Электрическое поле в вакууме. Напряженность и потенциал



ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ гуманитарный УНИВЕРСИТЕТ

 

 

Редкин Ю.Н.

 

Курс

Физики

 

 

Часть 3. Электричество

 

 

Киров - 2003

 

Конспект лекций по курсу физики (Часть 3. Электричество) для студентов высших и средних учебных заведений.

 

 

Автор:

кандидат физ.-мат. наук, доцент кафедры общей физики ВятГГУ Редкин Ю.Н.

 

 

Научный редактор:

кандидат физ.-мат. наук, доцент кафедры общей физики ВятГГУ Бакулин В.Н.

 

 

Рецензенты:

кандидат физ.-мат. наук, доцент кафедры общей физики ВятГГУ Голубев Ю.В.,

кандидат физ.-мат. наук, доцент кафедры физики ВГУ Суслопаров А.М.

 

 

Компьютерный набор: Шатунов П.В., Лямин С.А.

 

Компьютерная верстка - Бакулин В.Н.

 

 

© Вятский государственный гуманитарный университет (ВятГГУ) – 2003г .

 


ЭЛЕКТРИЧЕСТВО

Литература

1.С.Г.Калашников. Электричество. Учебное пособие. – М.: Наука, 1977. – 591 с.

2.Д.В.Сивухин. Общий курс физики. Том 3. Электричество. Учебное пособие. – М.: Наука, 1977. – 687 с.

3.И.В.Савельев. Курс общей физики. Том 2. Учебное пособие. – М.: Наука, 1988. – 496 с.

Введение

1.Электричество – слово древнегреческого происхождения. Еще в VI в. до н.э. Фалесу из Милета было известно, что к янтарным украшениям, надетым поверх шерстяных хитонов, притягиваются легкие пылинки.

Янтарь у греков назывался электрон. Со временем процесс натирания тел шерстью, в результате чего тела приобретали способность притягивать легкие частицы, стали называть электризацией трением. Возникло представление, что при натирании тел на них накапливается некий электрический заряд. Чем больше заряд на теле, тем с большего расстояния и более тяжелые пылинки может оно притягивать.

Позже выяснилось, что само трение не играет существенной роли в электризации. Электризация происходит при контакте любых, чем-либо различающихся тел, причем электризуются оба тела. На них появляются равные по величине электрические заряды противоположного знака.

Современная физика словом электричество обозначает совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц.

2.Электромагнитное поле (ЭМ-поле). Взаимодействие электрических зарядов осуществляется, по современным представлениям (теория близкодействия), с помощью материальной среды, окружающей их, - электромагнитного поля. В системах отсчета, в которых заряженные частицы покоятся, ЭМ-поле вырождается в частный случай – электростатическое поле. Если же заряженные частицы движутся, то наряду с электрическим возбуждается магнитное поле. Последнее может создаваться не только движущимися электрическими зарядами, но также изменяющимся электрическим полем. А электрическое поле, в свою очередь, может создаваться изменяющимся магнитным полем.

Электромагнитное поле – это определенная форма материи, осуществляющая взаимодействие между зарядами. Электрические заряды не существуют в чистом виде, а связаны с частицами, которые имеют отличную от нуля массу покоя. Кванты электромагнитного поля – не имеют массы покоя.

Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла.

3.Электромагнитное взаимодействие. Законы классической теории электричества охватывают огромную совокупность электромагнитных процессов. Среди 4-х типов взаимодействий – электромагнитных, гравитационных, сильных, слабых, существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой – являются дальнодействующими в отличие от сильных взаимодействий.

Строение атомных оболочек, сцепление атомов в молекулы и образование конденсированного состояния веществ определяются электромагнитным взаимодействием.

4.История развития учения об электричестве включает в себя три этапа: этап накопления опытных фактов, этап развития учения об электромагнитном поле, этап развития атомистической теории электричества.


а.Этап накопления опытных фактов продолжался с древности до 1-й трети XIX века. За это время были открыты электризация тел трением, существование природного магнетизма, и изобретены приборы для получения и измерения электричества – электрофор, электрофорные машины, электрометры, конденсаторы. К концу XVIII века были открыты основные законы электростатики.

С конца XVIII века благодаря изобретению гальванических элементов начинается интенсивное изучение постоянного электрического тока, приведшее в 20-х годах XIX века к открытию магнитных свойств электрического тока. В течение нескольких лет были сформулированы основные законы электромагнетизма. Изобретены приборы для измерения тока и напряжения, развиты методы электрических измерений.

Заканчивается 1-й этап работами М.Фарадея, открывшего законы электромагнитной индукции и электролиза и отчетливо высказавшего идею электромагнитного поля.

б.Этап развития учения об электромагнитном поле, начавшись с М.Фарадея, продолжается до конца XIX столетия. В это время появляется представление об электромагнитном поле как форме материи, как физической реальности, осуществляющей перенос взаимодействия между зарядами. В 60-х годах XIX века Дж.Максвелл, обобщив опытные законы учения об электричестве, создал единую теорию электромагнитного поля. Выяснилось, что изменяющееся электрическое и магнитное поля распространяются с конечной скоростью, равной скорости света. Открытие радио в конце XIX века завершает второй этап.

в.Этап развития атомистической теории электричества начинается с последней трети XIX века и продолжается до наших дней. В это время представление об электричестве как невесомой жидкости меняется на представление, что электрический заряд есть совокупность дискретных электрически заряженных частиц, из которых построено вещество. Изучаются законы движения атомов электричества – ионов и электронов в металлах, в вакууме, в газах, в электролитах. Развивается электронная теория вещества, теория строения атома, ядра и элементарных частиц.

5.Практическое применение электричества в современном мире огромно. Оно определяет технический уровень современной земной цивилизации. Во-первых, электричество – это высокотехнологичный носитель энергии. Наряду с крупными стационарными источниками электрической энергии – электростанциями, чьи энергосети охватывают весь земной шар, широко используются автономные источники – аккумуляторы, «сухие элементы», солнечные батареи и др. Во вторых, электричество – это средства связи: телеграф (с 30-х г.г. XIX в.), телефон (80-е г.г. XIX в.), радио (конец XIX в.). И в третьих, электричество – это средства хранения и переработки информации.

Глава 1. ЭЛЕКТРОСТАТИКА

Законы электростатики

1. Электростатика – раздел теории электричества, изучающий взаимодействие неподвижных друг относительно друга электрических зарядов. Основные понятия – электрический заряд и электростатическое, то есть не изменяющееся во времени электрическое поле. Источником электростатического поля является электрические заряды. Без электрических зарядов электростатическое поле не существует.

Основные законы электростатики были открыты в XVIII и XIX столетиях. Они выполняются достаточно строго также в тех случаях, когда заряды двигаются друг относительно друга со скоростями, много меньшими скорости света в вакууме.

К основным законам электростатики относятся закон существования двух родов электрических зарядов, закон сохранения заряда, закон квантованности электрических зарядов, закон Кулона.

2. Закон существования двух родов электрических зарядов. В 1733 г. француз Шарль Дюфе установил, что «существуют два рода электрических зарядов – стеклянное и смоляное. Разноименные заряды притягиваются, одноименные – отталкиваются».


Смоляное электричество появлялось на янтаре, а стеклянное – на стекле, на драгоценных камнях, на шерсти животных. В 1747 г. американец Бенджамин Франклин предложил называть стеклянное электричество положительным и обозначать знаком «+» (плюс), а смоляное – отрицательным и обозначать знаком «–» (минус).

При соприкосновении всегда электризуются оба тела. В паре эбонит+мех эбонит электризуется отрицательно, мех – положительно. В паре металл+шерсть металл заряжается отрицательно, шерсть – положительно. В паре металл+каучук металл электризуется положительно, каучук – отрицательно. Основными носителями положительных зарядов являются протоны, отрицательных – электроны.

3. Закон сохранения электрического заряда. Он был осознан по совокупности физических фактов в XVIII веке. Алгебраическая сумма электрических зарядов любой изолированной (или замкнутой) системы остается постоянной, какие бы процессы не происходили внутри этой системы. Полный заряд такой системы есть релятивистский инвариант. Его величина не зависит от выбора системы отсчета и от скорости движения зарядов. Изолированной считается здесь такая система, через границы которой не проникает вещество. Свет может входить и выходить из системы.

Вначале закон сохранения заряда был открыт по аналогии с законами сохранения импульса и механической энергии. Поэтому он мог рассматриваться как постулат, которому подчинялись без исключения все электрические опыты. Начиная с XX в. после наблюдения актов аннигиляции частиц с античастицами (электрон+позитрон) закон сохранения заряда может считаться уже эмпирическим законом, доказанным прямым экспериментом.

4.Закон квантованности (дискретности) электрических зарядов (XIX в.). Делимость электрических зарядов ограничена неким минимальным зарядом e, называемым элементарным. Зарядов, меньших элементарного, в природе нет. Положительный e+ и отрицательный e элементарные заряды равны по абсолютной величине, |e+|=|e|.

Идея дискретности электрических зарядов появилась после опытов Майкла Фарадея по электролизу (1834 г.). Из них следовало, что количество отложившегося на электродах вещества во всех случаях пропорционально величине электрического заряда, прошедшего через электролит. Этот факт можно объяснить лишь тем, что каждая отложившаяся на электроде частица вещества переносит одну и ту же порцию электрического заряда.

В 1881 г. Герман Гельмгольц сделал такую оценку, а Джозеф Томсон в 1897 г. в опытах с катодными лучами подтвердил идею существования атомов электричества – электронов и измерил их удельный заряд. Абсолютную величину элементарного заряда впервые определил с высокой точностью в 1909 г. американец Роберт Милликен.

Схема одного из вариантов установки Милликена показана на рис.1.

Сквозь отверстие O в верхней пластине горизонтально расположенного плоского воздушного конденсатора внутрь него попадали капельки распылявшегося масла. Под действием ионизирующего излучения источника S (препарат радия в свинцовом контейнере) капельки могли приобретать и терять электрический заряд.

 

Если на конденсатор подать напряжение U, то из множества капель в поле зрения микроскопа М можно выделить ту, которая движется кверху со скоростью, приемлемой для визуального наблюдения. Раз капля движется вверх, то это значит, что она имеет некоторый заряд q. Измерения выполнялись так:

а. Пластины конденсатора замыкались между собой накоротко (переключатель Пк ставился в левое по рис.1 положение). Электрическое поле в конденсаторе исчезало. Капля под действием силы тяжести падала равномерно вниз со скоростью v1. Сила тяжести  уравновешивалась силой вязкого сопротивления воздуха FS1 (рис.2-а). Уравнение движения капли в проекции на вертикальную ось ОY имеет вид: –mg + FS1 = 0.                       (2.1)

б. На конденсатор подавалось напряжение U (переключатель Пк ставился в правое по рис.1 положение). Капля начинала двигаться вверх в электрическом поле напряжённостью E=U| d со скоростью v2 (рис.2-б). Уравнение движения капли в проекции на ось Y имеет вид:

–mg–FS2+qE=0.                                (2.2)

Так как FS1= 6πhrv1, а FS2= 6πhrv2, где h – вязкость воздуха, а r – радиус капли, то система уравнений принимает вид:

.                      (2.3)

Разделив 2-е уравнение на 1-е, получаем заряд капли .                  (2.4)

Милликен наблюдал некоторые капли в течение нескольких десятков минут, многократно поднимая их вверх, измеряя скорость подъема v2, а затем измеряя скорость v1 опускания капли.

Если напряжение U на конденсаторе не менять, то коэффициент перед скобкой остается постоянным. Поэтому при перезарядке капли в случае дискретного изменения заряда q скорость подъёма капли должна изменяться тоже ступенчато.

Для вычисления абсолютного заряда капли нужно из формулы (2.4) исключить ее вес. Это можно сделать, используя режим свободного падения капли с плотностью ρ. Так как mg = (4πr3| 3)ρg = 6πhrv1, то, выразив отсюда радиус капли  и подставив его в выражение веса капли, получаем:   и .   (2.5)

В итоге всех экспериментов после исследования тысяч капель Милликен нашел величину минимального заряда. Его современное значение составляет

e = (1,6021892±0,0000046)·10−19 Кл.

Опыты, выполненные в 60-е годы XX в. с атомными пучками цезия и с молекулярным водородом, показали, что отрицательный и положительный элементарные заряды если и отличаются по абсолютной величине между собой, то не более чем на 1020e.

В макроскопической электростатике дискретность зарядов не имеет практического значения. Дифференциальные объемы заряженных тел обычно содержат огромное количество элементарных зарядов. Это позволяет считать изменение зарядов непрерывным.

Однако в строении материи и в физическом портрете Вселенной дискретность зарядов играет решающую роль.

5.Закон Кулона. В 1785 г. Шарль Кулон, изучая взаимодействие маленьких заряженных шариков, сформулировал закон их взаимодействия.

Два точечных заряда q1 и q2 взаимодействуют друг с другом в вакууме с силой, пропорциональной произведению зарядов и обратно пропорциональной квадрату расстояния между ними. .                                                                                                 (2.6)

Здесь r – расстояние между зарядами, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F взаимодействия зарядов направлена вдоль прямой, проходящей через заряды.

Чтобы задать направление силы и написать закон Кулона в векторной форме, нужно определить положение одного заряда относительно другого. Если  - вектор, проведенный от заряда q1 к заряду q2 (рис.3-а), то сила действия заряда q1 на заряд q2 равна

.                               (2.7)

Направление действия силы  определится направлением вектора  (рис.3-б).

Отношение  есть единичный вектор. Он указывает направление силы, не меняя ее величины.

Если взаимодействующие заряды находятся в диэлектрике, то есть в веществе, не проводящем электричество, то сила уменьшается по сравнению с вакуумом в ε раз.

Величину ε называют диэлектрической проницаемостью среды.

Формула закона Кулона в однородной бесконечно протяженной диэлектрической среде в системе единиц СИ имеет вид: .                                         (2.8)

В вакууме ε = 1, в диэлектриках ε > 1, в металлах ε = ∞, в сверхпроводниках ε < 0.

Размерный коэффициент ε0 называют электрической постоянной. Она связана со скоростью света c и вычисляется через нее с точностью, с которой измерена скорость света.

.

Единица заряда q в СИ – кулон (Кл).

Современный опыт позволяет утверждать, что закон Кулона справедлив в интервале расстояний по кр. мере от 10−16 до 105 м.

6. Опыты Кулонапо изучению взаимодействия зарядов включали в себя изучение взаимодействия одноименных зарядов и изучение взаимодействия разноименных зарядов.

а. Взаимодействие одноименных зарядов исследовалось Кулоном с помощью изобретенных им крутильных весов (рис.4-а).

К подвижной головке 1 на тонкой серебряной проволоке 2 подвешено коромысло 3 из стекла. На одном конце коромысла крепился бузиновый шарик 5 диаметром около 5 мм. Рядом с ним на металлическом стержне 9 неподвижно укреплен точно такой же шарик 6. На другом конце коромысла закреплен бумажный диск 4, игравший роль противовеса и демпфера. На головке 1 и на стеклянном сосуде 7 нанесены круговые шкалы 8 и 10 с ценой деления 1°.

В основу количественных измерений Кулон положил экспериментально доказанный им закон кручения упругих проволок ,                                                         (2.9)

где М – момент силы, закручивающий проволоку, j – угловая деформация кручения проволоки, d и l – диаметр и длина проволоки. Коэффициент k зависит от материала и профиля сечения проволоки.

Измерения сводились к двум группам ответов.

1-я группа ответов.Проверка зависимости F~ 1çr2.

В нейтральном состоянии шарики 5 и 6 слегка касаются между собой. Угол деформации проволочной нити j = 0.

Через металлический стержень 9 от заряженного тела заряжается шарик 6. Заряд распределяется поровну между шариками 5 и 6. Шарики расходятся на расстояние r, которое можно определить из угла j1 поворота коромысла и его плеча R (рис.4-б).

Равновесию соответствует равенство моментов:                        (2.10)

Если постепенно закручивать нить, вращая головку 1 по часовой стрелке (по рис. 1а) и приближая шарик 5 к шарику 6, то для какого-то другого расстояния r2 уравнение моментов принимает вид:                                                                        (2.11)

Разделив второе уравнение на первое, получаем:                                 (2.12)

Кулон установил, что с уменьшением расстояния r между шариками в 2 раза, сила электрического отталкивания возрастала в 4 раза, при уменьшении расстояния в 3 раза, сила возрастала в 9 раз и так далее. Отсюда следует, что электрическая сила отталкивания между шариками обратно пропорциональна квадрату расстояния между ними, F~1/r2

2-я группа опытов. Проверка пропорциональности силы F произведению величин зарядов, F ~ q1q2.

Через металлический стержень 9 от заряженного тела заряжался шарик 6. Заряды распределяются поровну, на каждом из шариков 5 и 6 заряд q. Шарики расходятся на расстояние r1, коромысло поворачивается на угол j1, нить закручивается на угол j1. Заземленным проводником снимается заряд с неподвижного шарика 6. Шарик 5 подходит к шарику 6, заряд с подвижного шарика делится поровну, на каждом из шариков заряд 2. Шарики расходятся на угол j много меньший прежнего угла j1. Вращением головки 1 против часовой стрелки (по рис. 4-а) подвижный шарик возвращается на прежнее расстояние r1. Угол закручивания нити стал j 2.

Снимается заряд с неподвижного шарика и снова, после деления заряда пополам, подвижный шарик возвращается на прежнее расстояние. Повторяя эту процедуру несколько раз, Кулон установил, что после каждого деления сила отталкивания шаров уменьшается в 4 раза. Это доказывает зависимость F ~ q1q2.

Действительно F1= kq2, где k – коэффициент пропорциональности. После первого деления сила F2 = (kqç2)2, и F2çF1 = (1ç2)2 = 1ç4. После второго деления F3çF2 = k(4)2çkq2 =

= (1ç4)2 = 1ç16 и так далее.

Так была доказана зависимость F ~ q1q2çr2 для сил отталкивания.

8. Взаимодействие разноименных зарядов Кулон изучал, положив в основу опытов колебания маятника.

Как установил Гюйгенс в 1673 г. период колебаний математического маятника определяется формулой ,                                                                            (2.13)

где l – длина нити маятника, g – ускорение силы тяжести. Из закона всемирного тяготения Ньютона следует, что ,                                                                   (2.14)

где G – гравитационная постоянная, M – масса Земли, R – ее радиус. Подставив (2.14) в (2.13) получаем .                                                               (2.15)

Период маятника пропорционален расстоянию от маятника до центра тяготения.

Если электрические силы притяжения изменяются с расстоянием также как и силы тяготения, то есть по закону F ~ 1çr2, то период колебаний маятника под действием электрических сил будет так же зависеть от расстояния, как и период математического маятника.

Схема второй установки Кулона показана на рис.5. Большой медный шар 1 диаметром около 35 см. на изолирующей подставке заряжался. Рядом с шаром на тонкой шелковой нити 2 подвешивалось коромысло 3 из натертой воском соломинки длиной 43мм.

На конце коромысла, близком к шару, приклеен диск 4 из позолоченной бумаги, на противоположном конце – шарик-противовес.

Диск 4 заряжался малым зарядом противоположного знака и отклонялся от положения равновесия. Коромысло 3 начинало колебаться. Далее измерялось время 15 колебаний при разных расстояниях d между центром шара 1 и диском 4.

Опыты показали, что и для разноименных зарядов зависимость F ~ 1çr2выполняется с точностью до 10%.

 

Электрическое поле в вакууме. Напряженность и потенциал

1. Электрическое поле. Это понятие ввел Майкл Фарадей в середине XIX века. Начиная с Фарадея, физика стала рассматривать электрическое поле как особую форму материи, способную переносить действие одного заряда на другой.

Позднее появилось понятие гравитационного поля, магнитного поля, ядерного поля и др. Все поля переносят действие с конечной скоростью. Все поля квантованы, т.е. взаимодействие осуществляется с помощью соответствующих частиц.

Кванты электромагнитного поля не имеют массы покоя, но обладают энергией и импульсом (момпентом импульса).

Источником электромагнитного поля являются электрические заряды. Для измерения и описания поля, созданного неким зарядом Q, нужен еще один заряд q, который можно было бы вносить в разные точки поля заряда Q. Этот вспомогательный заряд q называют пробным. Предполагается, что пробный заряд всегда положителен, а его величина много меньше заряда Q.

2. Напряженностью электрического поля  называют физическую величину, равную отношению силы , действующей на пробный заряд q, к величине этого пробного заряда. . (3.1)

Фарадей предложил графически изображать электрические поля непрерывными силовыми линиями или линиями напря-женности, в каждой точке которых вектор силы или напряженности  направлены по касательной к ним. Все линии начинаются на положительных и заканчиваются на отрицательных зарядах. Если поле создается уединенным зарядом Q, то линии уходят на бесконечность. Чем больше заряд Q, тем больше линий выходит из него или заканчивается на нём.

3. Поле точечного заряда. Пусть электрическое поле создается уединенным точечным зарядом Q. Чтобы измерить его в некоторой точке, надо внести в эту точку пробный заряд q. Сила действия поля на заряд q по закону Кулона    (3.2)

Здесь  – радиус вектор, проведенный из точечного заряда Q в ту точку поля, где находится пробный заряд q (рис.6-а).

Напряженность поля создаваемого зарядом Q, равна         (3.3)

Поле уединенного точечного заряда обладает центральной симметрией. На рис.6-б показаны линии  поля положительного точечного заряда Q, лежащие в плоскости проходящей через заряд Q. Линии направлены от центра к периферии. Линии поля отрицательного заряда направлены от периферии к центру (рис.6-в).

Достоинством графической интерпретации поля является не только, возможность оценивать по конфигурации линий направление вектора Е, но и возможность оценивать его величину, поскольку густота линий пропорциональна напряженности Е.

Графическое изображение количественных характеристик электрического поля возможно благодаря тому, что поле Е точечного заряда убывает пропорционально 1çr2, и на любом расстоянии от заряда r плотность линий, то есть их число на единицу площади поверхности перпендикулярной силовым линиям убывает также пропорционально 1çr2.

4. Суперпозиция электрических полей. Чтобы ответить на вопрос; чему равна напряженность поля, создаваемого несколькими различными точечными зарядами, находящимися в разных местах, надо знать, как складываются поля.

Опыт показывает, что сила взаимодействия любых двух зарядов не зависит от наличия других зарядов. Это значит, что сила, действующая со стороны системы зарядов q1qn на пробный заряд q, равна геометрической сумме сил со стороны каждого из них, а напряженность суммарного электрического поля равна геометрической сумме напряженностей полей, создаваемых каждым зарядом в отдельности.

(Закон сложения электрических полей)                                                          (3.4)

Способность электрических полей складываться без взаимных искажений называется принципом суперпозиции это объективное свойство линейных силовых полей, известное нам из механики. Благодаря суперпозиции электрических полей существует возможность рассчёта полей системы точечных зарядов и протяженных заряженных макротел.

5. Примеры рассчёта полей. Рассчитать поле - это значит найти значение вектора напряженности Е в каждой точке поля.

Пример 3.1. Поле двух точечных зарядов. Пусть два заряда q1 и q2 находятся на расстоянии 2а друг от друга. Надо найти напряженность суммарного поля.

Разместим оба заряда на оси OX декартовой системы координат в точках с координатами q1(-a,0,0), q2(+a,0,0). Так как ось OX является осью симметрии системы зарядов, то двумерное решение задачи в плоскости XОY является исчерпывающим.

 

Напряженность поля в любой точке А с координатами x, y равна сумме напряжённостей (рис.7-а): .                          (3.5)

Здесь – поле заряда q1, – поле заряда q2, E1x и E2x – проекции векторов  и  на ось OX, E1y и E2y – проекции векторов на ось OY, и – единичные орты этих осей.

.                                  (3.6)

.                                        (3.7)

.                          (3.8)

Таким путем можно вычислить поле сколь угодно большего числа точечных зарядов. Достаточно лишь добавить в формулу (3.5) проекции напряжённостей поля следующих зарядов: E3x, E3y, E4x, E4y и так далее. Если система зарядов не плоская или не имеет оси симметрии, то задача должна решатся в трехмерном пространстве.

Пример 3.2. Поле заряженной нити. Пусть на отрезке нити длиной l имеется заряд с линейной плотностью t, [t] = Клçм. (Численно t – это заряд, приходящийся на 1 м длины нити). Надо найти напряженность поля вокруг нити.

Для вычисления электрического поля, создаваемого протяженным заряженным телом, этот заряд разбивается мысленно на достаточно малые элементы, которые могут считаться точечными зарядами. Поля, создаваемые этими элементами, суммируются (интегрируются).

Поле прямой заряженной нити обладает осевой симметрией, так что достаточно рассчитать поле в плоскости нити. Поместим отрезок заряженной нити вдоль прямой OY. Концы нити находятся в точках с координатами (0,y1) и (0,y2) (рис.8).

Возьмем на нити бесконечно малый отрезок dy на расстоянии y от начала координат. Этот отрезок dy несет заряд dq = tdy и может считаться точечным.

Поле dE, создаваемое этим точечным зарядом в точке А, равно: .  (3.9)

А его составляющие по осям:

 , (3.10)

. (3.11)

Здесь .            (3.12)

Интегрировать выражения (3.10) и (3.11) проще по углу j. Так как , то , и . Тогда .

Интегрируя от угла j1, под которым «виден» нижний конец отрезка, до угла j2 (верхний конец), получаем: , (3.13)

Где .                      (3.14)

Вычисляя составляющие Еx и Ey при различных значениях координат x0, y0 точки А, получаем вектор напряженности в любой точке пространства .            (3.15)

Около бесконечной равномерно заряженной нити с линейной плотностью заряда t силовые линии перпендикулярны к ней и напряжённость поля убывает обратнопропорционально расстоянию R до нити: E = 2pR.


6. Работа по перемещению электрического заряда. Вычислим работу, совершаемую полем, при перемещении пробного положительного заряда q в поле точечного положительного заряда Q. Считаем, что заряд q перемещается бесконечно медленно от точки а к точке b по какой то произвольной траектории (рис.9).

Работа на бесконечно малом отрезке пути равна , где – сила действующая со стороны заряда Q на пробный заряд q. Работа равна убыли потенциальной энергии системы, dA = -dW. Работа конечного перемещения от а до b найдется интегрированием.

. (3.17)

Так как , то .    (3.18)

Если взять точку b на бесконечности, то работа при перемещении заряда q из точки а на бесконечность равна его потенциальной энергии в точке а: .   (3.19)

Когда r ® ¥, кулоновская сила обращается в нуль. Поэтому работа разбегания зарядов Q и q с расстояния ra на бесконечность определяет полную потенциальную энергию системы двух зарядов Q и q, находящихся на расстоянии ra друг от друга.

Опустив индекс «а», получаем общую формулу для потенциальной энергии системы двух зарядов, находящихся в вакууме на расстоянии r: .                (3.20)

7. Потенциал электростатического поля. Если разделить энергию W пробного заряда (3.19) на величину его заряда, то получаем ещё одну энергетическую характеристику поля - потенциал j в точке на расстоянии r от точечного заряда: , (3.21)

Абсолютные значения потенциала и потенциальной энергии взаимодействия зарядов в теории принимаются равными нулю на бесконечности. Практически измерить можно только разность потенциалов или разность потенциальных энергий двух состояний системы зарядов - двух конфигураций зарядов в пространстве. Поэтому, как и в механике при вычислении потенциальной энергии тел в гравитационном поле, за нуль потенциала в электростатике принимают или землю или какое-либо другое достаточно массивное и протяжённое тело с постоянным в условиях опыта потенциалом.

Разность потенциалов двух точек называют обычно напряжением и обозначают U = j1 - j2. Работа поля по перемещению заряда q между точками с разностью потенциалов между ними U равна произведению   A = qU                                                               (3/22)

Потенциал электрического поля - скаляр, в каждой точке поля он определяется одним числом, тогда как напряжённость поля - вектор, в каждой точке поля она определяется тремя числами, своими проекциями на оси: Ex = x, Ey = y, Ez = z.                 (3.23)

Напряжённость поля не зависит от выбора уровня нулевого потенциала, т.к. определяется только скоростью его изменения в пространстве.

Работа перемещения заряда в электрическом поле не зависит от пути перемещения (3.18). Это говорит о том, что электростатическое поле есть поле консервативных сил. Циркуляция вектора напряжённости электростатического поля по замкнутому контуру равна нулю. .                                                                                                             (3.24)

Множество точек поля с одинаковым потенциалом непрерывно и образует эквипотенциальную поверхность (от латинского aequi – равно). При перемещении заряда по эквипотенциальной поверхности работа равна нулю, .                (3.25)

Отсюда следует, что линии вектора  в любой точке поля ортогональны эквипотенциальной поверхности в этой точке.

Единица потенциала и напряжения с СИ - вольт, 1 В = 1 ДжçКл. Две точки поля имеют разность потенциалов 1 В, если при перемещении между ними заряда в 1 Кл совершается работа 1 Дж.

8. потенциал поля системы зарядов в некоторой точке а относительно точки поля b определяется работой перемещения на единицу положительного заряда из точки а в точку b.

.                                     (3.26)

Потенциал поля системы зарядов равен алгебраической сумме потенциалов полей каждого из зарядов в отдельности. Это утверждение выражает принцип суперпозиции электрических полей для потенциала.

Пример 3.3. Потенциал поля диполя. Электрический диполь – это система из двух равных по величине и противоположных по знаку точечных зарядов, расположенных на некотором расстоянии друг от друга. Электрической характеристикой диполя является его электрический момент , где  – вектор направленный от отрицательного заряда к положительному. В примере 3.1 вычислена напряженность электрического поля системы двух точечных зарядов, частным случаем которой является диполь.

Вычислим потенциал поля диполя, воспользовавшись полярными координатами. Электрический момент диполя направим вдоль полярной оси (рис.10).

Потенциал суммарного поля в произвольной точке А относительно бесконечности по принципу суперпозиции есть сумма потенциалов складываемых полей зарядов q- и q+.

,        (3.27)

Т.к q- = -q+, то . (3.28)

Если точка А удалена на большое расстояние от диполя r>>l , то r1 -r2 » lcosa, r1r2 » r2, и .                                        (2.29)

По сравнению с точечным зарядом поле диполя убывает с расстоянием быстрее, потенциал пропорционален 1çr2, но не 1çr, как у точечного заряда.

Напряженность можно вычислить через потенциал по формуле . В полярных координатах дифференциальный оператор Ñ (его называют оператором Набла) имеет вид: .                                                                                           (3.30)

Здесь – единичный орт, направленный вдоль по полярному радиусу, – единичный орт, направленный перпендикулярно радиусу в сторону возрастания полярного угла a. Вычислим составляющие вектора .

.                                         (3.31)

.                                  (3.32)

Отсюда .                               (3.33)

Поле диполя обладает осевой симметрией относительно линии, проходящей через заряды (рис.11). Сплошными линиями изображены линии напряжённости электрического поля, штриховыми – сечения поверхностей равного потенциала - эквипотенциальных поверхностей. На оси диполя его электрический момент , т.к. a = 0, , и . (3.34)

9. Теория электрического поля. Благодаря тому, что закон Кулона очень похож на закон всемирного тяготения Ньютона, к описанию электрических явлений оказалось возможным применить развитую ранее математическую теорию тяготения. Более того, электрическое взаимодействие оказалось богаче гравитационного, поскольку имеет место не только притяжение, но и отталкивание тел. Поэтому разнообразие конкретных приложений феноменологических теорий электрического поля гораздо больше.

В течение XIX века Д. Пуассон, Дж. Грин, М. Фарадей, К. Гаусс, У. Томсон разработали строгую математическую теорию электрического поля. И обобщил ее в общей теории электромагнитного поля Дж. Максвелл.


Дата добавления: 2018-04-15; просмотров: 596; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!