Датчики положения, перемещений и уровня



 

Емкостным датчиком называют преобразователь параметрического типа, в котором изменение измеряемой величины преобразуется в изменение емкостного сопротивления.

Емкocтной дaтчик, измерительный преобразователь неэлектрических величин (уровня жидкости, механические усилия, давления, влажности и др.) в значения электрической ёмкости. Конструктивно емкостный датчик представляет собой конденсатор электрический плоскопараллельный или цилиндрический. Различают емкостные датчики, действие которых основано на изменении зазора между пластинами или площади их взаимного перекрытия, деформации диэлектрика, изменении его положения, состава или диэлектрической проницаемости. Наиболее часто емкостные датчики применяют для измерений меняющихся давления или уровня, точных измерений механических перемещений и т. п.

Устройство и принципы работы емкостного датчика приведены на рисунке 2.2.1.

 

Рисунок 2.2.1 - Устройство емкостного датчика

 

Емкocтный бecконтакный датчик функционирует следующим образом:

Генератор обеспечивает электрическое поле взаимодействия с объектом.

Демодулятор преобразует изменение амплитуды высокочастотных колебаний генератора в изменение постоянного напряжения.

Триггер обеспечивает необходимую крутизну фронта сигнала переключения и значение гистерезиса.

Усилитель увеличивает выходной сигнал до необходимого значения.

Светодиодный индикатор показывает состояние выключателя, обеспечивает работоспособности, оперативность настройки.

Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.

Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

Активная поверхность емкостного бесконтактного датчика образована двумя металлическими электродами, которые можно представить как обкладки "развернутого" конденсатора (см. рисунок 2.2.1). Электроды включены в цепь обратной связи высокочастотного автогенератора, настроенного таким образом, что при отсутствии объекта вблизи активной поверхности он не генерирует. При приближении к активной поверхности емкостного бесконтактного датчика объект попадает в электрическое поле и изменяет емкость обратной связи. Генератор начинает вырабатывать колебания, амплитуда которых возрастает по мере приближения объекта. Амплитуда оценивается последующей схемой обработки, формирующей выходной сигнал.

Емкостные бесконтактные датчики срабатывают как от электропроводящих объектов, так и от диэлектриков. При воздействии объектов из электропроводящих материалов реальное расстояние срабатывания Sr максимально, а при воздействии объектов из диэлектрических материалов расстояние Sr уменьшается в зависимости от диэлектрической проницаемости материала er (см. график зависимости Sr от Er (Рисунок 2.2.2) и таблицу диэлектрической проницаемости материалов 2.2.1). При работе с объектами из различных материалов, с разной диэлектрической проницаемостью, необходимо пользоваться графиком зависимости Sr от Er. Номинальное расстояние срабатывания (Sn) и гарантированный интервал воздействия (Sa), указанные в технических характеристиках выключателей, относятся к заземленному металлическому объекту воздействия (Sr=100%). Соотношение для определени реального расстояния срабатывания (Sr): 0,9 Sn < Sr < 1,1 Sn.

Рисунок 2.2.2 - Зависимость реального расстояния срабатывания Sr от диэлектрической проницаемости материала объекта Er

 

Области применения емкостных датчиков

Возможные области применения емкостных датчиков чрезвычайно разнообразны. Они используются в системах регулирования и управления производственными процессами почти во всех отраслях промышленности. Емкостные датчики применяются для контроля заполнения резервуаров жидким, порошкообразным или зернистым веществом, как конечные выключатели на автоматизированных линиях, конвейерах, роботах, обрабатывающих центрах, станках, в системах сигнализации, для позиционирования различных механизмов и т. д. В настоящее время наиболее широкое распространение получили датчики приближения (присутствия), которые помимо своей надежности, имеют широкий ряд преимуществ. Имея сравнительно низкую стоимость, датчики приближения охватывают огромный спектр направленности по своему применению во всех отраслях промышленности.

Типичными областями использования емкостных датчиков этого типа являются:

- сигнализация заполнения емкостей из пластика или стекла;

- контроль уровня заполнения прозрачных упаковок;

- сигнализация обрыва обмоточного провода;

- регулирование натяжения ленты;

- поштучный счет любого вида и др.

Таблица 2.2.1 - Диэлектрическая проницаемость некоторых материалов: Материал - Er

Аммиак........................................16 Аралдит.......................................3,6 Бакелит.......................................3,6 Бензол.........................................2,3 Бумага.........................................2,3 Бумага промасленная............4,0 Вода.............................................80 Винипласт................................... 4,0 Воздух.........................................1,0 Гетинакс......................................4,5 Древесина..................................2-7 Компаунд кабельный..............2,5 Керосин.......................................2,2 Мрамор........................................8,0 Масло трансформаторное......2,2 Нефть..........................................2,2 Оргстекло....................................3,2 Полиамид.................................... 5,0 Парафин......................................2,2 Кварцевое стекло......................3,7 Кварцевый песок.......................4,5 Поливинилхлорид....................2,9 Полипропилен..........................2,3 Полистирол................................3,0 Полиэтилен................................2,3 Резина мягкая...........................2,5 Резина силиконовая................ 2,8 Слюда.........................................6,0 Скипидар....................................2,2 Спирт этиловый.......................25,8 Стеклотекстолит......................5,5 Стекло.......................................5,0 Тальк..........................................1,6 Текстолит....................................7,5 Фторопласт (Тефлон).............2,0 Фарфор......................................4,4 Целлулоид..................................3,0 Цемент.......................................2,0 Эбонит.......................................4,0 Электрокартон.........................4,0 Толуол........................................2,4 Фанера.......................................4,0

Емкостные датчики линейных и угловых перемещений являются наиболее распространенными приборами, широко используемыми в машиностроении и на транспорте, строительстве и энергетике, в различных измерительных комплексах. Сравнительно новыми приборами, доведенными до широкого промышленного применения в последние годы, стали малогабаритные емкостные инклинометры с электрическим выходным сигналом, пропорциональным углу наклона датчика.

В качестве основных можно считать следующие области применения инклинометров:

- использование в системах горизонтирования платформ;

- определение величины прогибов и деформаций различного рода опор и балок;

- контроль углов наклона автомобильных и железных дорог при их строительстве, ремонте и эксплуатации;

- определение крена автомобилей, кораблей и подводных роботов, подъемников и кранов, экскаваторов, сельскохозяйственных машин;

- определение углового перемещения различного рода вращающихся объектов – валов, колес, механизмов редукторов как на стационарных, так и подвижных объектах.

Датчики линейных перемещений

Неэлектрические величины, подлежащие измерению и контролю, весьма многочисленны и разнообразны. Значительную их часть составляют линейные и угловые перемещения. На основе конденсатора, у которого электрическое поле в рабочем зазоре равномерно, могут быть созданы конструкции емкостных датчиков перемещения двух основных типов: с переменной площадью электродов; с переменным зазором между электродами. Достаточно очевидно, что первые более удобны для измерения больших перемещений (единицы, десятки и сотни миллиметров), а вторые – для измерения малых и сверхмалых перемещений (доли миллиметра, микрометры и менее).

Датчики угловых перемещений

Емкостные измерительные преобразователи угловых перемещений подобны по принципу действия емкостным датчикам линейных перемещений, причем датчики с переменной площадью также более целесообразны в случае не слишком малых диапазонов измерения (начиная с единиц градусов), а емкостные датчики с переменным угловым зазором могут с успехом использоваться для измерения малых и сверхмалых угловых перемещений. Обычно для угловых перемещений используют многосекционные преобразователи с переменной площадью обкладок конденсатора. В таких датчиках один из электродов конденсатора крепится к валу объекта, и при вращении смещается относительно неподвижного, меняя площадь перекрытия пластин конденсатора. Это в свою очередь вызывает изменение емкости, что фиксируется измерительной схемой.

Инклинометры

Инклинометр (датчик крена) представляет собой дифференциальный емкостной преобразователь наклона, включающий в себя чувствительный элемент в форме капсулы.

 

Рисунок 2.2.3 - Устройство емкостного инклинометра

 

Капсула состоит из подложки с двумя планарными электродами 1, покрытыми изолирующим слоем, и герметично закрепленным на подложке корпусом 2. Внутренняя полость корпуса частично заполнена проводящей жидкостью 3, которая является общим электродом чувствительного элемента. Общий электрод образует с планарными электродами дифференциальный конденсатор. Выходной сигнал датчика пропорционален величине емкости дифференциального конденсатора, которая линейно зависит от положения корпуса в вертикальной плоскости.

Инклинометр спроектирован так, что имеет линейную зависимость выходного сигнала от угла наклона в одной – так называемой рабочей плоскости и практически не изменяет показания в другой (нерабочей) плоскости, при этом его сигнал слабо зависит от изменения температуры. Для определения положения плоскости в пространстве используется два, расположенных под углом 90° друг к другу инклинометра.

Малогабаритные инклинометры с электрическим выходным сигналом, пропорциональным углу наклона датчика, являются сравнительно новыми приборами. Их высокая точность, миниатюрные размеры, отсутствие подвижных механических узлов, простота крепления на объекте и низкая стоимость делают целесообразным использовать их не только в качестве датчиков крена, но и заменять ими угловые датчики, причем не только на стационарных, но и на подвижных объектах.

Емкостные датчики уровня находят применение в системах контроля, регулирования и управления производственными процессами в пищевой, фармацевтической, химической, нефтеперерабатывающей промышленности. Они эффективны при работе с жидкостями, сыпучими материалами, пульпой, вязкими веществами (проводящими и непроводящими), а также в условиях образования конденсата, запыленности.

Емкостной преобразователь для измерения уровня непроводящей жидкости представляет собой два параллельно соединенных конденсатора.

Емкостные гигрометры

 

Емкостный гигрометр на основе полимерного диэлектрика

Принцип действия и конструкция.

Слой полимерного диэлектрика толщиной несколько микрон поглощает из окружающего воздуха молекулы воды, в результате чего устанавливается равновесие с воздухом. Это приводит к изменению диэлектрической постоянной слоя и, соответственно, изменению емкости конденсатора, в котором используется этот диэлектрик. Опыт показывает, что при этом изменение емкости в зависимости от относительной влажности достаточно хорошо описывается линейным законом, а коэффициент пропорциональности слабо зависит от температуры.

Существуют различные способы изготовления тонкослойных конденсаторов. Описываемая ниже конструкция (рисунок 2.3.1, а) представляет собой датчик, выпускаемый фирмой CORECI.

Рисунок 2.3.1 - Емкостной гигрометр на основе полимерного

диэлектрика.

а – измерительная ячейка (фирма CORECI); б – пористый электрод, (увеличение в 104) (LETI CORECI):

1–тантал; 2–пористый электрод; 3–полимер; 4–подложка.

 

 Технология изготовления включает осаждение полимера на первый танталовый электрод, а затем нанесение на полимер тонкого (толщиной от 100 до 10000 Å) слоя хрома путем вакуумного напыления. Этот слой вызывает появление трещин в диэлектрическом слое (рисунок 2.3.1, б), что, в частности, устраняет зависимость постоянной времени запаздывания от толщины этого слоя. Здесь хром используется для того, чтобы сделать датчик не чувствительным к серосодержащим примесям. В некоторых емкостных гигрометрах в качестве пористого электрода используется очень тонкий (~100 Å) слой золота.

Метрологические характеристики.

Диапазон измерений влажности охватывает от 0 до 100% для температур – 40 °С ÷ +80 °С или даже до +100 °С в зависимости от типа датчика.

Погрешность таких гигрометров составляет от ±2 до ±3% в зависимости от рабочей области и типа прибора.

Постоянная времени для достижения 90% конечной величины влажности при изменении относительной влажности от 50 до 90% (или в обратном направлении) составляет ~1 ÷ 2 с.

Влияние температуры на чувствительный элемент датчика пренебрежимо мало, что позволяет обойтись без температурной компенсации. Чувствительный элемент можно погружать в воду практически без риска его испортить.

Как и резистивные датчики, эти гигрометры можно применять совместно с портативными калибровочными приборами, в которых используются насыщенные растворы солей.

Емкостный гигрометр на основе диэлектрического слоя оксида алюминия

Принцип действия и конструкция.

Используемый диэлектрик представляет собой слой оксида алюминия, нанесенный посредством анодного осаждения на алюминиевую пластинку, представляющую собой первый электрод; в качестве другого электрода служит слой металла, нанесенный на диэлектрик (рисунок 2.3.2, а). Импеданс гигрометров этого типа, как и описанных в предыдущем разделе, меняется в зависимости от относительной влажности окружающей среды (рисунок 2.3.2, б).

Исследования показали, что при толщине оксидного покрытия менее 0,3 мкм изменение импеданса этого конденсатора зависит только от парциального давления водяного пара и не зависит от температуры. Это позволяет измерять абсолютную влажность.

Анодное осаждение осуществляется путем электролиза водного раствора серной кислоты, причем анод изготавливается из алюминия. Выделяющийся на этом электроде кислород превращает металл в оксид, при осаждении которого возникает множество точек схлопывания, что приводит к пористой структуре слоя. Например, при использовании сернокислотной ванны (15%), температуре +10 °С и напряжении электролиза 15 В образуется порядка 7,7·1010 пор на 1 см2 диаметром от 100 до 300 Å каждая, так что реальная площадь адсорбции составляет ~0,2 м2 на 1 см2 эффективной площади.

Рисунок 2.3.2 - Гигрометр на основе диэлектрика (Al2O3).

а – ячейка производства фирмы Panametrics; б – эквивалентная электрическая схема: R0, C0 –импеданс компактной части; R1–сопротивление боковой поверхности пор; R2, C2–импеданс участка между дном пор и внутренним электродом.

 

Варьируя технологические параметры, можно изменять форму, распределение пор и, следовательно, свойства осаждаемого слоя в зависимости от ожидаемой влажности. Эти параметры включают температуру и концентрацию ванны, напряжение питания, продолжительность окисления и ионные добавки к раствору. Так же можно изготавливать датчики, приспособленные к определенным условиям: низкой влажности, высокой температуре и т.п.

Гигрометры, основанные на этом принципе, наиболее удобны для измерения низких значений влажности. В этом случае необходимо, чтобы толщина пористого слоя была минимальной; после анодного осаждения слой полируют, чтобы уменьшить его толщину и сделать датчик чувствительным исключительно к температуре точки росы конкретной окружающей среды.

Второй металлический электрод наносится на поверхность оксида алюминия; для этого могут быть использованы алюминий, медь, золото, серебро, платина, палладий, нихром. Указанный электрод должен быть достаточно малым, чтобы не закрывать сверху пористый слой оксида алюминия более, чем это необходимо.

Метрологические характеристики.

Наиболее важное свойство гигрометра этого типа состоит в том, что он позволяет определить температуру точки росы, причем в широком интервале температур (от – 80 до +70 °С).

Поскольку датчик предназначен для непосредственного использования в точке измерения, он не требует специального приспособления для отбора проб. Это значительно улучшает быстродействие прибора, поскольку при очень низких значениях точки росы для установления равновесия в самой простой системе отбора проб в виде 1 – 2 м трубки из нержавеющей стали и маленькой измерительной камеры может потребоваться несколько часов при переходе от точки росы +10 °С к –70 °С. Действительно, для таких очень низких значений точки росы время установления гигроскопического равновесия системы трубок с воздухом чрезвычайно велико, а скорость установления равновесия зависит от его расхода, температуры, используемых конструкционных материалов и давления в системе. Напротив, постоянная времени датчика на основе оксида алюминия, расположенного непосредственно в исследуемой газовой среде, очень мала и составляет всего несколько секунд.

Показания этих датчиков не зависят от потока: максимальная допустимая скорость ограничивается механической прочностью и составляет около 50 м/с. Датчики этого типа можно использовать при любых давлениях от вакуума до нескольких сотен атмосфер.

Гигрометры на оксиде алюминия позволяют измерять влажности как газов, так и жидкостей. Тем не менее, не рекомендуется использовать эти датчики в средах, содержащих коррозионно-активные вещества, такие, как хлорид натрия, сера которые взаимодействуют с алюминием и, следовательно, могут повредить чувствительный элемент.

 

Датчики давления

 

 

Емкостные датчики давления также реализуются на основе кремниевых диафрагм. В таких датчиках перемещение диафрагмы относительно опорной пластины меня­ет емкость между ними. Емкостные датчики работают наиболее эффективно при невысоких давлениях. Монолитные емкостные датчики давления, изготовленные из кремниевых кристаллов, обладают максимальной стабильностью рабочих харак­теристик. Перемещение диафрагмы может обеспечить 25% изменение емкости в широком диапазоне значений, что делает возможным проведение прямой оциф­ровки результатов измерений. В то время как для диафрагм, используемых в пьезорезитивных датчи­ках, необходимо обеспечивать макси­мальное механическое напряжение на краях, для диафрагм в емкостных дат­чиках существенным является переме­щение их центральной части. Диафраг­мы в емкостных датчиках могут быть за­щищены от избыточного давления при помощи механических ограничителей с каждой стороны диафрагмы (для диф­ференциальных датчиков давления). В пьзорезистивных датчиках из-за не­больших перемещений такой способ за­щиты, к сожалению, работает недоста­точно эффективно, поэтому для них определяется давление разрыва, которое, как правило, в 10 раз превышает мак­симальное измеряемое давление, в то время как для емкостных преобразова­телей с механическими ограничителями эта величина в 100 раз больше. Это осо­бенно важно при работе в области низких давлений, где возможны всплески вы­сокого давления.

Для обеспечения хорошей линейности емкостных датчиков необходимо, что­бы диафрагмы обладали ровной поверхностью центральной части. Традиционно считается, что емкостные датчики обладают линейностью только тогда, когда пе­ремещения диафрагм значительно меньше их толщины. Одним из способов улуч­шения линейности является использование  гофрированных диафрагм,   изготовлен­ных  методами   микротехнологий.

 

 


Дата добавления: 2018-02-28; просмотров: 748; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!