Методы диагностики хромосомных болезней



 

Для подтверждения (или установления) диагноза хромосомной болезни используют цитогенетические методы. Наибольшее значение имеют:

1. Метод кариотипирования.

2. Метод определения полового хроматина.

Метод кариотипирования.

Позволяет изучить кариотип в целом (т.е. число и структуру хромосом). Кариотип изучают в делящихся клетках на стадии метафазы митоза, т.к. в этой стадии хромосомы максимально спирализованы и хорошо видны в световой микроскоп. Препарат метафазных хромосом называется метафазной пластинкой. Для диагностики боль­шинства хромосомных болезней метафазные пластинки изготавливают из лимфоцитов периферической крови. Пригодны также фибробласты кожи, клетки красного костного мозга. Для пренатальной диагностики культивируют клетки амниотической жидкости, ворсин хориона, плаценты, эмбриональные ткани.

Рассмотрим получение метафазной пластинки из лимфоцитов пе­риферической крови.

Для кариотипирования используют венозную кровь (I-2 мл) или из пальца. Кровь помещают в специаль­ную питательную среду (Среда 199 "Игла" и др.) с фитогемагглютинином /ФГА/. ФГА получают из бобовых растений, он вызывает иммунологическую трансформацию лейкоцитов иих деление. Культуру поме­щают в термостат на 48-72 часа.

За 2-3 часа до конца культивирования добавляют колхицин (или колцемид). Колхицин получают из растения безвременника весеннего. Он разрушает веретено деления и останавливает деление клетки на стадии метафазы. Следующий этап изготовления препарата—обработка клеток гипотоническим раствором хлорида калияили нитрата натрия. В гипотоническом растворе клетки набухают, межхромосомные связи рвутся и хромосомы свободно плавают в цитоплазме. Клеточную суспензию фиксируют и наносят на предметное стекло. Привысыхании фик­сатора клетки и хромосомы прочно прикрепляются к стеклу. Препарат окрашивают чаще всего по Романовскому-Гимзе. Такая окраска называ­ется простойили рутинной. Все хромосомы окрашиваются равномерно по всей длине. Рутинная окраска позволяет подсчитать число хромо­сом, распределитьих по группам и обнаружить грубые хромосомные аберрации.

Для тонкойдиагностики хромосомных аберраций с середины 70-х годов используют метод «дифференциальной окраски хромосом».

Наиболее широко используют G-окраску. Хромосомы перед окрас­кой по Романовскому-Гимзе предварительно обрабатывают протеазами (трипсином). Хромосомы после окраски становятся полосатыми. Чере­дованиетемных и светлых полос индивидуально в каждой паре хромо­сом. Предполагают,что темные полосы - гетерохроматиновыеучастки,а светлые - эухроматиновые.

Определение полового хроматина. Половой хроматин - это спирализованная Х-хромосома. Одна из Х-хромосом у женщин инактивируется на 16-19 сутки эмбрионального развития, а вторая остаетсяактивной. Спирализованная Х-хромосома обнаруживается в ядрахсоматическихклеток в виде темной, хорошо окрашивающейся глыбки.

Методика определения полового хроматина в буккальном соскобе следующая. После предварительного полоскания ротовой полости сто­матологическим шпателем берут соскоб эпителия внутренней поверхно­сти щеки у коренных зубов. Соскоб наносится равномерным слоем на предметное стекло, окрашивается в течение 2 минут ацетоарсеином, за­тем покрывается покровным стеклом. Излишки краски удаляют с помо­щью фильтровальной бумаги. Подсчет телец полового хроматина прово­дят под иммерсией в круглых или овальных ядрах с ненарушенной ядер­ной мембраной. В норме у женщин обнаруживают половой хроматин в более 20% клеток, а у мужчин он в норме отсутствует.

Метод используют для диагностики хромосомных болезней, свя­занных с изменением числа Х-хромосом.

Существует также методика определения У-хроматина, которая используется для диагностики синдрома полисомии У.

Молекулярно-генетические методы диагностики наследственных болезней. ДНК-диагностика.

Молекулярно-генетические методы предназначаются для выявления вариаций в структуре исследуемого участка ДНК (аллеля, гена, региона хромосомы). В основе этих методов лежат манипуляции с ДНК и РНК. Это сложные методы диагностики, требуют определённых лабораторных условий и подготовки квалифицированного персонала. Молекулярно-генетические методы проводят в несколько этапов. Первый этап всех методов – получение образцов ДНК или РНК. Для этого используют каплю крови, лейкоциты, культуры фибробластов, соскоб эпителия со слизистой оболочки, волосяные луковицы. Выделенная ДНК одинаково пригодна для проведения различных вариантов и может долго сохраняться в замороженном состоянии.

Следующим этапом молекулярно-генетических методов является накопление (амплификация) нужных фрагментов ДНК. Его обеспечивает полимеразная цепная реакция (ПЦР) в invitro.

Метод амплификации (умножение числа копий определённого фрагмента ДНК) с помощью ЦПР позволяет в течение короткого времени размножить определённую последовательность ДНК в количестве, превышающем исходную в миллион раз.

Следующий этап молекулярно-генетической диагностики является рестрикция ДНК на фрагменты. Рестрикция ДНК (разрезание, разрывание) производится с помощью рестриктаз, относятся к группе бактериальных эндонуклеаз.

Разделение фрагментов ДНК обеспечивается методом электрофареза на агарозном или полиакриламидном геле. В процессе электрофареза каждый фрагмент ДНК занимает определённое положение в геле.

После обработки геля этидия бромидом, который связывается с ДНК, проводят ультрофиолетовое облучение и обнаруживают участки свечения. Существуют и другие методы окраски геля и выявления фрагментов ДНК.

ДНК-диагностика

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:

1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,

2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы).

Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.

Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др. Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

Косвенные методы ДНК-диагностики основаны на анализе сцепления с исследуемым геном определенного полиморфного локуса (маркера), с помощью которого можно производить маркировку как мутантных, так и нормальных аллелей и проанализировать их передачу в поколениях, т.е. среди родственников обследуемого лица. Это особенно важно при решении вопроса о пренатальной (дородовой) диагностике наследственного заболевания. При использовании косвенных методов ДНК-диагностики следует помнить — чем теснее сцепление между маркерным локусом и мутантным геном, тем точнее диагноз. Чтобы свести до минимума ошибку диагностики, необходимо по возможности использовать внутригенные маркеры или использовать два маркерных локуса, фланкирующих мутантный аллель.

Таким образом, косвенная ДНК-диагностика проводится в следующих случаях:

1) когда ген не идентифицирован, а лишь картирован на определенной хромосоме,

2) когда методы прямой ДНК-диагностики не дают результата (например, в силу большой протяженности гена или широком спектре мутационных изменений,

3) при сложной экзонно-интронной организации гена.

При использовании косвенных методов ДНК-диагностики требуется семейный анализ аллелей полиморфных маркеров. Для косвенной диагностики могут использоваться так называемые гипервариабельныесателлитные повторы.

Косвенные методы ДНК-диагностики могут использоваться в пренатальной диагностике практически для всех моногенных заболеваний. Однако для этого необходимо иметь знания о том, что локус является высокополиморфным и находится вблизи от мутантного гена или внутри него. Поэтому для диагностики требуется обследование как можно большего числа родственников (в первую очередь родители—дети), чтобы проследить путь передачи маркеров потомству. Это повышает информативность выбранного маркера.

 


Дата добавления: 2018-04-05; просмотров: 3685; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!