Принцип действия электрических машин постоянного тока



Электрическое оборудование

 

Электрическое оборудование предназначено для тяги и торможения вагона, а так же для обеспечения функционирования другого оборудования и устройств вагона (освещение салонов, управление дверьми, компрессом и т.д.).

Электрооборудование вагона представляет собой совокупность электрических аппаратов, которые определённым образом соединяются между собой в электрические цепи.

Каждую конкретную функцию (например, включение освещения салона, выбор направления движения, проверка выполнения различных условий для приведения поезда в движение и т.д.) выполняют один или несколько электроаппаратов. При этом, цепи, образованные аппаратами, могут быть как достаточно простыми, так и весьма сложными, разветвлёнными.

Все электрические цепи вагона условно делятся на высоковольтные и низковольтные. Высоковольтные цепи питаются от контактного рельса, на котором имеется среднее напряжение – 825 В. Низковольтные цепи получают питание от аккумуляторной батареи вагона, напряжение которой порядка 70 В.

Высоковольтные электрические цепи условно делятся на силовые и вспомогательные. 

К силовым относят цепи тяговых электрических машин(электродвигателей).

Высоковольтные вспомогательные – это цепи электродвигателя компрессора, печи кабины машиниста и др.

Высоковольтные цепи смежных вагонов не соединяются между собой, т.е. функционируют только внутри данного вагона.

Низковольтные цепи условно делятся на цепи управления и вспомогательные. 

Они включают в себя контроллер и пульт машиниста («кабину») и ответную, исполнительную часть («вагон»).

Цепи управления предназначены для управления работой силовых цепей в ручном или автоматическом режиме.

Низковольтные вспомогательные цепи предназначены для управления работой высоковольтных вспомогательных цепей, а также дверей, аварийного освещения и др.

Низковольтные цепи могут обслуживать как потребности данного вагона (включение фар, красных фонарей, электропечи), так и иметь развитие по всему поезду. В этом случае управление вагонными электрическими цепями производится с помощью т.н. поездных проводов. Это даёт возможность иметь в поезде неограниченное число вагонов, каждый из которых работает совершенно одинаково, выполняя команды с пульта машиниста головного вагона. Команды передаются на вагоны по поездным проводам посредством подачи на них напряжения аккумуляторной батареи. Напряжение на поездные провода может быть подано выключателями, кнопками или специальным групповым командным аппаратом – контроллером машиниста. Таким образом управление работой электрооборудования производится по системе многих единиц.

 

Тяговые электрические машины (ТЭМ)

ТЭМ предназначены для преобразования электрической энергии контактной сети в механическую энергию вращения колесной пары в тяговом режиме и для преобразования механической энергии вращения колесной пары в электрическую энергию в тормозном режиме

На вагонах Ема и 81 серии установлены электрические машины постоянного тока ДК 108 и ДК 117 соответственно.

На моторных вагонах 81-722, 81-723 (Юбилейный) и 81-… (Нева) используются электрические машины переменного тока (асинхронные тяговые двигатели типа HS35533-01RB (фирма Хитачи))

Тяговые двигатели ДК-108 ДК-117

 

           Постоянного тока, коллекторные, последовательного возбуждения, самовентилируемые, обратимые (работают в ходовом режиме как двигатели, в тормозном как генераторы).

Общий вид двигателя представлен на рис.107.

Двигатель состоит из: остова (станины); 4-х главных полюсов, 4-х дополнительных полюсов, якоря, щеткодержателей со щетками, подшипниковых щитов с подшипниками.

 

Рис.107 Тяговый двигатель ДК-117

1-остов; 2-коллекторные люки с крышками; 3-кронштейны для подвески; 4-подшипниковые щиты; 5- вентиляционный патрубок; 6-предохранительные кронштейны

 

Остов (станина) тягового двигателя предназначен для крепления на нем подшипниковых щитов, главных и дополнительных полюсов и является магнитопроводом.      

Главные полюса

 

Главные полюса двигателя предназначены для создания основного магнитного потока, в котором вращается якорь с обмоткой. Главный полюс представляет собой стальной сердечник, на который надевается катушка из изолированного медного провода (см. рис.109.). Полюс состоит из сердечника и катушки. Сердечник изготавливается из листов электротехнической стали для уменьшения электрических потерь на вихревые токи. Зазор между якорем и главными полюсами составляет 2,5 мм. у ДК-117 и 3,25 мм. у ДК-108. Ввиду этого, у ДК-108 затруднено самовозбуждение в тормозном режиме – в режиме генерации тока. Поэтому на главных полюсах намотаны дополнительные подмагничивающие обмотки, включаемые с помощью контактора ТШ только в тормозном режиме и помогающие электрической машине быстрее самовозбудиться.

 

Рис.109 Главный и дополнительный полюса

1-главный полюс;2- катушка; 3-сердечник; 4-дополнительный полюс

 

Дополнительные полюса

 

Дополнительные полюсы предназначены для создания магнитного потока, уменьшающего реакцию якоря, улучшающего коммутацию двигателя и его технические характеристики. Дополнительные полюса устанавливаются между главными.

 

Дополнительный полюс состоит из литого сердечника (3) и катушки (2).

Катушки дополнительных полюсов - однослойные из шинной меди на ребро. Число витков - 15.

Якорь

 

Якорь предназначен для создания вращательного момента двигателя и тормозного момента генератора. Якорь представлен на рис.111.

 

Рис.111 Якорь ТЭД ДК-117

 

Якорь состоит из вала (1), коллектора (2), обмотки (3), вентилятора (4), сердечника (5).

Вал двигателя изготавливают из стали 45.

Сердечник (5) предназначен для укладки в него обмотки якоря (3) и является частью магнитной цепи двигателя. Сердечник собирают из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов листы изолируют один от другого тонким слоем лака. Листы собирают в общий пакет, который насаживают на вал якоря на шпонке. В каждом листе имеются: отверстие со шпоночной канавкой для насадки на вал якоря; вентиляционные отверстия и пазы для укладки обмотки якоря. Верхняя часть пазов имеет форму «ласточкиного хвоста» для клинового крепления обмотки.

 

Обмотка (3)

В двигателе ДК-117 применяется петлевая обмотка, а в ДК-108 волновая обмотка. Чтобы обмотка не выпадала из пазов, в пазовою часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом.

 

Коллектор (2)Коллектор предназначен для распределения тока по проводникам якоря таким образом, что в проводниках, находящихся под «северным» полюсом, ток протекает в одном направлении, а в проводниках, находящихся под «южным полюсом», – в другом. Это необходимо для получения максимального вращающего момента двигателя.

Кронштейны щёткодержателей крепятся к подшипниковому щиту и предназначены для крепления щёткодержателей со щётками, а также входящих в двигатель проводов и перемычек.

.

 

Щетки и щеткодержатели

Для отвода тока от вращающегося коллектора и подвода к нему тока применяется щеточный аппарат - щетки и щеткодержатели. Всего четыре щеткодержателя и восемь щеток. Общий вид щеткодержателя и щеток представлен на рис.113.

Щетки (1) имеют прямоугольную форму. Применяются исключительно электрографитированные, обладают хорошими коммутирующими свойствами, значительной механической прочностью и способностью выдерживать большие перегрузки.

Щетки устанавливают в щеткодержатели (2). Для снижения переходного сопротивления между щеткодержателем и щеткой, к щетке прикрепляют медный гибкий проводник сечением 2,5 мм2, который крепят к щеткодержателю.

Рис.113 Щеткодержатель со щетками

Одним из условий хорошей работы щеток является надежный контакт между щеткой и коллектором, который достигается при помощи нажимного пальца (3), смонтированного на щеткодержателе и качественной притиркой щеток к поверхности коллектора.

Щеткодержатели укрепляют на изоляторах (4) непосредственно к подшипниковому щиту, имеют гребенку для возможной регулировки зазора между коллектором и щеткодержателем.

Щеткодержатели состоят из литого латунного корпуса.

 

        

 

Принцип действия электрических машин постоянного тока

Правило Буравчика:

Если поступательное движение Буравчика совпадает с направлением тока в проводнике, то вращательное движение его рукоятки указывает направление магнитных линий поля, образующегося вокруг этого проводника

 

Определение направления силы Ампера (правило левой руки):

 

   

Вокруг любого проводника с током образуется магнитное поле. Если проводник с током поместить внутрь другого магнитного поля, то в результате взаимодействия двух магнитных полей образуется выталкивающая сила F, направление которой определяется по Правилу левой руки:

Если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в ладонь, а 4 пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление действия выталкивающей силы.

Таким образом, зная направление тока в проводнике и это простое правило, можно определить направление вращения якоря электродвигателя, а если изменить направление тока в якоре или в главных полюсах, то изменится и направление выталкивающей силы, действующей на проводник с током.

 

Если рамку, сделанную из проводника, закрепить на оси и подключить её к источнику ЭДС, то по проводнику начнёт протекать ток, создавая вокруг него магнитное поле. Взаимодействие магнитного поля, созданного полюсами, с магнитным полем вокруг проводника приведёт к возникновению выталкивающей силы. Если, допустим, под северным полюсом направление тока в рамке «от нас», то на верхнюю часть рамки будут действовать силы, направленные влево, а под южным – вправо. В результате взаимодействия этих сил создаётся вращающий момент и рамка начинает вращаться вместе с осью в направлении действия выталкивающей силы.

При этом рамка и ось будут вращаться рывками каждые пол-оборота. Если же на оси закрепить несколько подобных рамок (по окружности) и обеспечить подачу на них питания строго в момент нахождения рамки под полюсами, то вращение оси будет непрерывным. Таким образом, если данную ось (вал) соединить через карданную муфту с редуктором колёсной пары, то она начнёт вращаться, приводя в движение вагон. Если в два раза увеличить количество полюсов, то вращающий момент (сила тяги) увеличится также вдвое.

Принцип работы ДК-108, ДК-117 в тяговом режиме:

основан на использовании взаимодействия тока, протекающего по проводникам якоря, с магнитным потоком главных полюсов. В результате взаимодействия, на каждый проводник с током действует электромагнитная сила, величина которой прямо пропорциональна току и магнитному потоку F ~ (I, В), где I – ток якоря, В – магнитная индукция.

Направление силы определяется по правилу левой руки. Сила создает вращающий момент Мвр., который приводит якорь с проводниками во вращение.

 

Определение направления ЭДС индукции (правило правой руки):

 

Если в магнитное поле поместить проводник и перемещать его так, чтобы он пересекал силовые линии внешнего магнитного поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции. ЭДС индукции возникнет в проводнике даже в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями. Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечёт электрический ток, называемый индукционным током. Явление возникновения ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией. Иными словами: электромагнитная индукция - это процесс превращения механической энергии в электрическую.

 Направление ЭДС определяется по Правилу правой руки:

Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля от обмоток возбуждения, а отогнутый большой палец направить по направлению вращения якоря, то 4 вытянутых пальца укажут направление ЭДС.

Принцип работы ДК-108, ДК-117 в тормозном (генераторном) режиме:

основан на использовании явления электромагнитной индукции. Согласно этому явлению, в проводниках якоря, пересекающих силовые линии магнитного поля главных полюсов, индуктируется электродвижущая сила Е – ЭДС индукции, величина которой прямо пропорциональна скорости вращения якоря и величине магнитного потока полюсов: Е ~ (n, Ф), где n – скорость вращения якоря, Ф – основной магнитный поток.

Направление ЭДС определяется по правилу правой руки. Так как все проводники якоря соединены последовательно, то ЭДС всех проводников складываются, создавая ЭДС генератора. Таким образом, при движении вагона на выбеге, за счет остаточного магнитного потока главных полюсов, тяговая электрическая машина вырабатывает ЭДС, то есть превращается в генератор. При замыкании цепи якоря на нагрузку (пуско-тормозное сопротивление) по проводникам начинает протекать ток, имеющий направление, совпадающее с направлением ЭДС. С этого момента начинается взаимодействие проводника с током и магнитного поля (возникает электромагнитная сила). В результате этого взаимодействия к якорю прикладывается момент силы, направление которого противоположно направлению вращения якоря (определяется по правилу левой руки) . Следовательно, скорость вращения якоря будет уменьшаться.

 


Дата добавления: 2018-04-15; просмотров: 711; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!