Измерения теплового излучения - видимый спектр, инфракрасное излучение, ультрафиолетовое излучение



Тепловое излучение – процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Возникновение потока лучей в результате превращения тепловой энергии в лучистую, называется излучением или лучеиспусканием, а обратный переход лучистой энергии в тепловую называют поглощением лучей. В зависимости от температуры излучающего тела его лучеиспускание различно. При температуре ниже 500°С только незначительная часть всех лучей воспринимается глазом как “свет”, а наибольшая часть приходится на долю невидимого теплового излучения. Интенсивность теплового излучения характеризуется излучательной (лучеиспускательной) способностью тела.

Интенсивность теплового излучения измеряют актинометром. Принцип измерения основан на том, что в термопарах, соединенных в виде батареи и окрашенных в черный и белый цвета (пластинки располагаются под крышкой прибора с задней стороны), возникает электрический ток вследствие того, что черные пластинки поглощают больше лучистой энергии и прогреваются до более высокой температуры, а белые — больше отражают. Шкала актинометра градуирована в калориях на 1 см2/мин.

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц). Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами. Подразделяется на ближний, средний и дальний по длине волны.

Ультрафиолетовое излучение(ультрафиолетовые лучи, УФ-излучение) — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·1014—3·1016 Гц). Подразделяется на ближний,средний,дальний,экстремальный по длине волны.

3. Нарисуйте фигуру Лиссажу при равенстве частот и напряжений двух синусоидальных сигналов при фазовых сдвигах 45о  и 900 (0 и 1350), (900 и 1800) (450 и 1350).

Система уравнений:

1) 45 и 90    2) 0 и 135

3) 90 и 180 (45 и 135)

Билет 21

Основные этапы измерения

Измерение — последовательность сложных и разнородных действий, состоящая из ряда этапов [24]. Первым этапом любого измерения является постановка измерительной задачи. Он включает в себя: • сбор данных об условиях измерения и исследуемой ФВ, т.е. накопление априорной информации об объекте измерения и ее анализ; • формирование модели объекта и определение измеряемой величины, что является наиболее важным, особенно при решении сложных измерительных задач. Измеряемая величина определяется с помощью принятой модели как ее параметр или характеристика. В простых случаях, т.е. при измерениях невысокой точности, модель объекта в явном виде не выделяется, а пороговое несоответствие пренебрежимо мало; • постановку измерительной задачи на основе принятой модели объекта измерения; • выбор конкретных величин, посредством которых будет находиться значение измеряемой величины; • формулирование уравнения измерения.

Вторым этапом процесса измерения является планирование измерения. В общем случае оно выполняется в следующей последовательности: • выбор методов измерений непосредственно измеряемых величин и возможных типов СИ; • априорная оценка погрешности измерения; • определение требований к метрологическим характеристикам СИ и условиям измерений; • выбор СИ в соответствии с указанными требованиями; • выбор параметров измерительной процедуры (числа наблюдений для каждой измеряемой величины, моментов времени и точек выполнения наблюдений); • подготовка СИ к выполнению экспериментальных операций; • обеспечение требуемых условий измерений или создание возможности их контроля. Эти первые два этапа, являющиеся подготовкой к измерениям, имеют принципиальную важность, поскольку определяют конкретное содержание следующих этапов измерения. Подготовка проводится на основе априорной информации. Качество подготовки зависит от того, в какой мере она была использована. Эффективная подготовка является необходимым, но недостаточным условием достижения цели измерения. Ошибки, допущенные при подготовке измерений, с трудом обнаруживаются и корректируются на последующих этапах. Третий, главный этап измерения — измерительный эксперимент. В узком смысле он является отдельным измерением. В общем случае последовательность действий во время этого этапа следующая: • взаимодействие средств и объекта измерений; • преобразование сигнала измерительной информации; • воспроизведение сигнала заданного размера; • сравнение сигналов и регистрация результата. Последний этап измерения — обработка экспериментальных данных. В общем случае она осуществляется в последовательности, которая отражает логику решения измерительной задачи: • предварительный анализ.информации, полученной на предыдущих этапах измерения; • вычисление и внесение возможных поправок на систематические погрешности; • формулирование и анализ математической задачи обработки данных; • построение или уточнение возможных алгоритмов обработки данных, т.е. алгоритмов вычисления результата измерения и показателей его погрешности; • анализ возможных алгоритмов обработки и выбор одного из них на основании известных свойств алгоритмов, априорных данных и предварительного анализа экспериментальных данных; • проведение вычислений согласно принятому алгоритму, в итоге которых получают значения измеряемой величины и погрешностей измерений; • анализ и интерпретация полученных результатов; • запись результата измерений и показателей погрешности в соответствии с установленной формой представления. Некоторые пункты данной последовательности могут отсутствовать при реализации конкретной процедуры обработки результатов измерений. Задача обработки данных подчинена цели измерения и после выбора СИ однозначно вытекает из измерительной задачи и, следовательно, является вторичной. Подробно обработка результатов измерений различных типов рассмотрена в гл. 8. Перечисленные выше этапы существенно различаются по выполняемым операциям и их трудоемкости. В конкретных случаях соотношение и значимость каждого из этапов заметно варьирует. Для многих технических измерений вся процедура измерения сводится к экспериментальному этапу, поскольку анализ и планирование, включая априорное оценивание погрешности, выбор нужных методов и средств измерений осуществляются предварительно, а обработка данных измерений, как правило, минимизируется. Выделение этапов измерения имеет непосредственное практическое значение — способствует своевременному осознанному выполнению всех действий и оптимальной реализации измерений. Это в свою очередь позволяет избежать серьезных методических ошибок, связанных с переносом проблем одного этапа на другой.

2. Коэффициент формы кривой -1,11, дайте определение и пояснения.

Под коэффициентом формы понимают отношение действующего значения периодически изменяющейся функции к ее среднему за пол периода значению. В нашем случае коэффициент формы кривой равен -1,11, т.е.:

;


Дата добавления: 2018-04-04; просмотров: 631; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!