Классификация программного обеспечения компьютера



Функциональная и структурная организация компьютера: основные блоки компьютера, их назначение и функциональные характеристики.

Обобщенная структурная схема ЭВМ:

Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

В состав микропроцессора входят:

  • Устройство управления (УУ) — формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы); опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов
  • Арифметико-логическое устройство (АЛУ) — предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);
  • Микропроцессорная память (МПП) — служит дня кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. (МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.)
  • Интерфейсная система микропроцессора — реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной.

Генератор тактовых импульсов. Генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины, которая является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Системная шина включает в себя:

  • Кодовую шину данных (КШД)
  • Кодовую шину адреса (КША)
  • Кодовую шину инструкций (КШИ)
  • Шину питания

Системная шина обеспечивает три направления передачи информации:
1. между микропроцессором и основной памятью;
2. между микропроцессором и портами ввода-вывода внешних устройств;
3. между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Основная память (ОП). Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).
ПЗУ служит для хранения неизменяемой (постоянной) программной и справочной и формации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя).
ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени.

Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, наиболее распространенными являются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках.
Назначение этих накопителей — хранение больших объемов информации.

Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания — аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). По назначению можно выделить следующие виды ВУ:
1. внешние запоминающие устройства (ВЗУ) или внешняя память ПК;
2. диалоговые средства пользователя;
3. устройства ввода информации;
4. устройства вывода информации;
5. средства связи и телекоммуникации.

Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации.

К устройствам ввода информации относятся:

  • Клавиатура
  • Графические планшеты (дигитайзеры)— для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;
  • Сканеры
  • Манипуляторы (устройства указания): джойстик — рычаг, мышь, трекбол — шар в оправе, световое перо и др. для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;
  • Сенсорные экраны — для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.

К устройствам вывода информации относятся:

  • Принтеры
  • Графопостроители (плоттеры).

Дополнительные схемы. К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Персональный компьютер (ПК) — это компьютер, предназначенный для обслуживания одного рабочего места. По своим характеристикам он может отличаться от больших ЭВМ, но функционально способен выполнять аналогичные операции. По способу эксплуатации различают настольные (desktop), портативные (laptop и notebook) и карманные (palmtop) модели ПК.

Аппаратное обеспечение. Поскольку компьютер предоставляет все три класса информационных методов для работы с данными (аппаратные, программные и естественные), принято говорить о компьютерной системе как о состоящей из аппаратных и программных средств, работающих совместно. Узлы, составляющие аппаратные средства компьютера, называют аппаратным обеспечением. Они выполняют всю физическую работу с данными: регистрацию, хранение, транспортировку и преобразование как по форме, так и по содержанию, а также представляют их в виде, удобном для взаимодействия с естественными информационными методами человека.

Устройство компьютера. Любой компьютер (даже самый большой)состоит из четырех частей:

устройства ввода информации

устройства обработки информации

устройства хранения

устройства вывода информации.

Конструктивно эти части могут быть объединены в одном корпусе размером с книгу или же каждая часть может состоять из нескольких достаточно громоздких устройств

Базовая аппаратная конфигурация ПК. Базовой аппаратной конфигурацией персонального компьютера называют минимальный комплект аппаратных средств, достаточный для начала работы с компьютером. С течением времени понятие базовой конфигурации постепенно меняется.

Чаще всего персональный компьютер состоит из следующих устройств:

Системный блок

Монитор

Клавиатура

Мышь

Дополнительно могут подключатся другие устройства ввода и вывода информации, например звуковые колонки, принтер, сканер...

Системный блок— основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключаемые к системному блоку снаружи, считаются внешними. Для внешних устройств используют также термин периферийное оборудование.
Монитор— устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. Для настольных ПК в настоящее время наиболее распространены мониторы, основанные на электронно-лучевых трубках. Они отдаленно напоминают бытовые телевизоры.
Клавиатура— клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Информация вводится в виде алфавитно-цифровых символьных данных.
Мышь— устройство «графического» управления.

Внутренние устройства персонального компьютера.
Внутренними считаются устройства, располагающиеся в системном блоке. Доступ к некоторым из них имеется на лицевой панели, что удобно для быстрой смены информационных носителей, например гибких магнитных дисков. Разъемы некоторых устройств выведены на заднюю стенку — они служат для подключения периферийного оборудования. К некоторым устройствам системного блока доступ не предусмотрен — для обычной работы он не требуется.

Процессор. Микропроцессор — основная микросхема персонального компьютера. Все вычисления выполняются в ней. Основная характеристика процессора — тактовая частота (измеряется в мегагерцах, МГц). Чем выше тактовая частота, тем выше производительность процессора. Так, например, при тактовой частоте 500 МГц процессор может за одну секунду изменить свое
состояние 500 миллионов раз. Для большинства операций одного такта недостаточно, поэтому количество операций, которые процессор может выполнить в секунду, зависит не только от тактовой частоты, но и от сложности операций.

Единственное устройство, о существовании которого процессор «знает от рождения», — оперативная память — с нею он работает совместно. Оттуда поступают данные и команды. Данные копируются в ячейки процессора (они называются регистрами), а потом преобразуются в соответствии с содержанием команд. Более полную картину того, как процессор взаимодействует с оперативной памятью, вы получите в главах, посвященных основам программирования.

Оперативная память. Оперативную память можно представить как обширный массив ячеек, в которых хранятся числовые данные и команды в то время, когда компьютер включен. Объем оперативной памяти измеряется в миллионах байтов — мегабайтах (Мбайт).

Процессор может обратиться к любой ячейке оперативной памяти (байту), поскольку она имеет неповторимый числовой адрес. Обратиться к индивидуальному биту оперативной памяти процессор не может, так как у бита нет адреса. В то же время, процессор может изменить состояние любого бита, но для этого требуется несколько действий.

Материнская плата. Материнская плата — это самая большая плата персонального компьютера. На ней располагаются магистрали, связывающие процессор с оперативной памятью, — так называемые шины. Различают шину данных, по которой процессор копирует данные из ячеек памяти, адресную шину, по которой он подключается к конкретным ячейкам памяти, и шину команд, по которой в процессор поступают команды из программ. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера. Управляет работой материнской платы микропроцессорный набор микросхем — так называемый чипсет.

Видеоадаптер. Видеоадаптер — внутреннее устройство, устанавливаемое в один из разъемов материнской платы. В первых персональных компьютерах видеоадаптеров не было. Вместо них в оперативной памяти отводилась небольшая область для хранения видеоданных. Специальная микросхема (видеоконтроллер) считывала данные из ячеек видеопамяти и в соответствии с ними управляла монитором.

По мере улучшения графических возможностей компьютеров область видеопамяти отделили от основной оперативной памяти и вместе с видеоконтроллером выделили в отдельный прибор, который назвали видеоадаптером. Современные видеоадаптеры имеют собственный вычислительный процессор (видеопроцессор), который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов.

В некоторых моделях материнских плат функции видеоадаптера выполняют микросхемы чипсета — в этом случае говорят, что видеоадаптер интегрирован с материнской платой. Если же видеоадаптер выполнен в виде отдельного устройства, его называют видеокартой. Разъем видеокарты выведен на заднюю стенку. К нему подключается монитор.

Звуковой адаптер. Для компьютеров IBM PC работа со звуком изначально не была предусмотрена. Первые десять лет существования компьютеры этой платформы считались офисной техникой и обходились без звуковых устройств. В настоящее время средства для работы со звуком считаются стандартными. Для этого на материнской плате устанавливается звуковой адаптер. Он может быть интегрирован в чипсете материнской платы или выполнен как отдельная подключаемая плата, которая называется звуковой картой.
Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук. Имеется также разъем (линейный выход) для подключения к внешней звукозаписывающей или звуковоспроизводящей аппаратуре (магнитофонам, усилителям и т.п.).

Жесткий диск. Поскольку оперативная память компьютера очищается при отключении питания, необходимо устройство для длительного хранения данных и программ. В настоящее время для этих целей широко применяют так называемые жесткие диски.
Принцип действия жесткого диска основан на регистрации изменений магнитного поля вблизи записывающей головки.

Основным параметром жесткого диска является емкость, измеряемая в гигабайтах (миллиардах байтов), Гбайт. Средний размер современного жесткого диска составляет 80 — 160 Гбайт, причем этот параметр неуклонно растет.

Дисковод гибких дисков. Для транспортировки данных между удаленными компьютерами используют так называемые гибкие диски. Стандартный гибкий диск (дискета) имеет сравнительно небольшую емкость 1,44 Мбайт. По современным меркам этого совершенно недостаточно для большинства задач хранения и транспортировки данных, но низкая стоимость носителей и высокая степень готовности к работе сделали гибкие диски самыми распространенными носителями данных.

Для записи и чтения данных, размещенных на гибких дисках, служит специальное устройство — дисковод. Приемное отверстие дисковода выведено на лицевую панель системного блока.

Дисковод CD-ROM.Для транспортировки больших объемов данных удобно использовать компакт-диски CD-ROM. Эти диски позволяют только читать ранее записанные данные — производить запись на них нельзя. Емкость одного диска составляет порядка 650-700 Мбайт.

Для чтения компакт-дисков служат дисководы CD-ROM. Основной параметр дисковода CD-ROM— скорость чтения. Она измеряется в кратных единицах. За единицу принята скорость чтения, утвержденная в середине 80-х гг. для музыкальных компакт-дисков (аудиодисков). Современные дисководы CD-ROM обеспечивают скорость чтения 40х - 52х.
Основной недостаток дисководов CD-ROM — невозможность записи дисков — преодолен в современных устройствах однократной записи — CD-R. Существуют также устройства CD-RW, позволяющие осуществлять многократную запись.

Принцип хранения данных на компакт-дисках не магнитный, как у гибких дисков, а оптический.

Коммуникационные порты. Для связи с другими устройствами, например принтером, сканером, клавиатурой, мышью и т. п., компьютер оснащается так называемыми портами. Порт — это не просто разъем для подключения внешнего оборудования, хотя порт и заканчивается разъемом. Порт — более сложное устройство, чем просто разъем, имеющее свои микросхемы и управляемое программно.

Сетевой адаптер. Сетевые адаптеры необходимы компьютерам, чтобы они могли обмениваться данными между собой. Этот прибор следит за тем, чтобы процессор не подал новую порцию данных на внешний порт, пока сетевой адаптер соседнего компьютера не скопировал к себе предыдущую порцию. После этого процессору дается сигнал о том, что данные забраны и можно подавать новые. Так осуществляется передача.

Когда сетевой адаптер «узнает» от соседнего адаптера, что у того есть порция данных, он копирует их к себе, а потом проверяет, ему ли они адресованы. Если да, он передает их процессору. Если нет, он выставляет их на выходной порт, откуда их заберет сетевой адаптер очередного соседнего компьютера. Так данные перемещаются между компьютерами до тех пор, пока не попадут к адресату.

Сетевые адаптеры могут быть встроены в материнскую плату, но чаще устанавливаются отдельно, в виде дополнительных плат, называемых сетевыми картами.

 

Основы автоматизации вычислительного процесса: понятие алгоритма; способы представления алгоритмов; программное управление вычислительным процессом; состав машинных команд; адресация регистров и ячеек памяти в компьютерах.

Алгори́тм — набор инструкций, описывающих порядок действий исполнителя для достижения некоторого результата

Способы:

Словесный способзаключается в описи алгоритма в терминах какого либо языка. Данный способ применяется редко, поскольку запись при этом довольно громоздкая и могут возникнуть противоречивые толкования алгоритма.

Символический способзаключается в записи алгоритма с помощью условных символов. Данный способ представления алгоритма делает запись алгоритма очень кратким, и не наглядным.

Графический способ– изображение алгоритма в виде структурной схемы, которая состоит из отдельных блоков. Этот способ представления алгоритма есть наиболее удобным и наглядным.

  • Любой алгоритм должен иметь начало и конец
  • Все блоки, кроме проверки условия, имеют только один выход.
  • Все блоки алгоритма имеют не больше одного входа.
  • Линии алгоритма не могут разветвляться.
  • Типы алгоритмов и их структурные схемы

Один из принципов построения ЭВМ, предложенных Дж. фон Нейманом - наличие хранимой в памяти программы. Процессор исполняет программный код, находящийся к моменту исполнения в пространстве памяти. Программный код - это последовательность команд, или инструкций,каждая из которых определенным образом закодирована и расположена в целом числе смежных байт памяти. Каждая инструкция обязательно имеетоперационную часть, несущую процессору информацию о требуемых действиях. Операндная часть, указывающая процессору, где находится его "предмет труда" - операнды, может присутствовать в явном или неявном виде и даже отсутствовать. Операндная часть может описывать от нуля до двух операндов, участвующих в данной инструкции (есть инструкции, в которые кроме двух операндов задается еще и параметр инструкции). Здесь могут быть сами значения операндов (непосредственные операнды); явные или неявные указания на регистры процессора, в которых находятся операнды; адрес ячейки памяти (или его составная часть); регистры процессора, участвующие в формировании адреса, и разные комбинации этих компонент. Длина инструкции в семействе x86 может быть от одного до 12 байт и определяется типом инструкции. Исторически сложившийся формат инструкций х86 довольно сложен, и "понять", сколько байт занимает конкретная инструкция, процессор может, лишь декодировав ее первые 1-3 байт. Инструкции могут предшествовать префиксы (к счастью, всегда однобайтные), указывающие на изменение способа адресации, размера операнда или (и) необходимость многократного (по счетчику и условию) повторения данной инструкции. Адрес (логический) текущей исполняемой инструкций хранится в специальном регистре - указателе инструкций (Instruction Pointer, IP), который соответствует счетчику команд фон-неймановской машины. После исполнения так называемой линейной инструкции этот указатель увеличивает свое значение на ее длину, то есть указывает на начало следующей инструкции. Линейная инструкция не нарушает порядок выполнения, определяемый последовательностью расположения инструкций в памяти (по нарастанию адреса). Кроме линейных инструкций, существуют инструкции передачи управления, среди которых различают инструкции переходов и вызовов процедур. Эти инструкции в явном или неявном виде содержат информацию об адресе следующей выполняемой инструкции, который может указывать на относительно произвольную ячейку памяти. Инструкции переходов и вызовов могут быть безусловными (ни от чего не зависящими) и условными. Произойдет условный переход (вызов) или нет, зависит от состояния флагов (признаков) на момент исполнения данной инструкции. Если переход (вызов) не состоится, то исполняется инструкция, расположенная в памяти следом за текущей. Вызов процедуры характерен тем, что перед ним процессор сохраняет в стеке (стек - это область ОЗУ) адрес следующей инструкции, и на этот адрес передается управление после завершения исполнения процедуры (этот адрес извлекается из стека при выполнении инструкции возврата). При переходе в стеке ничего не сохраняется, то есть переход выполняется безвозвратно.

Последовательность исполнения инструкций, предписанная программным кодом, может быть нарушена под воздействием внутренних или внешних (относительно процессора) причин. К внутренним причинам относятся исключения (exceptions) - особые ситуации, возникающие при выполнении инструкций. Наглядным примером исключений является попытка деления на ноль. При возникновении условия исключения процессор автоматически выполняет вызов процедуры обработки исключения, после которой он может вернуться к повторному исполнению инструкции, породившей исключение или следующей за ней. Вариант поведения зависит от типа произошедшего исключения. Исключения широко используются современными операционными системами, на основе обработки исключений строится система виртуальной памяти и реализуются многие функции многозадачных операционных систем. Внешними причинами изменения нормальной последовательности инструкций являются аппаратные прерывания - вызовы процедур под воздействием электрических сигналов, поступающих на специальные выводы процессора. Эти сигналы могут подаваться совершенно неожиданно для исполняемой программы, правда, у программиста есть возможность заставить процессор (компьютер) игнорировать все прерывания или их часть. Злоупотреблять этой возможностью нельзя (да и не всегда она есть), поскольку на аппаратных прерываниях строится, например, отсчет времени и другие системные и прикладные функции компьютера. Источниками аппаратных прерываний являются контроллеры и адаптеры периферийных устройств, генераторы меток времени, системы управления питанием и другие подсистемы.

Есть еще так называемые программные прерывания, но они отнюдь не нарушают последовательность инструкций, предписанную программистом. Поэтому прерываниями они по сути не являются - это всего лишь особый способ вызова процедур, широко используемый для вызова системных сервисов BIOS и операционной системы. И наконец, последовательность инструкций может изменяться по сигналу аппаратного сброса или инициализации процессора. С этого, собственно, и начинается функционирование компьютера: процессор переводится в исходное состояние и запускается. При этом указатель инструкций совместно с другими регистрами, участвующими в формировании адреса инструкции, генерирует адрес "начального пуска". По этому адресу должна располагаться инструкция, с которой начинается инициализация компьютера.

В процессоре предусматривается возможность выполнения большого числа различных операций. Несмотря на то что число таких операций может быть более 100, каждая из них представляет собой простейшие арифметические либо логические действия, такие, например, как сложение, вычитание, умножение и деление чисел, пересылка кодов и т.п. При этом в каждой операции участвует не более двух операндов. В связи с этим решаемая задача должна быть предварительно представлена последовательностью таких операций, которые способна выполнять ЭВМ. Затем на каждую из этих операций должна быть составлена так называемая команда. Совокупность команд, образующая программу решения задачи, должна быть помещена в ОЗУ.

Команда должна содержать все необходимые для выполнения операции указания: вид операции, место, где хранятся операнды данной операции и куда должен быть помещен результат операции. Такая команда имеет следующий формат:

Здесь КОп -- код операции. В каждой ЭВМ предусматривается определенная система кодирования операций. Например, может быть принят следующий способ записи вида операции: 01 -- сложение, 02 -- вычитание, 03 -- умножение и т.д.; А1 -- первый адрес -- адрес ячейки оперативной памяти, в которой хранится первый операнд; А2 -- второй адрес -- адрес второго операнда; А3 -- третий адрес -- адрес ячейки оперативной памяти, в которую должен помещаться результат операции. Команда с таким содержанием называется трехадресной.

Результат операции в этом случае помещается в ячейку одного из операндов либо остается в АЛУ.

При таком формате для выполнения одного арифметического действия над двумя числами от машины может потребоваться исполнение нескольких команд. Например, для сложения двух чисел необходимо выполнить три команды:

· ввести в АЛУ число, хранящееся в оперативной памяти (ОЗУ) по приведенному в команде адресу;

· прибавить к принятому числу число, хранящееся в памяти по указанному в команде адресу;

· поместить полученный в АЛУ результат в память по адресу, указанному в данной команде.

Широкое распространение получили машины с переменной адресностью. В них при выполнении операций операнды (один либо оба) могут выбираться не из оперативной памяти, а из местной (СОЗУ). Команды этих машин по существу являются двухадресными, но оба адреса либо один из них могут быть адресами не оперативной памяти, а регистров местной памяти АЛУ.

Рассмотрим взаимодействие устройств ЭВМ в процессе решения задачи. Для определенности примем, что рассматриваемая ЭВМ является трехадресной. Перед решением задачи набор команд, образующий программу решения, помещается в последовательные ячейки оперативной памяти так, что адрес ячейки, содержащей следующую команду, на единицу больше адреса ячейки, в которую помещена предыдущая команда.

Процесс реализации программы состоит в последовательной выборке из ОЗУ команд и их исполнении. Вызванная из ОЗУ в устройство управления (УУ) очередная команда хранится в нем все время исполнения операции. УУ выбирает из команды первый адрес А1, пересылает его в ОЗУ и подает сигнал считывания. Из ОЗУ выдается первый операнд. УУ подает в АЛУ сигнал отпирания входов регистра, в который должен быть принят этот операнд. Аналогично по второму адресу А2 производится передача из ОЗУ в АЛУ второго операнда. Затем УУ подает в АЛУ управляющие сигналы, под действием которых выполняется предусмотренная командой операция. После получения результата операции УУ передает в ОЗУ третий адрес А3, подает сигнал записи и открывает выход регистра АЛУ, хранящего результат операции.

Далее в ОЗУ передается адрес очередной команды, сформированной в УУ (например, путем увеличения на единицу адреса предыдущей команды), в УУ поступает следующая команда и т.д.

Машинная команда – это элементарная инструкция компьютеру, выполняемая им автоматически без дополнительных указаний и пояснений.

Машинная команда состоит из двух частей: операционной и адресной.

Операционная часть команды – это группа разрядов в команде, предназначенная для указания кода операции.

Адресная часть команды – это группа разрядов в команде, в которых записываются коды адреса (адресов) ячеек памяти компьютера, предназначенных для оперативного хранения данных, задействованных при выполнении команды. Часто эти адреса называют адресами операндов, т.е. чисел, участвующих в операции.

По количеству адресов, записываемых в команде, команды делятся на безадресные, одно-, двух- и трехадресные.

Трехадресная команда: КОП а1 а2 а3

КОП – код операции;

а1 и а2 – адреса ячеек (регистров), где расположены данные, участвующие в операции;

а3 – адрес ячейки (регистра), куда нужно поместить результат операции.

Двухадресная команда: КОП а1 а2

а1 – адрес ячейки (регистра), где расположено первое из данных, участвующее в операции, и куда нужно поместить результат операции

а2 – адрес ячейки (регистра), где расположено второе из данных, участвующее в операции.

Одноадресная команда: КОП а1

а1 – в зависимости от модификации команды либо адрес ячейки (регистра), где расположено одно из данных, участвующее в операции, либо адрес ячейки (регистра) куда нужно поместить результат операции.

Безадресная команда содержит только код операции, а данные для нее должны быть заранее помещены в определенные регистры машины.

Стандартный набор современных ПК содержит около 240 машинных команд. Их можно разделить на группы по видам выполняемых операций:

- операции пересылки данных внутри компьютера;

- арифметические операции над данными;

- логические операции над данными;

- операции обращения к внешним устройствам компьютера;

- операции передачи управления;

- обслуживающие и вспомогательные операции.

Операции передачи управления служат для изменения естественного порядка выполнения команд. Их два вида. Операции безусловной передачи управления требуют выполнения данной команды не следующую по порядку, а той, адрес которой в явном или неявном виде указан в адресной части. Операции условной передачи управления тоже требуют передачи управления по адресу указанному в адресной части команды, но только в том случае, если выполняется некоторое заранее оговоренное для этой команды условие. Условие задается в коде операции в явном или неявном виде.

Адресация операндов в командах программы может быть:

q непосредственной;

q прямой;

q косвенной;

q ассоциативной;

q неявной.

Непосредственная адресация заключается в указании в команде самого значения операнда, а не его адреса.

Прямая адресация состоит в указании в команде непосредственно абсолютного или исполнительного адреса операнда.

Косвенная адресация имеет в виду указание в команде регистра(ов) или ячейки памяти, в которых находятся абсолютный, исполнительный адрес операнда или их составляющие.

Ассоциативная адресация — указание в команде не адреса, а идентифицирующего содержательного признака операнда, подлежащего выборке (применяется в ассоциативных запоминающих устройствах).

Неявная адресация — адреса операнда в команде не указано, но он подразумевается кодом операции.

Адресация ячеек основной памяти ПК имеет две важных разновидности: относительную и стековую

 

Классификация программного обеспечения компьютера.

Программное обеспечение(англ. software) – это совокупность программ, обеспечивающих функционирование компьютеров и решение с их помощью задач предметных областей. Программное обеспечение (ПО) представляет собой неотъемлемую часть компьютерной системы, является логическим продолжением технических средств и определяет сферу применения компьютера.

ПОсовременных компьютеров включает множество разнообразных программ, которое можно условно разделить на три группы (рис. 3.1):

1. Системное программное обеспечение (системные программы);

2. Прикладное программное обеспечение (прикладные программы);

3. Инструментальное обеспечение (инструментальные системы).

Системное программное обеспечение (СПО) – это программы, управляющие работой компьютера и выполняющие различные вспомогательные функции, например, управление ресурсами компьютера, создание копий информации, проверка работоспособности устройств компьютера, выдача справочной информации о компьютере и др. Они предназначены для всех категорий пользователей, используются для эффективной работы компьютера и пользователя, а также эффективного выполнения прикладных программ.

Центральное место среди системных программ занимают операционные системы (англ. operating systems). Операционная система (ОС) – это комплекс программ, предназначенных для управления загрузкой, запуском и выполнением других пользовательских программ, а также для планирования и управления вычислительными ресурсами ЭВМ, т.е. управления работой ПЭВМ с момента включения до момента выключения питания. Она загружается автоматически при включении компьютера, ведет диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, дисковым пространством и т.д.), запускает другие программы на выполнение и обеспечивает пользователю и программам удобный способ общения – интерфейс – с устройствами компьютера. Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям.

ОС определяет производительность системы, степень защиты данных, выбор программ, с которыми можно работать на компьютере, требования к аппаратным средствам. Примерами ОС являются MS DOS, OS/2, Unix, Windows 9х, Windows XP.


Дата добавления: 2018-02-28; просмотров: 498; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!