История выходит из-под контроля 11 страница



Взяв новые заряды, похожие на десятифунтовые мешки с мукой, юнга возвращался на сцену ужасного спектакля, которую только что покинул. Иногда усердие юнг было чрезмерным. В 1761 году на борту «Громовержца» «пороховые обезьяны» во время ночного боя слишком спешили, и пакет с порохом в темноте остался без присмотра. Искра воспламенила его, при взрыве погибли тридцать человек.

Юнги носились взад и вперед по палубе, увертываясь от пушек, прыгающих от отдачи, и от снопов огня, вылетавших из запальных отверстий и опалявших бимсы верхней палубы. Они знали, что смерть в любую секунду готова принять их в объятия. Искра, попавшая в картуз одного мальчика, подожгла его опасный груз. «Порох вспыхнул и сжег почти всю плоть на его лице, — пишет очевидец. — Бедный мальчик воздел руки вверх, словно заклиная о помощи, но еще одно ядро тотчас разорвало его пополам».

Морские сражения практически всегда окутаны флером славы. Адмирал Горацио Нельсон — один из тех, кто довел приемы морского боя до высших степеней жестокости, — сейчас триумфально стоит на своей величественной колонне на Трафальгар-сквер. Но даже с поправкой на общую жестокость войны морской бой кажется верхом безумия. Две команды бедных, неграмотных людей, больных цингой, насильно уведенных из дома и запертых на корабле, палят друг в друга прямой наводкой из огромных пушек — ритуал почти непостижимой дикости и варварства. И то, что этот ритуал достиг расцвета именно в век Просвещения, — глубокий парадокс, объяснить который не в состоянии ни одна теория политических конфликтов.

 

Глава 7

Селитряно-воздушный дух

 

Внимание философов, размышлявших о первоначалах мира, всегда привлекал огонь. В V веке до н. э. грек Гераклит заявлял, что космос «всегда был, есть и будет вечно живой огонь, мерно возгорающийся, мерно угасающий»[31]. Спустя столетие Аристотель включил огонь в число природных начал — наряду с водой, воздухом и землей. Все мыслители считали огонь предметом, первоэлементом, одним из кирпичиков мироздания. До XVII века никому не приходило в голову, что огонь — это нечто совсем иное: реакция, процесс, активное взаимодействие крошечных элементарных частиц.

Изобретение пороха радикально повлияло на ход мыслей теоретиков, размышлявших о сути огня и о природе реальности вообще. Порох стал одним из катализаторов волнующего брожения в умах, которое охватило Европу в XVII столетии и дало толчок развитию современной науки. Порох — воплощение стихии огня — мог дать ключ к пониманию этого лучезарного природного явления. Серу мыслители отождествляли с «серной сущностью», воплощением горючих свойств. Древесный уголь, сгорающий полностью, почти не оставляя золы, явно был идеальной пищей для огня. А вот селитра, которая и давала пороху жизнь, оставалась загадкой. Чтобы объяснить ее действие, требовалась надежная теория.

Однако химии — науке, которая в конечном счете и объяснит действие пороха, — еще только предстояло выработать собственные методы. Естествоиспытатели, изучавшие явления природы, не имели, в отличие от математиков или астрономов, предшественников в классической древности. Тем, кто пытался познать материальный мир, не могли помочь ни Евклид, ни Птолемей. Предшественниками натуралистов были алхимики, чародеи, составители эликсиров. Нарождающаяся область знания еще не была структурирована, не была вооружена последовательным научным методом. И порох, который с точки зрения практической был наиболее важным шагом на пути овладения силами природы, с точки зрения теории оставался полной загадкой.

В Европе, как и в Китае, алхимики разработали некоторые лабораторные методы и процедуры для очистки химических веществ. Их опыт работы с селитрой был очень важен для ранней истории пороха. Однако со временем причудливые гипотезы алхимиков стали помехой на пути прогресса. Алхимики пытались объяснить мир теорией резонансов, соответствий, объединяющих невидимыми связями планеты и металлы, небеса и жизнь человеческую. Материю, согласно их представлениям, пронизывали божественные эманации, звезды были живыми. Алхимик не видел разницы между наукой и мистикой, между эмпирическим наблюдением и вольной фантазией.

Противоположностью этого целостного взгляда на мироздание была философия Аристотеля. Его в высшей степени долговечные идеи (в том числе и представление о мире, в основе которого лежат четыре первоэлемента), по-прежнему пользовались влиянием во времена Шекспира. В университетах Аристотеля чтили как источник всех знаний, хотя его языческая философия и не вполне укладывалась в христианскую концепцию Вселенной.

Однако неутомимые умы позднего Ренессанса начали постепенно подвергать сомнению и Аристотеля, и алхимию. Изобретатели, уже подарившие человечеству компас, печатный станок и порох, могли, как предсказывал Фрэнсис Бэкон, легко обнаружить и новые чудеса, о которых древние и не подозревали. Постепенно формировался новый научный подход — систематический эксперимент. Университетские теоретики начали присматриваться к работе пороховых дел мастеров: здесь они наблюдали явления, которые не могли объяснить. Их попытки разобраться в происходящем сблизили практику и теорию, помогли пролить свет знания на неведомое.

Роберт Гук родился в 1635 году. Он рос таким болезненным ребенком, что его отец, священник с острова Уайт, решил не отправлять мальчика в школу. Парень читал дома книжки, мастерил часы, возился с кустарными ружьями и порохом. После смерти отца тринадцатилетний Роберт отправился в Лондон, пошел учиться на портретиста, но бросил это и поступил в лучшую школу Англии. Через десять лет, уже в Оксфорде, он встретил Роберта Бойля. Опыты, которые поставят эти ученые, в корне изменят представление о мироздании, казавшееся незыблемым в течение двух тысяч лет.

Бойль происходил из совершенно иной социальной среды, нежели Гук, ставший его ассистентом. Сын ирландского аристократа, он был чрезвычайно богат и мог позволить себе посвятить время изучению природы — для него это было ученое хобби. Гуку, напротив, приходилось зарабатывать свой хлеб. Его покровитель устроил для него вакансию куратора экспериментов в группе прогрессивных лондонских ученых, которым скоро предстоит основать Королевское общество. Так Гук стал первым в мире человеком, зарабатывающим на жизнь наукой.

Гук и Бойль разработали насос, способный создать почти полный вакуум под стеклянным колоколом. Выяснилось, что в безвоздушном пространстве не может гореть свеча. Затем обнаружилось, что если при помощи увеличительного стекла сфокусировать солнечные лучи на куске серы, помещенном в вакууме, сера дымится, но не загорается. Воздух явно играл какую-то роль в процессе горения. Однако когда ученые поместили в вакуум раскаленную докрасна железную пластинку, а затем насыпали на нее порох, тот вспыхнул, как обычно. Как это объяснить? Что этот опыт говорил о природе огня? Какой свет он мог пролить на загадку пороха?

Бойль не смог сформулировать удовлетворительного объяснения. В конце концов он пришел к выводу, что селитра выделяет «смешанные испарения, подобные воздуху», однако это наблюдение не поддерживала ни одна из существующих теорий. Книга Бойля «Химик-скептик» стала одним из основополагающих документов новой науки — химии. Однако, отвергнув аристотелевскую концепцию четырех первоэлементов, Бойль так и не сумел предложить для нее надежную замену. Опыты Бойля продолжил его бывший ассистент.

Сэмюел Пепис в своем дневнике называл Роберта Гука «величайшим и самым многообещающим из всех, кого я знаю». Измотанный работой, но по-прежнему блестящий Гук обнаружил связь опытов, которые он проводил вместе с Бойлем, с двумя другими фактами. Первый из них был описан еще итальянским пиротехником Бирингуччо. Металл, нагреваясь, увеличивается в весе, образуя окалину. Кусок свинца, к примеру, после нагревания весит почти на десять процентов больше. Второй факт продемонстрировал сам Гук: если откачать воздух из сосуда, в котором сидит мышь, она умрет. Гук чувствовал, что дыхание, прокаливание металла и горение как-то связаны между собой.

В то время никто не знал, что такое воздух. Бойль предположил, что в воздухе содержатся «испарения», которые тот захватывает из земли и солнечного света. Может быть, эти испарения играют какую-то роль во всех трех процессах? Гук считал, что разгадку может подсказать порох. В воздухе, по его предположениям, тоже имелось нечто вроде селитры — какое-то вещество, необходимое и для горения, и для дыхания, и для образования окалины при нагревании. Подобно пороху, в состав которого входила горючая сера, это вещество содержало «сущность» горючего элемента. «Разложение на составные части серных или горючих веществ, — заявлял Гук, — происходит под действием присущей им субстанции, смешанной с воздухом. А субстанция эта если и не та же самая, что в селитре имеется, то весьма с нею сходна».

Таким образом, Гук предложил первую последовательную теорию горения. Огонь вызывался неким веществом, которое содержалось в воздухе, подобно тому как селитра содержалась в порохе. В состав горючих материалов входила серная «сущность» и воздух, действующий как растворитель. В процессе горения часть горючего материала «растворялась и обращалась в воздух, обретая способность взлетать вверх и вниз вместе с ним». В результате выделялись жар и дым. «Огонь — это не элемент», — заключил Гук в 1665 году. Это было революционное открытие.

Экспериментами Гука крайне заинтересовался его младший современник по имени Джон Мейоу. Он получил степень магистра права в Оксфорде и занимался медицинской практикой в Бате. Мейоу позаимствовал у Гука предположение, что в процессе горения принимала участие только часть воздуха. Ссылаясь на опыты с порохом, он постулировал существование «селитряно-воздушного духа», который содержался и в воздухе, и в селитре. Когда частицы серы или ее горючей «сущности» встречались с «селитряно-воздушными», рождались жар и свет. «Селитряно-воздушный дух и сера вечно враждуют друг с другом, — писал Мейоу. — И по-видимому, именно их борьба порождает все изменения вещей».

Еще только начиная размышлять о свойствах пороха в XIII столетии, люди уловили связь между грохотом взрыва и раскатом грома. Взрыв и был громом, низведенным на землю. Теперь Мейоу теоретически обосновал это поэтическое сравнение: взрыв порохового заряда был не просто похож на раскат грома — на самом деле и гром, и взрыв происходили из-за взаимодействия «сущностей» селитры и серы, веществ, входивших в состав пороха. Все химические реакции были результатом столкновения этих «сущностей». Будучи врачом, Мейоу пришел к выводу, что дыхание — это поглощение организмом «селитряно-воздушного духа». Он обнаружил, что в вакууме артериальная кровь выделяет пузырьки газа, а венозная — нет, и предположил, что сокращение мышц есть результат крошечных «взрывов серы и селитры». Всем миром, интуитивно чувствовал он, движут простые силы, те же, что скрыты в порохе.

Теорию Мейоу — в частности, ту ее часть, где шла речь о метеорологических феноменах, — подтверждали самые обычные наблюдения. Разве в воздухе после грозы не носился легчайший привкус порохового дыма? Разве селитра, добавленная в воду, не делала ее холоднее? Разве она не служила консервантом для мяса? Спекуляции множились. Разумеется, именно селитра, содержащаяся в облаках, вызывает благодаря своим замораживающим способностям снег и град. Ценность селитры в качестве удобрения была давно известна — и фермеры были убеждены, что выпавший весной снег увеличит будущий урожай. И конечно, было совершенно понятно, что именно «сущности» серы и селитры, встречаясь под землей, производят мощные взрывы, которые на поверхности проявляются как землетрясения и извержения вулканов. Обилие серы вокруг Везувия было достаточным доказательством.

Историки науки давно указали, что, если бы Мейоу пришло в голову использовать вместо выражения «селитряно-воздушный дух» слово «кислород», он опередил бы свое время на сотню лет. Однако Мейоу умер в 1679 году в возрасте 38 лет, и к тому времени наука по-прежнему была не способна полностью отказаться от представления, что огонь — это нечто, скрытое внутри горючего вещества.

История продолжилась в Германии: немецкие теоретики вновь обратились к аристотелевским категориям. Они постулировали существование элемента, который отвечает за горение и в изобилии содержится в живой материи. Вспыльчивый профессор Эрнст Шталь назвал это вещество флогистоном — от греческого «горючий» — и построил на нем всеобъемлющую теорию химической реакции. Шталь полагал, что когда какое-либо вещество горит, оно отдает свой флогистон — «дефлогистонизируется». Когда горящую свечу помещали под стеклянный колпак, воздух внутри перенасыщался флогистоном, и свеча гасла. Горение в вакууме было невозможно, поскольку там не было воздуха, который мог бы поглощать флогистон. Согласно Шталю, флогистон не был тождествен огню, однако был «материей и первопричиной огня». Его теория была принята с восторгом: в течение столетия ее продолжали разрабатывать и изучать пылкие «флогистонисты». Это было последнее «прости» представлению об огне как природном первоэлементе.

Детально разобраться в химии порохового взрыва удастся не скоро: химическая теория будет развиваться медленно. Только в XIX столетии в фокусе исследователей окажется эта сложная, стремительная, протекающая при высокой температуре реакция. Однако к тому времени, когда были полностью разработаны точные научные инструменты и методы XX века, черный порох постепенно вышел из употребления, поэтому многие детали химии его горения остаются не вполне ясными даже сегодня: не было стимула заниматься глубоким изучением технологии, которая по большей части устарела.

Однако исследования, проведенные в конце XIX столетия, показали, что в результате экспериментов, которые на протяжении пятисот лет вели тысячи ремесленников, удалось нащупать соотношение, весьма близкое к теоретически идеальному для наиболее мощного взрыва: 75 процентов селитры, 15 процентов древесного угля и 10 — серы. Именно эта пропорция ингредиентов обеспечивала их полное выгорание.

Температура горения черного пороха — 2138 градусов Цельсия. Такая высокая температура усиливает взрывной эффект, заставляя стремительно расширяться образующиеся в результате горения газы. Однако для артиллеристов она создавала проблемы, поскольку была выше точек плавления и бронзы, и железа, и потому каждый выстрел неизбежно изнашивал канал ствола и запальное отверстие. Серия выстрелов, быстро следующих один за другим, разогревала орудие до опасного предела.

В основе горения пороха лежали сложные химические реакции, варьировавшиеся в зависимости от точного состава конкретной смеси и условий, при которых происходило сгорание. Упрощая, можно сказать, что нитрат калия вступал в реакцию с углеродом и серой, чтобы образовать сульфид калия, газообразную двуокись углерода и азот:

2KNO3 + S + 3С — > K2S + 3СО2 + N2

На самом деле в результате реакции образовывались также соединения калия, окись углерода и следы сопутствующих веществ. Твердые вещества составляли 56 процентов продуктов горения, они выделялись в виде дыма и осадка на поверхности канала ствола. Двуокись углерода, азот и другие газообразные вещества составляли 44 процента. Эти газы при нормальном давлении и температуре занимали бы объем в 280 раз больший, чем изначальный объем пороха. Однако при температуре реакции они расширялись, занимая уже в 3600 раз больший объем и развивая в стволе давление в 20 тонн на один квадратный дюйм, которое и доводило до конца работу взрыва. Чтобы степень расширения газа стала наглядной, представьте себе линейку длиной в ярд (размер порохового заряда), практически мгновенно вырастающую в длину до двух миль (настолько увеличится объем газов).

Главное свойство этой реакции — скорость ее протекания. Кусок каменного угля, сгорающий полностью, на самом деле выделяет при горении больше энергии, чем то же количество пороха, только четверть которого сгорает при взрыве. Однако уголь горит медленно и отдает свое тепло в течение гораздо более долгого периода времени. Порох же превращает всю свою потенциальную энергию в горячие расширившиеся газы за тысячные доли секунды.

В орудийном стволе значительная часть химической реакции проходила прежде, чем ядро трогалось с места. Горячие газы действовали подобно мощной пружине, сжатой между 12-фунтовым снарядом и казенной частью пушки. Поскольку ядро было гораздо легче, чем массивное орудие, оно выталкивалось вперед на чрезвычайно большой скорости, хотя и пушка также испытывала мощный удар отдачи. Начав движение, ядро преодолевало длину ствола за десять тысячных секунды — мгновение ока (моргание глаза) длится в девять раз дольше. За это время снаряд набирал максимальную скорость. Вылетев из жерла в сопровождении грохота расширяющихся газов, клубов дыма и языков пламени, он продолжал свой путь с достаточной кинетической энергией, чтобы пролететь милю или больше.

«Мощь пороха до настоящего времени служила только насилию битвы, — писал в 1673 году голландский ученый Христиан Гюйгенс. — И хотя люди долго надеялись, что кто-нибудь сможет умерить эту великую скорость и стремительность, чтобы приспособить ее для других целей, никому, насколько я знаю, это так и не удалось».

Гюйгенс был гением в эпоху гениев, одним из наиболее одаренных ученых нового поколения. Он вырос в Гааге в 1630-х годах, жил недалеко от Рембрандта и, возможно, встречался с ним. Под руководством домашних учителей он выучился играть на виоле и на лютне, говорить по-гречески и по-итальянски. Поступив в Лейденский университет, Гюйгенс погрузился в интенсивное исследование природы. Его научные интересы были обширны. Он изобрел часы с маятником и изучал кольца Сатурна.

В 70-е годы XVII века Гюйгенс заинтересовался проблемой, ставившей в тупик лучшие умы эпохи. Человек еще со времен Средневековья все более и более умело использовал энергию ветра и воды. Если речь шла о мельнице, эффективность этих сил была бесспорна. Однако многие задачи, особенно в области горного дела, требовали мобильного источника энергии, который легко можно было бы переместить в то или иное место. Тягловые животные — единственная альтернатива в то время — были неудобны и неэффективны. Как создать источник энергии, который можно перевезти куда угодно? Это был непростой вопрос.

Нельзя ли использовать для этого порох и с его помощью привести в действие какую-либо машину? Гюйгенсу достаточно было увидеть, с какой силой взрыв выбрасывал ядро из пушки, чтобы понять: заставить работать огромную энергию, порожденную порохом, — чрезвычайно сложная задача. Однако он был знаком с последними опытами, которые показывали, что воздух сам по себе развивал значительное давление на сосуд, из которого воздух был откачан. Гюйгенс подумал, что этот принцип может позволить ему использовать силу пороха опосредованно. Чтобы осуществить задуманное, он решил использовать давно известные цилиндр и поршень — но не для того, чтобы качать воду, а в качестве источника энергии.

В его moteur a explosion — взрывном двигателе — использовался маленький пороховой заряд, который выталкивал воздух из цилиндра через односторонний клапан. Когда горячий газ внутри остывал и уменьшался в объеме, атмосфера давила на поршень, заставляя его сделать ход. Пороха требовалось только небольшое количество, так что этой силой легко было управлять. В 1673 году Гюйгенсу удалось при помощи маленькой модели двигателя поднять небольшой груз. Ученый надеялся, что, взяв под контроль энергию пороха, можно будет поднимать большие каменные блоки при строительстве, качать воду и вращать мельницы. В отличие от тягловых животных, писал он, этот двигатель «не требует ухода, когда не работает». Он рассчитал, что один фунт пороха может поднять 3000 фунтов на высоту тридцати футов.


Дата добавления: 2018-04-05; просмотров: 192; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!