Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.



 

Аналитическое показатели динамического ряда предполагает представление уровней данного ряда динамики в виде функции времени - y=f(t). Для отображения основной тенденции развития явлений во времени применяются различные функции: полиномы степени, экспоненты, логистические кривые и другие виды. Полиномы имеют следующий вид:

полином первой степени полином

второй степени

полином третьей степени

полином n-ои степени

Здесь ао; а1 а2; ... an - параметры полиномов, t - условное обозначение времени. В статистической практике параметры полиномов невысокой степени иногда имеют конкретную интерпретацию характеристик динамического ряда. Так, параметр ао трактуется как характеристика средних условий ряда динамики, параметры а1, а2, а3 - как изменения ускорения. В статистике выработано правило выбора степени полинома модели развития, основанное на определении величин конечных разностей уровней динамических рядов. Согласно этому правилу полином первой степени (прямая) применяется как модель такого ряда динамики, у которого первые разности (абсолютные приросты) постоянны, полиномы второй степени - для отражения ряда динамики с постоянными вторыми разностями (ускорениями), полиномы третьей степени - с постоянными третьими разностями и т.д.

 

 

Средние показатели динамического ряда и методы их расчета.

Методы расчета среднего уровня интервального и моментного рядов динамики различны. Для интервальных равноотстоящих рядов средний уровень находится по формуле средней арифметической простой и для неравноотстоящих рядов по средней арифметической взвешенной:  

где yi - уровень ряда динамики; п - число уровней; ti - длительность интервала времени между уровнями.

Средний уровень моментного ряда динамики так исчислить нельзя, так как отдельные уровни содержат элементы повторного счета. Средний уровень моментного равноотстоящего ряда динамики находится по формуле средней хронологической:  

Средний уровень моментных рядов динамики с неравноотстоящими уравнениями определяются по формуле средней хронологической взвешенной:

 где yi, уп - уровни рядов динамики; ti - длительность интервала времени между уровнями. Обобщающим показателем скорости изменения явления во времени является средний абсолютный прирост за весь период, ограничивающий ряд динамики. Для его определения можно воспользоваться формулой средней арифметической простой:

 или  

Свободной обещающей характеристикой интенсивности изменения уровней ряда динамики служит средний темп роста, показывающий, во сколько раз в среднем за единицу времени изменился уровень динамического ряда. Необходимость исчисления среднего темпа роста возникает вследствие того, что темпы роста из года в год колеблются. Кроме того, средний темп роста часто нужно определять в тех случаях, когда имеются данные об уровне в начале какого-либо периода и в конце его, а промежуточные данные отсутствуют. Такого рода средний темп роста можно исчислить, если положить в основу расчетов рост не в арифметической прогрессии, которая характеризуется постоянной разностью, а в геометрической (a, aq, aq2 ,...,aqn ), которая характеризуется постоянным отношением, называемым знаменателем прогрессии (q). Вопрос, следовательно, состоит в том, чтобы найти этот знаменатель. Знаменатель геометрической прогрессии (q) определяется делением последующего уровня прогрессии на его предыдущий, при делении п-го уровня на первый, получаем:  отсюда следует:

 

где bi=a - первый член прогрессии. Зная q, мы точно можем определить какую тенденцию развития явления имеет неометрическая последовательность, которая применяется тогда, когда определяющий показатель является не суммой значений, а их произведением. Следовательно, во всех тех случаях, где варианты связаны между собой не знаком сложения, а знаком произведения, можно вычислить среднюю геометрическую. Обычно средний темп роста вычисляется по формуле средней неометрической из цепных коэффициентов роста:

Поскольку всякий темп роста является отношением уровней ряда динамики, так, что

в формуле средней геометрической темпы роста заменяются соответствующим отношением уравнений. Заменив темпы роста выражающими их отношениями и учитывая, что эти величины перемножаются, найдем подкоренное выражение как:

Следовательно, средний темп роста может быть выражен формулой:

Когда приходится вести расчет средних темпов роста по периодам различной продолжительности (разноотстоящие ряды динамики), то пользуются средними геометрическими, взвешенными по продолжительности периодов. Формула средней геометрической взвешенной будет иметь вид:

где t - интервал времени, в течении которого сохраняется данный темп роста; £ - сумма отрезков времени периода. Средний темп прироста не может быть определен непосредственно на основании последовательных темпов прироста или показателей среднего абсолютного прироста. Для его вычисления необходимо вначале найти средний темп роста, а затем уменьшить его на единицу или 100%:

 


Дата добавления: 2018-05-12; просмотров: 575; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!