС

Cu Sn Si Zn
1 2 3 4 5 6 7 8
ЛОК-59-1-03 ЛОК 62-06-04 Лат. Л 62 Лат. Л 68 58-60 60-68 61-63 67-70 0,7-1,1 0,5-0,7 0,2-0,4 0,3-0,4 Ост. -//- 0,1 0,1 0,1 0,03 0,15 0,2 0,2 0,1 985 905 905 938

В наиболее ответственных случаях для соединения деталей применяется серебряный припой ПСр-45. Этот припой ковок, вязок и жидкотекуч устойчив против коррозии, шов выдерживает удар и вибрацию. Припой ПСр-65 также обладает высокой прочностью и хорошей стойкостью при многократных перегибах и вибрациях, но дорог. Для менее ответственных соединений применяются более дешевые припои ПСр-25 или ПСрК-20-5. Припой ПСр-70 применяется преимущественно для спаивания токонесущих частей, когда место спая не должно резко уменьшать электропроводность. Все рассмотренные серебряные припои имеют температуру плавления не ниже 700 °С. Во многих случаях встречается необходимость в твердых припоях с температурой плавления 400-500°С. В таблице 5.4. приведены для примера три таких припоя.

 

Таблица 4.

Серебряные припои с температурой плавления менее 550 ºС

Химический состав

Температура плавления, ºС

Ag Cu Sb
1 2 3 4
50 60 70 20 20 20 30 20 10 435 480 520

Однако, наряду с хорошей жидкотекучестью и высокой статической прочностью эти припои обладают низкой ударной вязкостью, что ограничивает их применение.

Припои могут быть изготовлены в виде прутков (проволоки), тонких листов (фольги) или гранул. Можно применять при паянии кольца или прокладки из фольги для более равномерного распределения припоя и более экономичного его использования. Размеры проволоки в зависимость от площади спая берутся обычно от 0,4 до 1,5 мм, а прокладки делаются из фольги толщиной 0,05-0,1 мм.

Виды паяния

По технологическому процессу пайку подразделяют на капиллярную, диффузионную, контактно-реакционную, реакционно-флюсовую и пайку-сварку.

При капиллярной пайке (рис. 1,а) припой заполняет зазор между соединяемыми поверхностями и удерживается в нам за счет капиллярных сил. Такая пайка возможна, когда применяется соединение деталей с перекрытием.

Диффузионная пайка выполняется при длительной выдержке с целью упрочнения соединения за счет диффузии компонентов припоя и основного металла. Этот вид пайки характерен для металлов, образующих твердые растворы с припоем.

При контактно - реакционной пайке между соединяемыми металлами (или прослойкой другого металла) в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует паяное соединение (рис. 5.1,6). Примером такой пайки могут служить соединения меди с серебром, стали или никеля с палладием.

Рис. 1. Схема образования шва:

а - при капиллярной пайке; б - при контактно-реакционной пайке; I - перед пайкой; II - после пайки.

 

Реакционно-флюсовой называют пайку, при которой припой образуется за счет реакции вытеснения между основным металлом и флюсом. Например, при пайке алюминия с флюсом, содержащим большое количество хлористого цинка, при нагревании протекает реакция:

 

3ZnCl2+2Al=2AlCl3+3Zn

 

Восстановленный цинк является припоем.

Пайку-сварку можно сравнить со сваркой плавлением, но в качестве присадочного материала применяется припой.

Способы паяния.

Паяние-металлов осуществляется различными способами в зависимости от используемых источников нагрева и оборудования.

Пайка в печах обеспечивает равномерный нагрев соединяемых деталей. Используются печи электросопротивления, с индукционным нагревом и газопламенные. В этих печах для предохранения от окисления можно создать специальную газовую атмосферу.

Индукционную пайку выполняют с нагревом токами высокой или промышленной частоты. Необходимое тепло выделяется за счет тока, индуктируемого непосредственно в подлежащих пайке местах.

Пайка сопротивлением происходит за счет тепла, выделяемого при прохождении электрического тока через паяемые детали и токопроводящие элементы, и осуществляется с помощью электроконтактных аппаратов.

Пайка погружением осуществляется путем нагрева деталей в ваннах с расплавленными припоями. Этот способ широко применяют при изготовлении автомобильных и тракторных радиаторов, твердосплавного инструмента и т.д.

При газопламенной пайке местный нагрев деталей и припоев производится за счет тепла, выделяющегося газовым пламенем горелки. Питание газовых горелок горючим газом осуществляется от баллонов, газовой сети или газовых генераторов. В полевых условиях и ремонтных мастерских для пайки можно применять паяльные лампы. Существуют и другие методы, но широкое распространение в различных областях техники и в быту получила пайка паяльником.

Особую группу составляют паяльники специального назначения: ультразвуковые с генератором ультразвуковой частоты (УП-21); с дуговым обогревом; с вибрирующими устройствами и др.

Паяльник представляет собой определённой формы кусок меди, закреплённый на железном стержне с деревянной рукояткой на конце.

Электрические паяльники (рис. 2.) применяют широко, так как они просты по устройству и удобны в обращении. При их работе не образуются вредные газы, и нагреваются быстро – в течение 2…8 мин., что повышает качество пайки. Электрические паяльники бывают (а)- прямыми и (б)- угловыми Нагрев основного металла и припоя осуществляется за счет тепла, аккумулированного в массе металла паяльника, который предварительно или в процессе пайки подогревается. Паяльники применяют для пайки черных и цветных металлов при температурах ниже 300-250°С.

 

 

Рис. 2. Электрические паяльники

а – прямой, б – угловой

1 – рукоятка, 2 – стальная трубка, 3 – хомуты, 4 – нагревательный элемент, 5 – накладные боковины, 6 – шнур, 7 – штепсельная вилка.

 

Паяльники бывают с периодическим нагревом, с непрерывным нагревом, ультразвуковые и абразивные.

В ультразвуковых паяльниках колебание ультразвуковой частоты используется для разрушения окисной пленки на поверхности паяемого металла. Это дает возможность осуществления бес флюсовой низкотемпературной пайки.

Абразивные паяльники применяются для обслуживания алюминия и его сплавов без флюса. Окисная пленка удаляется трением паяльника по облуживаемой поверхности.

Выбор того или иного метода нагрева зависит в основном от серийности спаиваемых деталей, от их размеров, конструкции и требований, предъявляемых к стыку дотацией в отношении чистоты шва и заполнения зазора припоем.

Во многих случаях наилучшие результаты дает нагрев индукционными токами. Нагрев изделий по этому способу производится посредством специальных катушек-индукторов (рис.3.), соединенных с источником энергии - машинным или ламповым генератором высокой частоты. В зависимости от материала и размеров нагреваемых изделий индукторы делаются одновитковыми или многовитковыми. Отличные результаты получаются при паянии с нагревом токами высокой частоты, т.к. нагрев происходит только в месте паяния и само паяние протекает очень быстро в течение нескольких секунд, что уменьшает окисление спаиваемых изделии.

 

Рис. 3. Типы индукторов, применяемых для высокочастотного нагрева деталей при пайке.

 

Прочность шва при правильном процессе паяния серебряным припоем зависит от марки самого припоя, от площади и формы поверхности стыка деталей и от зазора между ними. Как и при паянии мягкими припоями, следует избегать вследствие малой прочности соединений деталей встык, как это показано на (рис. 3.,а).

Узел А (рис. 4.,6) представляет плохую конструкцию, т. к. здесь не только само соединение слабо, но и взаимное расположение деталей не фиксировано, что затрудняет паяние. Соединение Б уже несколько лучше, а соединение В обеспечивает максимальную прочность спаиваемых деталей. Наилучшим же следует признать соединение Г, т.к. оно дает возможность локализовать тепло в месте спая, Аналогично этому при спайке трубы с торцовой заглушкой соединения типа Ж и 3 прочнее и удобнее в работе, чем соединение Д и Е.

 

Рис. 4. Примеры соединения деталей паянием.

 

На рис. 5. показаны различные способы размещения серебряного припоя (проволочного кольца) при соединении двух трубчатых деталей. В случае А припой при нагреве потечет вниз в зазор между трубами. В случае Б после расплавления припоя и затекания его в зазор между трубами последние сдвигают до плотного соприкосновения внутренних торцов. Иногда припой размещают в кольцевых канавках (случай В), что улучшает качество заполнения зазора припоем.

 

 

Рис. 5. Способы размещения серебряного припоя при соединении двух трубчатых деталей.

При конструировании паяных соединений из разнородных металлов следует учитывать коэффициенты линейного расширения каждой из соединяемых частей. На рис. 6. дан пример спаивания детали из латунной и стальной частей. Латунь имеет больший коэффициент расширения, чем сталь. Поэтому узел б сконструированы правильно, т.к. при остывании деталей после паяния наружная латунная деталь плотно обожмет стальную. А при остывании узла а внутренняя латунная деталь, сокращаясь более стальной, стремится ослабить и разорвать шов..

Рис. 6. Соединение паянием двух трубчатых деталей из разнородных металлов.

 

Технология паяния

Паяние включает комплекс выполняемых операций; подготовка поверхности соединяемых деталей; сборка; пайка; обработка после пайки.

Подготовка поверхности к пайке заключается в тщательной очистке от загрязнений и окисных пленок. Смазку с поверхности удаляют обезжириванием, т.е. погружением их в водные растворы щелочей с последующей промывкой водой и сушкой. Стальные детали обезжиривают 10%-ным раствором едкого натра при 70-80°С. Детали из меди и ее сплавов обезжиривают раствором более сложного состава (например, 50г тринатрийфосфат, 50г кальцинированной соды, 15г жидкого стекла, 1л воды). Для обезжиривания возможно применение ацетона, бензина, трихлорэтилена.

Окисные пленки удаляют механическими или химическими средствами: обрабатывают шлифовальной брагой, кругами инструментом, металлической щеткой травят в растворах соляной или серной кислоты и т.д. После травления необходима тщательная промывка изделия и сушка.

В некоторых случаях перед пайкой на поверхности детали наносят покрытия из меди, никеля, серебра и др. металлов для улучшения смачивание сплошности, предотвращения взаимодействия основного металла с припоем и т.д.

Перед пайкой детали собирают и фиксируют для устранения возможности их смещения при нагреве. При сборке между кромками наносят флюс .и размещают припой,

Пайку выполняют одним из способов в зависимости от технических требований, конструкции и материала паяемой детали, применяемого припоя, наличия оборудования. Большое значение имеет величина зазора между соединяемыми кромками. При его уменьшении улучшается проникновение жидкого припоя за счет действия капиллярных сил и увеличивается прочность соединения. Для серебряных припоев рекомендуется зазор 0,05—0,15 мм, для медных 0,1-0,2 мм.

Очень важен температурный режим пайки. Температура нагрева должна обеспечить хорошее растекание флюса и припоя и не ухудшать свойства исходных материалов. Скорость нагрева определяется теплопроводностью материала. Выдержку пайки определяют экспериментально; необходимо обеспечить заполнение зазора припоем. Режим охлаждения назначается таким, чтобы предупредить появление трещин.

При высокотемпературной пайке (выше 500°С) в условиях ремонтных мастерских для нагрева чаще используют газовые горелки о

Паяльники применяют при низкотемпературной пайке (ниже 400°С). Рабочая кромка паяльника должна быть запилена под углом 40-45° и облужена припоем. При пайке паяльник всей рабочей поверхностью касается места соединения, предварительно покрытого флюсом к нагретому месту подводят припой, который плавится и затекает в зазоры'

После пайки необходимо с детали удалить остатки флюса, зачистить наплывы припоя и проверить качество соединения.

 

Контрольные вопросы

1. Что представляет собой процесс паяния?

2. Что такое флюсы? Назначение, виды флюсов.

3. Что представляют собой припои? Их марки и назначение

4. Какие бывают виды пайки?

5. Методы спаивания и выбор метода.

6. Технология паяния, последовательность операций при паянии.

 


Дата добавления: 2018-05-12; просмотров: 3130; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!