Консолидация ИТ инфраструктуры

Nbsp;

Введение в облачные вычисления.

 

В настоящее время технологии "облачных" вычислений приобретают все большую популярность, а концепция CloudComputing является одной из самых модных тенденций развития информационных технологий.

Сегодня под облачными вычислениями обычно понимают возможность получения необходимых вычислительных мощностей по запросу из сети, причем пользователю не важны детали реализации этого механизма и он получает из этого "облака" все необходимое. Ярким примером могут служить поисковые системы, интерфейс которых очень прост, но в то же время они предоставляют пользователям огромные вычислительные ресурсы для поиска нужной информации.

Облачные вычисления представляют собой динамически масштабируемый способ доступа к внешним вычислительным ресурсам в виде сервиса, предоставляемого посредством Интернета, при этом пользователю не требуется никаких особых знаний об инфраструктуре "облака" или навыков управления этой "облачной" технологией.

Cloudcomputing – это программно-аппаратное обеспечение, доступное пользователю через Интернет или локальную сеть в виде сервиса, позволяющего использовать удобный интерфейс для удаленного доступа к выделенным ресурсам (вычислительным ресурсам, программам и данным). Компьютер пользователя выступает при этом рядовым терминалом, подключенным к Сети. Компьютеры, осуществляющие cloudcomputing, называются "вычислительным облаком". При этом нагрузка между компьютерами, входящими в "вычислительное облако", распределяется автоматически.

Облачные вычисления - это новый подход, позволяющий снизить сложность ИТ-систем, благодаря применению широкого ряда эффективных технологий, управляемых самостоятельно и доступных по требованию в рамках виртуальной инфраструктуры, а также потребляемых в качестве сервисов. Переходя на частные облака, заказчики могут получить множество преимуществ, среди которых снижение затрат на ИТ, повышение качества предоставления сервиса и динамичности бизнеса".

C 1994 года вновь начался рост интереса к мейнфреймам. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле, чем распределённая. Многие из идей, заложенных в концепции облачных вычислений также "возвращают" нас к эпохе мэйнфреймов, разумеется с поправкой на время. Еще шесть лет назад в беседе с Джоном Мэнли, одним из ведущих научных сотрудников центра исследований и разработок HP в Бристоле, обсуждалась тема облачных вычислений, и Джон обратил внимание на то, что основные идеи cloudcomputing до боли напоминают мэйнфреймы, только на другом техническом уровне: "Все идет от мэйнфреймов. Мэйнфреймы научили нас тому, как в одной среде можно изолировать приложения, – умение, критически важное сегодня".

Современные инфраструктурные решения

С каждым годом требования бизнеса к непрерывности предоставления сервисов возрастают, а на устаревшем оборудовании обеспечить бесперебойное функционирование практически невозможно. В связи с этим крупнейшие ИТ-вендоры производят и внедряют более функциональные и надежные аппаратные и программные решения. Рассмотрим основные тенденции развития инфраструктурных решений, которые, так или иначе, способствовали появлению концепции облачных вычислений.

· Рост производительности компьютеров. Появление многопроцессорных и многоядерных вычислительных систем, развитие блейд-систем

· Появление систем и сетей хранения данных

· Консолидация инфраструктуры

· Увеличение числа вычислительных модулей в вычислительном центре требует новых подходов к размещению серверов, а также приводит к росту затрат на помещения для центров обработки данных, их электропитание, охлаждение и обслуживание.

· Для решения этих проблем был создан новый тип серверов XXI века — модульные, чаще называемые Blade-серверами, или серверами-лезвиями (blade — лезвие). Преимущества Blade-серверов, первые модели которых были разработаны в 2001 г. изготовители описывают с помощью правила "1234". "По сравнению с обычными серверами при сравнимой производительности Blade-серверы занимают в два раза меньше места, потребляют в три раза меньше энергии и обходятся в четыре раза дешевле".

·

·
Рис. 1.1.Типичный Blade-сервер (SunBlade X6250)

· Что представляет собой Blade-сервер? По определению, данному аналитической компании IDC Blade-сервер или лезвие - это модульная одноплатная компьютерная система, включающая процессор и память. Лезвия вставляются в специальное шасси с объединительной панелью (backplane), обеспечивающей им подключение к сети и подачу электропитания. Это шасси с лезвиями, является Blade-системой. Оно выполнено в конструктиве для установки в стандартную 19-дюймовую стойку и в зависимости от модели и производителя, занимает в ней 3U, 6U или 10U (один U - unit, или монтажная единица, равен 1,75 дюйма). За счет общего использования таких компонентов, как источники питания, сетевые карты и жесткие диски, Blade-серверы обеспечивают более высокую плотность размещения вычислительной мощности в стойке по сравнению с обычными тонкими серверами высотой 1U и 2U.

· Преимущества Blade-серверов

· Рассмотрим основные преимущества блейд-систем:

· Уникальная физическая конструкция. Архитектура блейд-систем основана на детально проработанной уникальной физической конструкции. Совместное использование таких ресурсов, как средства питания, охлаждения, коммутации и управления, снижает сложность и ликвидирует проблемы, которые характерны для более традиционных стоечных серверных инфраструктур. Физическая конструкция блейд систем предполагает размещение блейд серверов в специальном шасси и основным ее конструктивным элементом является объединительная панель. Объединительная панель разработана таким образом, что она решает все задачи коммутации блейд серверов с внешним миром: с сетями Ethernet, сетями хранения данных FiberChannel, а также обеспечивает взаимодействие по протоколу SAS (SCSI) с дисковыми подсистемами в том же шасси. Шасси для блейдов также позволяет размещать в нем необходимые коммутаторы Ethernet или FiberChannel для связи с внешними сетями. Выход на эти коммутаторы из блейд серверов обеспечивают предустановленные или устанавливаемые дополнительно контроллеры. Средства коммутации во внешние сети, интегрированные в общую полку, значительно сокращают количество кабелей для подключения к ЛВС и SAN, чем традиционным стоечным серверам. Блейд сервера имеют общие средства питания и охлаждения. Размещение систем питания и охлаждения в общей полке, а не в отдельных серверах, обеспечивает снижение энергопотребления и повышение надежности.

· Лучшие возможности управления и гибкость. Блейд-серверы принципиально отличаются от стоечных серверов тем, что серверная полка имеет интеллект в виде модулей управления, который отсутствует в стойках при размещении традиционных серверов. Для управления системой не требуется клавиатура, видео и мышь. Управление блейд системой осуществляется с помощью централизованного модуля управления и специального процессора удаленного управления на каждом блейд-сервере. Система управления шасси и серверами как правило имеют достаточно удобное программное обеспечение для управления. Появляются возможности удаленно управлять всей "Blade"-системой, в том числе управление электропитанием и сетью отдельных узлов.

· Масштабируемость – при необходимости увеличение производительных мощностей, достаточно приобрести дополнительные лезвия и подключить к шасси. Серверы и инфраструктурные элементы в составе блейд-систем имеют меньший размер и занимают меньше места, чем аналогичные стоечные решения, что помогает экономить электроэнергию и пространство, выделенное для ИТ. Кроме того, благодаря модульной архитектуре, они являются более удобными во внедрении и модернизации.

· Повышенная надежность. В традиционных стоечных средах для повышения надежности устанавливается дополнительное оборудование, средства коммутации и сетевые компоненты, обеспечивающие резервирование, что влечет за собой дополнительные расходы. Блейд-системы имеют встроенные средства резервирования, например предполагается наличие нескольких блоков питания, что позволяет при выходе из строя одного блока питания, обеспечивать бесперебойную работу всех серверов, расположенных в шасси. Также дублируются и охлаждающие компоненты. Выход из строя одного из вентиляторов не приводит к критическим последствиям. При выходе одного сервера из строя системный администратор просто заменяет лезвие на новое и затем в дистанционном режиме инсталлирует на него ОС и прикладное ПО.

· Снижение эксплуатационных расходов. Применение блейд-архитектуры приводит к уменьшению энергопотребления и выделяемого тепла, а также к уменьшению занимаемого объема. Помимо уменьшения занимаемой площади в ЦОД, экономический эффект от перехода на лезвия имеет еще несколько составляющих. Поскольку в них входит меньше компонентов, чем в обычные стоечные серверы, и они часто используют низковольтные модели процессоров, что сокращаются требования к энергообеспечению и охлаждению машин. Инфраструктура блейд-систем является более простой в управлении, чем традиционные ИТ- инфраструктуры на стоечных серверах. В некоторых случаях блейд-системы позволили компаниям увеличить количество ресурсов под управлением одного администратора (серверы, коммутаторы и системы хранения) более чем в два раза. Управляющее программное обеспечение помогает ИТ-организациям экономить время благодаря возможности эффективного развертывания, мониторинга и контроля за инфраструктурой блейд-систем. Переход к серверной инфраструктуре, построенной из лезвий, позволяет реализовать интегрированное управление системы и отойти от прежней схемы работы Intel-серверов, когда каждому приложению выделялась отдельная машина. На практике это означает значительно более рациональное использование серверных ресурсов, уменьшение числа рутинных процедур (таких, как подключение кабелей), которые должен выполнять системный администратор, и экономию его рабочего времени

· Появление систем и сетей хранения данных

· Другой особенностью современной истории развития вычислительных систем, наряду с появлением блейд-серверов, стало появление специализированных систем и сетей хранения данных. Внутренние подсистемы хранения серверов часто уже не могли предоставить необходимый уровень масштабируемости и производительности в условиях лавинообразного наращивания объемов обрабатываемой информации. В итоге появились внешние системы хранения данных, ориентированные сугубо на решение задач хранения данных и предоставление интерфейса доступа к данным для их использования.

· Система Хранения Данных (СХД) - это программно-аппаратное решение по организации надёжного хранения информационных ресурсов и предоставления к ним гарантированного доступа.

· Системы хранения данных представляют собой надежные устройства хранения, выделенные в отдельный узел. Система хранения данных может подключаться к серверам многими способами. Наиболее производительным является подключение по оптическим каналам (FiberChannel), что дает возможность получать доступ к системам хранения данных со скоростями 4-8 Гбит/сек. Системы хранения данных так же имеют резервирование основных аппаратных компонент – несколько блоков питания, raid контроллеров, FC адаптеров и оптических патчкордов для подключения к FC коммутаторам.

·

·
Рис. 1.3.Типичная Система хранения данных начального уровня (SunStorageTek 6140)

· Отметим основные преимущества использования СХД:

· Высокая надёжность и отказоустойчивость – реализуется полным или частичным резервированием всех компонент системы (блоков питания, путей доступа, процессорных модулей, дисков, кэша и т.д.), а также мощной системой мониторинга и оповещения о возможных и существующих проблемах;

· Высокая доступность данных – обеспечивается продуманными функциями сохранения целостности данных (использование технологии RAID, создание полных и мгновенных копий данных внутри дисковой стойки, реплицирование данных на удаленную СХД и т.д.) и возможностью добавления (обновления) аппаратуры и программного обеспечения в беспрерывно работающую систему хранения данных без остановки комплекса;

· Мощные средства управления и контроля – управление системой через web-интерфейс или командную строку, выбор нескольких вариантов оповещения администратора о неполадках, полный мониторинг системы, работающая на уровне "железа" технология диагностики производительности;

· Высокая производительность – определяется числом жёстких дисков, объёмом кэш-памяти, вычислительной мощностью процессорной подсистемы, числом внутренних (для жёстких дисков) и внешних (для подключения хостов) интерфейсов, а также возможностью гибкой настройки и конфигурирования системы для работы с максимальной производительностью;

· Беспроблемная масштабируемость – обычно существует возможность наращивания числа жёстких дисков, объёма кэш-памяти, аппаратной модернизации существующей системы хранения данных, наращивания функционала с помощью специального ПО, работающего на стойке, без значительного переконфигурирования или потерь какой-то функциональности СХД. Этот момент позволяет значительно экономить и более гибко проектировать свою сеть хранения данных.

· Сегодня системы хранения данных являются одним из ключевых элементов, от которых зависит непрерывность бизнес-процессов компании. В современной корпоративной ИТ-инфраструктуре СХД, как правило, отделены от основных вычислительных серверов, адаптированы и настроены для различных специализированных задач. Системы хранения данных реализуют множество функций, они играют важную роль в построении систем оперативного резервного копирования и восстановления данных, отказоустойчивых кластеров, высоко доступных ферм виртуализации.

Сети хранения данных

SAN - это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки. Обмен данными происходит по протоколу FibreChannel, оптимизированному для быстрой гарантированной передачи сообщений и позволяющему передавать информацию на расстояние от нескольких метров до сотен километров.

Движущей силой для развития сетей хранения данных стал взрывной рост объема деловой информации (такой как электронная почта, базы данных и высоконагруженные файловые сервера), требующей высокоскоростного доступа к дисковым устройствам на блочном уровне. Ранее на предприятии возникали "острова" высокопроизводительных дисковых массивов SCSI. Каждый такой массив был выделен для конкретного приложения и виден ему как некоторое количество "виртуальных жестких дисков". Сеть хранения данных (StorageAreaNetwork или SAN) позволяет объединить эти "острова" средствами высокоскоростной сети. Основу SAN составляет волоконно-оптическое соединение устройств по интерфейсу FibreChanel, обеспечивающее скорость передачи информации между объектами 1,2,4 или 8 Gbit/sec. Сети хранения помогают повысить эффективность использования ресурсов систем хранения, поскольку дают возможность выделить любой ресурс любому узлу сети. Рассмотрим основные преимущества SAN:

· Производительность. Технологии SAN позволяют обеспечить высокую производительность для задач хранения и передачи данных.

· Масштабируемость. Сети хранения данных обеспечивают удобство расширения подсистемы хранения, позволяют легко использовать приобретенные ранее устройства совместно с новыми устройствами хранения данных.

· Гибкость. Совместное использование систем хранения данных, как правило, упрощает администрирование и добавляет гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому. SAN позволяет подключить новые серверы и дисковые массивы к сети без остановки системы.

· Централизованная загрузка. Другим преимуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный сервер, переконфигурировав SAN таким образом, что сервер-замена, будет загружаться с логического диска сбойного сервера.

· Отказоустойчивость. Сети хранения помогают более эффективно восстанавливать работоспособность после сбоя. В SAN может входить удаленный участок с вторичным устройством хранения. В таком случае можно использовать репликацию — реализованную на уровне контроллеров массивов, либо при помощи специальных аппаратных устройств. Спрос на такие решения значительно возрос после событий 11 сентября 2001 года в США.

· Управление. Технологии SAN позволяют обеспечить централизованное управление всей подсистемой хранения данных.

Топологии SAN

Рассмотрим некоторые топологии сетей хранения данных

Однокоммутаторная структура (англ. single-switchfabric) состоит из одного коммутатора FibreChannel, сервера и системы хранения данных. Обычно эта топология является базовой для всех стандартных решений — другие топологии создаются объединением однокоммутаторных ячеек.


Рис. 1.4.Однокоммутаторная структура SAN

Каскадная структура— набор ячеек, коммутаторы которых соединены в дерево с помощью межкоммутаторных соединений.


Рис. 1.5.Каскадная структура SAN

Решетка — набор ячеек, коммутатор каждой из которых соединен со всеми другими. При отказе одного (а в ряде сочетаний — и более) соединения связность сети не нарушается. Недостаток — большая избыточность соединений


Рис. 1.6.Структура Решетка

Кольцо— практически повторяет схему топологии решётка. Среди преимуществ — использование меньшего количества соединений.


Рис. 1.7.Структура Кольцо

Консолидация ИТ инфраструктуры

Консолидация — это объединение вычислительных ресурсов либо структур управления в едином центре.

Анализ международного опыта позволяет сегодня говорить о четкой тенденции к консолидации ИТ-ресурсов корпораций. Именно она способна существенно уменьшить затраты на ИТ. Сэкономленные же средства можно направить на повышение качества имеющихся информационных услуг и внедрение новых. Кроме оптимизации расходов на ИТ, консолидация ИТ-ресурсов позволяет улучшить управляемость предприятий за счет более актуальной и полной информации об их функционировании. Обычно говорят о консолидации:

· серверов - перемещение децентрализованных, приложений, распределенных на различных серверах компании, в один кластер централизованных гомогенных серверов;

· систем хранения - совместное использование централизованной системы хранения данных несколькими гетерогенными узлами;

· приложений - размещение нескольких приложений на одном хосте.

При этом можно выделить два базовых типа консолидации — физическую и логическую. Физическая консолидация подразумевает географическое перемещение серверов на единую площадку (в центр данных), а логическая — централизацию управления.

Перемещение компьютеров в единый центр обработки данных позволяют обеспечить комфортные условия для оборудования и технического персонала, а также увеличить степень физической защиты серверов. Кроме того, в центре обработки данных можно использовать более производительное и высококачественное оборудование, которое экономически неэффективно устанавливать в каждом подразделении. Создавая центры обработки данных, можно снизить расходы на техническую поддержку и управление самыми важными серверами предприятия. Удачным примером оборудования, которое может успешно решить задачи консолидации вычислительных ресурсов в организациях любого уровня являются блейд-системы, а также и системы и сети хранения данных.

Очевидное преимущество этого решения в том, что упрощается выделение персонала поддержки и его работа по развертыванию и управлению системами, снижается степень дублирования опытных кадров. Централизация также облегчает использование стандартизованных конфигураций и процессов управления, создание рентабельных систем резервного копирования для восстановления данных после сбоя и поддержания связности бизнеса. Упрощается и решение вопросов организации высококачественного контроля за состоянием окружающей среды и обеспечения физической защиты. Может быть улучшена и сетевая безопасность, поскольку серверы оказываются под защитой единого, централизованно управляемого межсетевого экрана.

Логический тип консолидации подразумевает перестройку системы управления ИТ-инфраструктуры. Это необходимо как для увеличения масштабируемости и управляемости сложной распределенной вычислительной системы, так и для объединения сегментов корпоративной сети. Логическая консолидация обеспечивает введение централизованного управления и унификацию работы с ресурсами компании на основе открытых стандартов. В результате появляется возможность создания глобальных информационных служб предприятия — каталога LDAP, корпоративного портала или ERP-системы, что в конечном итоге позволит улучшить управляемость предприятия за счет более актуальной и полной информации об его функционировании.

Логическая консолидация приложений приводит к централизации управления критическими для бизнеса системами и приложениями. Преимущества логической консолидации очевидны: в первую очередь это высвобождение аппаратных ресурсов, которые можно использовать на других участках информационной системы. Во-вторых, более простая и логичная структура управления ИТ-инфраструктурой делает ее более гибкой и приспособленной для будущих изменений.

Сценарий гомогенной консолидации предусматривает перенос одного масштабного приложения, ранее выполнявшегося на нескольких серверах, на один, более мощный (рис. 1.8). В качестве примера такой операции можно привести базы данных, которые зачастую наращивают экстенсивным путем по мере роста объема обрабатываемой информации. Объединение данных и приложений на одном сервере заметно ускоряет процессы обработки и поиска, а также повышает уровень целостности.

Гетерогенная консолидация по содержанию схожа с гомогенной, но в этом случае объединению подлежат разные приложения. Например, несколько экземпляров ExchangeServer и SQL Server, ранее запускавшиеся на отдельных компьютерах, могут быть сведены на единой машине. Преимущества гетерогенной консолидации - возрастающая масштабируемость сервисов и более полное задействование системных ресурсов.


Рис. 1.8.Консолидация приложений

Как отмечают специалисты по облачным технологиям – консолидация ИТ-инфраструктуры – является первым шагом к "облаку". Чтобы перейти к использованию облачных технологий, компаниям необходимо сначала решить задачи неконсолидированной ИТ-инфраструктуры. "Без консолидации невозможно построить эффективное процессно-ориентированное управление, поскольку отсутствует единая точка предоставления сервисов".

Анализируя историю развития информационных технологий и современные тенденции можно сделать вывод, что эволюционный виток ИТ, начавшийся вместе с эпохой мэйнфреймов более пятидесяти лет назад, замкнулся – вместе с облаками мы вернулись к централизации ресурсов, но на этот раз не на уровне мэйнфреймов с их зелеными терминалами а на новом технологическом уровне.

Выступая на конференции, посвященной проблемам современных процессоров, профессор Массачусетского технологического института Ананд Агарвал сказал: "Процессор – это транзистор современности". Новый уровень отличается тем, что здесь также собираются мэйнфреймы, но виртуальные, и не из отдельных транзисторов, как полвека назад, а из целых процессоров или целиком из компьютеров. На заре ИТ многочисленные компании и организации "лепили" собственные компьютеры из дискретных компонентов, монтируя их на самодельных печатных платах – каждая организация делала свою машину, и ни о какой стандартизации или унификации и речи не могло быть. И вот на пороге второго десятилетия XXI века ситуация повторяется – точно так же из серверов-лезвий, компьютеров, разнообразного сетевого оборудования собираются внешние и частные облака. Одновременно наблюдается та же самая технологическая разобщенность и отсутствие унификации: Microsoft, Google, IBM, Aptana, Heroku, Rackspace, Ning, Salesforce строят глобальные мэйнфреймы, а кто-то под собственные нужды создает частные облака, которые являются теми же мэйнфреймами, но меньшего масштаба. Остается предположить, что впереди изобретение интегральной схемы и микропроцессора.

Краткие итоги:

В данной лекции мы ознакомились с основными моментами исторического развития средств вычислительной техники. Рассмотрели тенденции современных инфраструктурных решений.

Ключевые термины:

Мейнфрейм - это главный компьютер вычислительного центра с большим объемом внутренней и внешней памяти.

Блэйд-сервер — компьютерный сервер с компонентами, вынесенными и обобщёнными в корзине для уменьшения занимаемого пространства.

Система Хранения Данных (СХД) - это программно-аппаратное решение по организации надёжного хранения информационных ресурсов и предоставления к ним гарантированного доступа.

SAN - это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки. Обмен данными происходит по протоколу FibreChannel, оптимизированному для быстрой гарантированной передачи сообщений и позволяющему передавать информацию на расстояние от нескольких метров до сотен километров.

Консолидация — это объединение вычислительных ресурсов либо структур управления в едином центре.

Технологии виртуализации

Согласно статистике средний уровень загрузки процессорных мощностей у серверов под управлением Windows не превышает 10%, у Unix-систем этот показатель лучше, но тем не менее в среднем не превышает 20%. Низкая эффективность использования серверов объясняется широко применяемым с начала 90-х годов подходом "одно приложение — один сервер", т. е. каждый раз для развертывания нового приложения компания приобретает новый сервер. Очевидно, что на практике это означает быстрое увеличение серверного парка и как следствие — возрастание затрат на его администрирование, энергопотребление и охлаждение, а также потребность в дополнительных помещениях для установки всё новых серверов и приобретении лицензий на серверную ОС.

Виртуализация ресурсов физического сервера позволяет гибко распределять их между приложениями, каждое из которых при этом "видит" только предназначенные ему ресурсы и "считает", что ему выделен отдельный сервер, т. е. в данном случае реализуется подход "один сервер — несколько приложений", но без снижения производительности, доступности и безопасности серверных приложений. Кроме того, решения виртуализации дают возможность запускать в разделах разные ОС с помощью эмуляции их системных вызовов к аппаратным ресурсам сервера.


Рис. 2.1.Виртуализация подразумевает запуск на одном физическом компьютере нескольких виртуальных компьютеров

В основе виртуализации лежит возможность одного компьютера выполнять работу нескольких компьютеров благодаря распределению его ресурсов по нескольким средам. С помощью виртуальных серверов и виртуальных настольных компьютеров можно разместить несколько ОС и несколько приложений в едином местоположении. Таким образом, физические и географические ограничения перестают иметь какое-либо значение. Помимо энергосбережения и сокращения расходов благодаря более эффективному использованию аппаратных ресурсов, виртуальная инфраструктура обеспечивает высокий уровень доступности ресурсов, более эффективную систему управления, повышенную безопасность и усовершенствованную систему восстановления в критических ситуациях.

В широком смысле понятие виртуализации представляет собой сокрытие настоящей реализации какого-либо процесса или объекта от истинного его представления для того, кто им пользуется. Продуктом виртуализации является нечто удобное для использования, на самом деле, имеющее более сложную или совсем иную структуру, отличную от той, которая воспринимается при работе с объектом. Иными словами, происходит отделение представления от реализации чего-либо. Виртуализация призвана абстрагировать программное обеспечение от аппаратной части.

В компьютерных технологиях под термином "виртуализация" обычно понимается абстракция вычислительных ресурсов и предоставление пользователю системы, которая "инкапсулирует" (скрывает в себе) собственную реализацию. Проще говоря, пользователь работает с удобным для себя представлением объекта, и для него не имеет значения, как объект устроен в действительности.

Сейчас возможность запуска нескольких виртуальных машин на одной физической вызывает большой интерес среди компьютерных специалистов, не только потому, что это повышает гибкость ИТ-инфраструктуры, но и потому, что виртуализация, на самом деле, позволяет экономить деньги.

История развития технологий виртуализации насчитывает более сорока лет. Компания IBM была первой, кто задумался о создании виртуальных сред для различных пользовательских задач, тогда еще в мэйнфреймах. В 60-х годах прошлого века виртуализация представляла чисто научный интерес и была оригинальным решением для изоляции компьютерных систем в рамках одного физического компьютера. После появления персональных компьютеров интерес к виртуализации несколько ослаб ввиду бурного развития операционных систем, которые предъявляли адекватные требования к аппаратному обеспечению того времени. Однако бурный рост аппаратных мощностей компьютеров в конце девяностых годов прошлого века заставил ИТ-сообщество вновь вспомнить о технологиях виртуализации программных платформ.

В 1999 г. компания VMware представила технологию виртуализации систем на базе x86 в качестве эффективного средства, способного преобразовать системы на базе x86 в единую аппаратную инфраструктуру общего пользования и назначения, обеспечивающую полную изоляцию, мобильность и широкий выбор ОС для прикладных сред. Компания VMware была одной из первых, кто сделал серьезную ставку исключительно на виртуализацию. Как показало время, это оказалось абсолютно оправданным. Сегодня WMware предлагает комплексную виртуализационную платформу четвертого поколения VMwarevSphere 4, которая включает средства как для отдельного ПК, так и для центра обработки данных. Ключевым компонентом этого программного комплекса является гипервизор VMware ESX Server. Позднее в "битву" за место в этом модном направлении развития информационных технологий включились такие компании как Parallels (ранее SWsoft), Oracle (SunMicrosystems), CitrixSystems (XenSourse).

Корпорация Microsoft вышла на рынок средств виртуализации в 2003 г. с приобретением компании Connectiх, выпустив свой первый продукт VirtualPC для настольных ПК. С тех пор она последовательно наращивала спектр предложений в этой области и на сегодня почти завершила формирование виртуализационной платформы, в состав которой входят такие решения как Windows 2008 Server R2 c компонентом Hyper-V, MicrosoftApplicationVirtualization (App-v), MicrosoftVirtualDesktopInfrastructure (VDI), RemoteDesktopServices, SystemCenterVirtualMachineManager.

На сегодняшний день поставщики технологий виртуализации предлагают надежные и легкоуправляемые платформы, а рынок этих технологий переживает настоящий бум. По оценкам ведущих экспертов, сейчас виртуализация входит в тройку наиболее перспективных компьютерных технологий. Многие эксперты предсказывают, что к 2015 году около половины всех компьютерных систем будут виртуальными.

Повышенный интерес к технологиям виртуализации в настоящее время неслучаен. Вычислительная мощь нынешних процессоров быстро растет, и вопрос даже не в том, на что эту мощь расходовать, а в том, что современная "мода" на двухъядерные и многоядерные системы, проникшая уже и в персональные компьютеры (ноутбуки и десктопы), как нельзя лучше позволяет реализовать богатейший потенциал идей виртуализации операционных систем и приложений, выводя удобство пользования компьютером на новый качественный уровень. Технологии виртуализации становятся одним из ключевых компонентов (в том числе, и маркетинговых) в самых новых и будущих процессорах Intel и AMD, в операционных системах от Microsoft и ряда других компаний.

Преимущества виртуализации

Приведем основные достоинства технологий виртуализации:

1. Эффективное использование вычислительных ресурсов. Вместо 3х, а то 10 серверов, загруженных на 5-20% можно использовать один, используемый на 50-70%. Кроме прочего, это еще и экономия электроэнергии, а также значительное сокращение финансовых вложений: приобретается один высокотехнологичный сервер, выполняющий функции 5-10 серверов. С помощью виртуализации можно достичь значительно более эффективного использования ресурсов, поскольку она обеспечивает объединение стандартных ресурсов инфраструктуры в единый пул и преодолевает ограничения устаревшей модели "одно приложение на сервер".

2. Сокращение расходов на инфраструктуру: Виртуализация позволяет сократить количество серверов и связанного с ними ИТ-оборудования в информационном центре. В результате этого потребности в обслуживании, электропитании и охлаждении материальных ресурсов сокращаются, и на ИТ затрачивается гораздо меньше средств.

3. Снижение затрат на программное обеспечение. Некоторые производители программного обеспечения ввели отдельные схемы лицензирования специально для виртуальных сред. Так, например, покупая одну лицензию на MicrosoftWindowsServer 2008 Enterprise, вы получаете право одновременно её использовать на 1 физическом сервере и 4 виртуальных (в пределах одного сервера), а WindowsServer 2008 Datacenter лицензируется только на количество процессоров и может использоваться одновременно на неограниченном количестве виртуальных серверов.

4. Повышение гибкости и скорости реагирования системы: Виртуализация предлагает новый метод управления ИТ-инфраструктурой и помогает ИТ-администраторам затрачивать меньше времени на выполнение повторяющихся заданий — например, на инициацию, настройку, отслеживание и техническое обслуживание. Многие системные администраторы испытывали неприятности, когда "рушится" сервер. И нельзя, вытащив жесткий диск, переставив его в другой сервер, запустить все как прежде… А установка? поиск драйверов, настройка, запуск… и на все нужны время и ресурсы. При использовании виртуального сервера — возможен моментальный запуск на любом "железе", а если нет подобного сервера, то можно скачать готовую виртуальную машину с установленным и настроенным сервером, из библиотек, поддерживаемых компаниями разработчиками гипервизоров (программ для виртуализации).

5. Несовместимые приложения могут работать на одном компьютере. При использовании виртуализации на одном сервере возможна установка linux и windows серверов, шлюзов, баз данных и прочих абсолютно несовместимых в рамках одной не виртуализированной системы приложений.

6. Повышение доступности приложений и обеспечение непрерывности работы предприятия: Благодаря надежной системе резервного копирования и миграции виртуальных сред целиком без перерывов в обслуживании вы сможете сократить периоды планового простоя и обеспечить быстрое восстановление системы в критических ситуациях. "Падение" одного виртуального сервера не ведет к потере остальных виртуальных серверов. Кроме того, в случае отказа одного физического сервера возможно произвести автоматическую замену на резервный сервер. Причем это происходит не заметно для пользователей без перезагузки. Тем самым обеспечивается непрерывность бизнеса.

7. Возможности легкой архивации. Поскольку жесткий диск виртуальной машины обычно представляется в виде файла определенного формата, расположенный на каком-либо физическом носителе, виртуализация дает возможность простого копирования этого файла на резервный носитель как средство архивирования и резервного копирования всей виртуальной машины целиком. Возможность поднять из архива сервер полностью еще одна замечательная особенность. А можно поднять сервер из архива, не уничтожая текущий сервер и посмотреть положение дел за прошлый период.

8. Повышение управляемости инфраструктуры: использование централизованного управления виртуальной инфраструктурой позволяет сократить время на администрирование серверов, обеспечивает балансировку нагрузки и "живую" миграцию виртуальных машин.

Виртуальной машинойбудем называть программную или аппаратную среду, которая скрывает настоящую реализацию какого-либо процесса или объекта от его видимого представления.

Виртуальная машина— это полностью изолированный программный контейнер, который работает с собственной ОС и приложениями, подобно физическому компьютеру. Виртуальная машина действует так же, как физический компьютер, и содержит собственные виртуальные (т.е. программные) ОЗУ, жесткий диск и сетевой адаптер.

ОС не может различить виртуальную и физическую машины. То же самое можно сказать о приложениях и других компьютерах в сети. Даже сама виртуальная машина считает себя "настоящим" компьютером. Но несмотря на это виртуальные машины состоят исключительно из программных компонентов и не включают оборудование. Это дает им ряд уникальных преимуществ над физическим оборудованием.


Рис. 2.2.Виртуальная машина

Рассмотрим основные особенности виртуальных машин более детально:

1. Совместимость. Виртуальные машины, как правило, совместимы со всеми стандартными компьютерами. Как и физический компьютер, виртуальная машина работает под управлением собственной гостевой операционной системы и выполняет собственные приложения. Она также содержит все компоненты, стандартные для физического компьютера (материнскую плату, видеокарту, сетевой контроллер и т.д. ). Поэтому виртуальные машины полностью совместимы со всеми стандартными операционными системами, приложениями и драйверами устройств. Виртуальную машину можно использовать для выполнения любого программного обеспечения, пригодного для соответствующего физического компьютера.

2. Изолированность. Виртуальные машины полностью изолированы друг от друга, как если бы они были физическими компьютерами Виртуальные машины могут использовать общие физические ресурсы одного компьютера и при этом оставаться полностью изолированными друг от друга, как если бы они были отдельными физическими машинами. Например, если на одном физическом сервере запущено четыре виртуальных машины, и одна из них дает сбой, это не влияет на доступность оставшихся трех машин. Изолированность — важная причина гораздо более высокой доступности и безопасности приложений, выполняемых в виртуальной среде, по сравнению с приложениями, выполняемыми в стандартной, невиртуализированной системе.

3. Инкапсуляция. Виртуальные машины полностью инкапсулируют вычислительную среду. Виртуальная машина представляет собой программный контейнер, связывающий, или "инкапсулирующий" полный комплект виртуальных аппаратных ресурсов, а также ОС и все её приложения в программном пакете. Благодаря инкапсуляции виртуальные машины становятся невероятно мобильными и удобными в управлении. Например, виртуальную машину можно переместить или скопировать из одного местоположения в другое так же, как любой другой программный файл. Кроме того, виртуальную машину можно сохранить на любом стандартном носителе данных: от компактной карты Flash-памяти USB до корпоративных сетей хранения данных.

4. Независимость от оборудования. Виртуальные машины полностью независимы от базового физического оборудования, на котором они работают. Например, для виртуальной машины с виртуальными компонентами (ЦП, сетевой картой, контроллером SCSI) можно задать настройки, абсолютно не совпадающие с физическими характеристиками базового аппаратного обеспечения. Виртуальные машины могут даже выполнять разные операционные системы (Windows, Linux и др.) на одном и том же физическом сервере. В сочетании со свойствами инкапсуляции и совместимости, аппаратная независимость обеспечивает возможность свободно перемещать виртуальные машины с одного компьютера на базе x86 на другой, не меняя драйверы устройств, ОС или приложения. Независимость от оборудования также дает возможность запускать в сочетании абсолютно разные ОС и приложения на одном физическом компьютере.

Рассмотрим основные разновидности виртуализации, такие как:

· виртуализация серверов (полная виртуализация и паравиртуализация)

· виртуализация на уровне операционных систем,

· виртуализация приложений,

· виртуализация представлений.

 

 


Дата добавления: 2018-04-04; просмотров: 819; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!