ОЦЕНКА ПОГРЕШНОСТИ ЭКСПЕРИМЕНТА



Министерство образования и науки России

Федеральное государственное бюджетное образовательное

Учреждение высшего профессионального образования

«Казанский национальный исследовательский

Технологический университет»

ТЕХНИЧЕСКАЯ

ТЕРМОДИНАМИКА

Методические указания

К лабораторным работам

2015

Министерство образования и науки России

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Казанский национальный исследовательский

технологический университет»

 

 
80 – летию кафедры ТОТ посвящается

 

 


ТЕХНИЧЕСКАЯ

ТЕРМОДИНАМИКА

 

Методические указания

к лабораторным работам

 

 

Казань

Издательство КНИТУ

2015

УДК 621.1.016.7(07)

 

Составители: доц. М. С. Курбангалеев доц. А. А. Мухамадиев доц. И. Х. Хайруллин  

 

Техническая термодинамика : методические указания к лабораторным работам / сост. : М. С. Курбангалеев, А. А. Мухамадиев,              И. Х. Хайруллин; М-во образ. и науки России, Казан. нац. исслед.         технол. ун-т. – Казань : Изд-во КНИТУ, 2014. – 60 с.

 

 

Методические указания включают  два общих теоретических раздела в кратком изложении и четыре лабораторные работы по наиболее важным разделам дисциплины «Техническая термодинамика».

Предназначены для студентов всех форм обучения, изучающих дисциплину «Техническая термодинамика».

Подготовлены на кафедре «Теоретические основы теплотехники».

 

 

Печатаются по решению методической комиссии института химического и нефтяного машиностроения

 

Рецензенты: доц. С. А. Бурцев доц. Д. И. Сагдеев

 

 

ВВЕДЕНИЕ

Успешному усвоению технической термодинамики способствует проведение самостоятельных исследований процессов и измерение параметров веществ. Ознакомление с приборами и методикой теплотехнических измерений, обработка результатов экспериментов позволяет лучше понять и оценить возможности дисциплины. Методические указания содержат лабораторные работы по курсу «Техническая термодинамика», входящему в состав большинства общетехнических дисциплин, преподаваемых на кафедре «Теоретические основы теплотехники» Казанского национального исследовательского технологического университета.

Отбор лабораторных работ осуществлялся с целью охвата наиболее важных разделов изучаемого предмета. В ходе выполнения этих работ студенты на основе экспериментальных исследований закрепляют пройденный лекционный материал по основным теоретическим разделам термодинамики, таким как: «Теплоемкость», «Реальный газ» и «Влажный воздух»

В методических указаниях представлено краткое изложение теоретического материала, рассмотрена методика проведения опытов и их обработки. Наличие теоретической части особенно важно в условиях, когда лабораторные работы проводятся до чтения лекций. В ходе обработки студенты имеют возможность выработать и закрепить навыки работы со справочными данными, диаграммами и градуировочными графиками.

Кроме того, в работу включены отдельные разделы «Теплотехнические измерения» и «Оценка погрешности измерений», знакомящие студентов с общими принципами измерений и расчета погрешности результатов опытов.

Данная работа может быть использована при работе со студентами технических направлений как механического, так и технологического профиля всех форм обучения.

 

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ


1. Перед проведением лабораторной работы необходимо уяснить содержание задачи, поставленной перед экспериментальным исследованием, ознакомиться с основами теории изучаемого явления, методикой проведения эксперимента и физической сущностью измеряемых величин.

2. Включение и выключение лабораторной установки производится преподавателем.

3. Во избежание несчастных случаев запрещается заходить за имеющиеся ограждения, трогать приборы, расположенные за лицевой частью установки, облокачиваться на приборы.

4. Запрещается оставлять без надзора включенную установку.

5. В процессе выполнения работы необходимо строго выдерживать указанную в данных методических указаниях последовательность операций и заданные режимы.

6. Результаты измерений в каждом режиме необходимо показать преподавателю и только после этого переходить к следующему режиму.

7. После ознакомления с правилами по технике безопасности необходимо расписаться в журнале.


ТЕПЛОТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ

 

Все теплотехнические измерения можно разделить на прямые и косвенные. Прямые измерения производятся с помощью специальных приборов, градуированных в единицах искомых величин. Например, прямое измерение температуры осуществляется с помощью термометра, отградуированного в °С. При косвенных измерениях значения искомой величины находятся на основании прямых измерений физических величин, связанных с искомой величиной функциональной зависимостью

 

                                                                       (1)

Например, при измерении температуры с помощью термопар проводятся прямые измерения е (мB) – термоЭДС в цепи термопары с помощью милливольтметра, и по зависимости t = f (e, мB) устанавливается искомая температура t, °С.

Измерения температур

 

Измерения температур в лабораторных работах проводятся как прямые – ртутными и спиртовыми термопарами, так и косвенные – хромель-алюмелевыми и хромель-копелевыми термопарами. Используется дифференциальная термопара, у которой оба спая являются рабочими: один, «горячий» спай, помещается в исследуемую среду, другой, «холодный» спай, находится при комнатной температуре t0, величину которой мы знаем. Измерительный прибор милливольтметр показывает термоЭДС , пропорциональную разности этих температур . По предварительно построенному градуировочному графику  устанавливается значение , а затем рассчитывается искомая температура:

                            .                                                   (2)

 

Измерение давления

 

В практике теплотехнического эксперимента измеряют абсолютное, избыточное и вакуумметрическое давление.

Абсолютное давление р есть полное давление, испытываемое газом или жидкостью, равное сумме избыточного (ризб.) и атмосферного (В) давлений:

                            .                                              (3)

Если абсолютное давление р меньше атмосферного В, то такое давление называется вакуумметрическим рвак:

                            .                                              (4)

Абсолютное и избыточное давления измеряются манометрами, атмосферное давление – барометрами, разность давлений – дифманометрами.

Манометры с трубчатой пружиной часто используются для измерения избыточного давления (атм., кПа, МПа, кгс/см2 и др.), барометры показывают абсолютное атмосферное давление (мм рт. ст., кПа).

Измерение расходов

 

Приборы для измерения объема или массы потока вещества, проходящего через сечение канала в единицу времени, т.е. расхода (объемного , м3/с или массового , кг/с), называются расходомерами. В качестве измерителей расхода используются напорные трубки, суживающие устройства (диафрагмы, сопла), различного типа счетчики.

В большинстве лабораторных установок для измерения небольших расходов применяются расходомеры постоянного перепада давлений – ротаметры. Они представляют собой коническую стеклянную трубку, внутри которой помещается поплавок. Под действием восходящего потока жидкости или газа поплавок занимает определенное положение на высоте трубки, соответствующее установившемуся расходу вещества. При увеличении расхода поплавок смещается вверх, обеспечивая необходимый кольцевой зазор между коническим корпусом канала и поплавком.

Ротаметры предварительно градуируются. При этом устанавливается графическая зависимость положения поплавка П (фиксируется по верхней кромке) от объемного ( ) или массового ( ) расхода:

                             или .                        (5)

 

Измерение тепловых потоков

 

Количество подведенной теплоты за единицу времени – тепловой поток , (Дж/с, Вт) – можно рассчитать по косвенным измерениям. Рассмотрим два подхода.

Для упрощения проведения экспериментов в лабораторных установках часто используется электрический обогрев (например, в лабораторной работе 22). Согласно закону Джоуля-Ленца тепловой поток, выделяющийся в электронагревателе:

                            , Вт,                                   (6)

где I – сила тока в электронагревателе, А;

    Uэл – напряжение, подаваемое на электронагреватель, В.

Тепловой поток можно также рассчитать на основе 1-го закона термодинамики (например, в лабораторной работе 21):

                            , Вт,                         (7)

где  - массовый расход потока вещества, кг/с;

    сm – средняя массовая теплоемкость вещества, Дж/(кг×К);

    t1, t2 – температура на входе и выходе соответственно, °С.

 

По измеренным или известным величинам, входящим в правую часть уравнений (6) и (7), рассчитываются искомые тепловые потоки .

Более детально вопросы измерения теплотехнических величин приведены в [1].


ОЦЕНКА ПОГРЕШНОСТИ ЭКСПЕРИМЕНТА

 

Общие сведения

 

При проведении экспериментов часто искомая величина непосредственно не измеряется. Она рассчитывается по соответствующим формулам, а величины, входящие в эти формулы, измеряются в опыте. Так, например, теплоемкость

                                                                               (1)

определяется путем измерений количества теплоты Qэл, массового расхода теплоносителя  и разности его температур Dt, а количество тепла, выделяемого в электронагревателе в единицу времени,

                                , Дж/с, Вт                              (2)

– по измеренным значениям силы тока I и напряжения в цепи электронагревателя Uэл.

Измерение величин, входящих в правую часть уравнений (1) и (2), осуществляется с некоторой погрешностью, поэтому получаемая в результате расчета интересующая нас величина теплоемкости также имеет определенную погрешность [1, 2]. Источниками погрешности измерений являются погрешности приборов, несовершенство методики измерения, недостаточно строгое поддержание требуемого режима, а также отдельные ошибки, зависящие от самого экспериментатора.

Погрешности подразделяются на систематические, случайные и промахи. Систематическими называются погрешности, остающиеся постоянными или изменяющимися по определенному закону. Сюда относят погрешности приборов и ошибки методики измерения. Случайными называются погрешности, принимающие при повторных измерениях различные взаимно несвязанные значения. Промахами называют грубые ошибки, допущенные в процессе измерения, существенно превышающие систематические или случайные погрешности, объясняемые объективными условиями измерения. Причинами промахов являются чаще всего ошибки наблюдателя или неисправности устройств информации.

Погрешности могут быть абсолютными в единицах измеряемой величины, относительными и приведенными. Абсолютной погрешностью измерения D называют алгебраическую разность между значениями х, полученными при измерении, и истинными значениями Х определяемой величины, т.е. D = х - Х. Относительная погрешность – это погрешность, выраженная в процентах или долях от значений измеряемой величины: . Приведенной называют погрешность , выраженную в процентах от какого-либо нормирующего значения , чаще всего от диапазона измерения, определяемого рабочей частью шкалы прибора:

                         .

Качество измерительного прибора оценивается классом точности. Чаще всего класс точности принимается равным допустимой приведенной погрешности.

 

 


Дата добавления: 2018-04-05; просмотров: 561; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!